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INTRODUCTION

Quantum cryptography systems serve for the distri�
bution of secret cryptographic keys through an open
quantum communication channel accessible for pas�
sive and active invasion. A classical authentic auxiliary
communication channel for exchange of classical
information between legitimate users at coordination
of the bases (if this is required in a protocol), correc�
tion of errors in primary keys, and final compression
(hashing, i.e., enhancement of security) of cleaned
keys is also accessible for eavesdropping. The security
of keys in quantum cryptography is guaranteed by fun�
damental quantum mechanical exclusions of the dis�
tinguishability of orthogonal quantum states. The
security of the BB84 protocol [1] was exactly proved
for the case of a strictly single�photon source of quan�
tum states and finite lengths of transmitted sequences.
The proof [2] is based on fundamental entropy uncer�
tainty relations and does not involve assumptions on
attacks of an eavesdropper against distributed keys.
Real quantum states are quasi�single�photon weak�
ened coherent states. In addition, losses in the com�
munication channel together with quasi�single�pho�
ton states open possibilities for new attacks that are
impossible in the single�photon case.

The BB84 protocol in real systems uses four coher�
ent states including two states in each basis. The states
in the + basis are 0 → |α〉 and 1 → |–α〉 and the states
in the × basis are 0 → |iα〉 and 1 → |–iα〉. The complex
parameters αi (i = 0, 1, 2, 3) describing information
states are uniformly located on a circle in the complex
plane. As will be shown below, the BB84 protocol can�
not guarantee the security of keys in real systems in the
presence of losses in the channel and inevitable losses

inside a receiver. Therefore, it is necessary to use pro�
tocols with large numbers of information states and
bases.

One of such protocols is the protocol on geometri�
cally uniform states (BB84 protocol is a particular
family of such protocols). The number of bases Nb/2 =
4 appears to guarantee the security of keys in real sys�
tems. Information states are geometrically uniform
coherent states |αj〉 = U j|α〉 obtained by geometric shift

(unitary rotation U j, UN = I), where αj = exp α

( j = 0, 1, …, Nb – 1). The protocol involves Nb/2 = 4
bases. Each basis includes a pair of nonorthogonal
states with |αj〉 and |αj + 1〉 corresponding to 0 and 1.

CRITERION OF THE CORRECTNESS 
AND SECURITY OF KEYS

Any quantum key distribution protocol consists of
the following stages:

(i) transfer of quantum states from Alice to Bob and
their measurement on the receiver side (and, if it is
necessary as in the BB84 protocol, the coordination of
the bases—rejection or fixation of messages in which
bases do not coincide or coincide); (ii) estimation of
the probability of an error and correction of errors
through an open classical channel; (iii) estimation of
Eve’s information at the observed error on the receiver
side, its change after the correction of errors, and sub�
sequent compression (privacy amplification) of
cleaned keys.
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The Alice–Bob–Eve situation after stage (i) is

described by the joint density matrix , where X n

and X 'n are the bit strings of Alice and Bob (the latter

string can contain errors), respectively, and  =

 is the quantum system accessible for Eve.
Taking into account information that Eve receives
from the quantum communication channel and addi�
tional classical information at the correction of errors
from the classical communication channel, Alice and
Bob compress cleaned keys for Eve to obtain no infor�
mation on the final secret key. A protocol should sat�
isfy the criteria of correctness and security [3]. The
correctness means that Alice’s and Bob’s keys after the
correction of errors should be identical with a given
probability εcorr,

, (1)

where X n and X 'n are the bit strings of Alice and Bob
after the correction of errors, respectively.

A protocol is informally secret if Alice’s bit string

X n does not correlate with Eve’s quantum system .
The absence of correlations between Alice’s string and
Eve’s quantum system means that the joint Alice–Eve

density matrix ( ) is separated into the product of

the density matrices of two systems, (  ⊗ ) (ideal

situation). Here,  is Alice’s density matrix describ�
ing the uniform distribution of classical bit strings:

.

