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The study of dynamic critical properties of spin sys�
tems is one of the topical problems of modern statisti�
cal physics and phase transition physics. Theoretical
and experimental studies have provided considerable
successes in this field. Nevertheless, the construction
of the strict and consistent theory of dynamic critical
phenomena on the basis of microscopic Hamiltonians
is one of the central problems of the modern theory of
phase transitions and critical phenomena, which is
still far from its solution.

Recently, for studying the critical dynamics of
models of magnetic materials, physicists started suc�
cessfully using the short�time dynamics method [1–
5], in which the critical relaxation of the magnetic
model from the nonequilibrium state to the equilib�
rium one is studied within the model A (the Hohen�
berg–Halperin classification of universality classes of
the dynamic critical behavior [6]). It is considered tra�
ditionally that the universal scaling behavior takes
place only in the thermodynamic equilibrium state.
However, it was shown that this behavior in some
dynamic systems can be observed at the early stages of
their time evolution from the high�temperature disor�
dered state to the state corresponding to the phase
transition temperature [7]. Such a behavior occurs
after some time interval which is large enough in the
microscopic sense but remains small in the macro�
scopic one. An analogous picture is also observed in
the case of the evolution of the system from the low�
temperature ordered state [1, 2].

Using the renormalization group method, the
authors of [7] showed that the kth moment of the mag�
netization far from the equilibrium point after a

microscopically small time interval has the scaling
form

(1)

where M(k) is the kth moment of the magnetization; t
is the time; τ is the reduced temperature; L is the linear
size of the system; b is the scaling factor; β and ν are
static critical exponents of the magnetization and the
correlation radius, respectively; z is the dynamic criti�
cal exponent; and x0 is a new independent critical
exponent defining the scaling dimension of the initial
magnetization m0.

When starting from the low�temperature ordered
state (m0 = 1), the theory predicts the power behavior
of the magnetization in the short�time mode at the
critical point (τ = 0) under the assumption b = t1/z in
Eq. (1) for the systems with rather large linear sizes L:

. (2)

By taking the logarithm of both sides of the equa�
tion and taking the derivative with respect to τ at τ = 0,
we obtain the power law for the logarithmic derivative:

. (3)

For the Binder cumulant UL(t) calculated from the
first and second moments of the magnetization, the
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finite�size scaling theory gives the following depen�
dence at τ = 0:

. (4)

Thus, in one numerical experiment, the short�time
dynamics method makes it possible to determine the
three critical exponents using Eqs. (2)–(4): β, ν, and
z. In addition, dependences (2) plotted for different
temperatures make it possible to find the Tc value from
their deviation from the straight line in the log–log
scale.

Using this method, we studied the critical relax�
ation from the low�temperature ordered state of the
fully frustrated three�dimensional Ising model on a
simple cubic lattice. This model was proposed for the
first time by Villain [8] in the two�dimensional case on
a square lattice for the description of spin glasses. Fur�
ther, it was generalized for the three�dimensional case
by Blankschtein [9]. This model is given schematically
in Fig. 1.

This model is of interest because studies of frus�
trated systems are mainly focused on models on trian�
gular and hexagonal lattices, while the properties of
models on a cubic lattice were little studied. The
dynamic critical behavior of such systems was also
almost unstudied.

The Hamiltonian of the frustrated Ising model can
be presented in the form

, (5)
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where Si is the Ising spin at the ith site of the lattice and
Jik is the exchange interaction between spins for ferro�
magnetic (J > 0) and antiferromagnetic (J < 0) bonds.
Frustrations in this model are due to the competition
of exchange interactions [8].

We studied a cubic particle containing L × L × L
unit cells in each crystallographic direction with peri�
odic boundary conditions. We considered a system
with the linear size L = 64 containing N = 262144
spins. The L value was chosen as the minimally neces�
sary one in order to exclude the effect of the finite sizes
on the result [1].

Calculations were performed by the standard
Metropolis Monte Carlo algorithm. The relaxation of
the system was performed from the initial completely
ordered low�temperature state with the starting mag�
netization m0 =1 during the time tmax = 1000. One
Monte Carlo step per spin was taken as the “time”

Fig. 1. Fully frustrated Ising model on a simple cubic lat�
tice. White and black colors denote the ferromagnetic (J >
0) and antiferromagnetic (J < 0) bonds, respectively.

Fig. 2. Time dependence of the magnetization at three
temperature values.

Fig. 3. Time dependence of the magnetization at the phase
transition point.
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unit. The relaxation dependences were calculated
50000 times. The obtained results were averaged
between each other.

Critical temperatures were determined from the
time dependence of the magnetization given by
Eq. (2), which should be a straight line on the log–log
scale at the phase transition point. The deviation from
the straight line was determined by the least�squares
method. The temperature at which this deviation was
minimal was taken as the critical one. In the determi�
nation of Tc, the magnetization curves were analyzed
with the step ΔT = 0.0001 in units of the exchange
integral kbT/|J |.

The logarithmic derivative at the phase transition
point was calculated by the least�squares approxima�
tion from three time dependences of the magnetiza�
tion plotted for temperatures Tc – 0.01, Tc, and Tc +
0.01. In Fig. 2, these curves are shown on the log–log
scale in the time interval t = [100, 1000] (here and fur�
ther, all quantities are given in arbitrary units). Figure 2
demonstrates vividly the temperature effect on the
magnetization curve.

The time dependences of the magnetization, its
logarithmic derivative, and the Binder cumulant
obtained at the critical point are shown in Figs. 3–5,
respectively, on the log–log scale in the time interval
t = [1, 1000]. Points in the figures show the simulation

results and solid lines show their least�squares approx�
imation according to Eqs. (2)–(4). The analysis of the
plots showed that the power scaling behavior of the
studied system begins at a time instant of about t = 100.
For this reason, the approximation of all curves was
performed in the time interval t = [200, 1000].

Our results for the critical temperature, static criti�
cal exponents of the magnetization and correlation
radius, and the dynamic critical exponent are pre�
sented in the table in comparison with the results from
[10–12], where the static critical properties of the fully
frustrated Ising model were studied. The table demon�
strates that our results for the critical temperature and
static critical exponents are in good agreement with
the results of these works. The dynamic critical expo�
nent is close to that predicted theoretically for aniso�
tropic magnets (z = 2, model A [6]). We note that the
dynamic critical exponent for the studied model was
obtained for the first time.

The results of this work demonstrate the efficiency
of the application of the short�time dynamics method
to studying the critical properties of three�dimen�
sional models with frustration. The advantage of this
method is that it provides not only the dynamic critical
exponent but also the static critical exponents and
critical temperature within one numerical experiment.
In addition, the critical slowing down is not mani�
fested in this approach, since the spatial correlation
radius remains small in the short�time interval even
near the critical point [7].
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