A measure of the security of keys is the trace dis�

tance between the real Alice–Eve density matrix ( )

and uncorrelated Alice–Eve density matrices (  ⊗

) (ideal situation). A protocol should guarantee that
the trace distance Δ between these density matrices
can be made smaller than a preset value εsecr:

, (2)

where the trace distance between two operators is

defined as ||ρ1 – ρ2||1 = Tr{|ρ1 – ρ2|} = Tr{ }.
In this case, the protocol is called εsecr�secret. Eve
obtains a fraction of information from the quantum
channel through attacks against quantum states. At the
correction of errors, classical correcting information,
which is also accessible to Eve, is transferred through
the classical channel. In addition, after the correction
of errors, keys are compressed through the open clas�
sical channel: Alice sends information on the hash
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function. These circumstances should be taken into
account in Eq. (2). They can be taken into account
through the leftover hash lemma [4] according to
which the trace distance after the correction of errors
and compression of the cleaned key by universal sec�
ond order hash functions [5] becomes

, (3)

where (X n|CnE n) is the smoothed conditional

min�entropy and Cn includes correcting information
sent by Alice to Bob through the open channel. By
definition,

,

where

.

Here, λ is the minimum number such that

In this case, we accept that Tr( ) = 1. A protocol is
ε�secret [3] if the length of the final secret key is

Rn ≤ (X n|CnE n) – 2 log(1/2ε). (4)

The following estimate can be obtained for

(X n|CnE n) [3]:

(X n|CnE n) ≥ (X n|E n) – leakn – 2 log(1/2ε),(5)

where leakn is classical information in bits transmitted
through the open channel at the correction of errors,
which is determined only by the correction procedure.
Formula (5) has intuitively transparent interpretation.

The quantity (X n|CnE n) presents deficit of infor�
mation required for Eve to entirely know Alice’s bit
string under the condition that Eve has the quantum

system E and classical information C( ).

In the asymptotic limit of long sequences (n → ∞,
i.e., automatically ε → 0), the smoothed entropy tends
to the conditional von Neumann entropy [3] (Shan�

non entropy in the classical case), (X n|CnE n) →
H(X n|CnE n), which has the meaning of Eve’s deficit of
information. The smoothed conditional entropy

(X n|CnE n) informally has the meaning of deficit
of information required for Eve to entirely know the
bit string X n under the condition that she has the
quantum system E n together with classical informa�
tion Cn transmitted through the classical channel at
the correction of errors. Roughly speaking,

(X n|CnE n) is equal to the number of bits unknown
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to Eve after all stages of the protocol. Inequality (5)
allows separating Eve’s information obtained from the
quantum and classical communication channels.

The above interpretation is applicable if the density
matrices are exactly known (e.g., in the asymptotic
limit). In the real situation with finite lengths of
sequences, density matrices can only be estimated
with a certain accuracy with respect to the true density
matrix. Only proximity to the true density matrix with
accuracy ε in the sense of the trace distance can be

guaranteed. The smoothed entropy (X n|CnE n) is
the lower bound of deficit of Eve’s information in the
set of density matrices that are ε�close to the true den�
sity matrix.

SINGLE�PHOTON CASE

The single�photon case is a special case for the
BB84 protocol. In this case, the no�cloning theorem
guarantees that obtaining information on transmitted
nonorthogonal states by Eve inevitably results in the
perturbation of states and in the appearance of errors
on the receiver side. A remarkable result was obtained
[2] with the use of fundamental entropy uncertainty
relations for the smoothed entropies for three�body

Alice–Bob–Eve density matrix :

(6)

where

.

Here, |0(X)〉 and |0(Z)〉 are information states in the
direct (X) and conjugate (Z) bases, respectively. The
right�hand side of Eq. (6) is independent of the density

matrix  and is determined only by the BB84 pro�

tocol itself. The quantity (Z n|Z 'n) is purely classi�
cal, determines the minimum number of information
bits necessary for the correction of errors in Bob’s bit
string Z 'n, and is related to the error Q. Furthermore,
because of the symmetry of the protocol with respect

to the bases X and Z, (Z n|Z 'n) = (X n|X 'n).
This fact and Eq. (6) make it possible to express

(X n|E n) in terms of (X n|X 'n): (X n|E n) >

1 – (X n|X 'n). The length of the secret key is

Rn ≤ 1 – 2 (X n|X 'n). (7)

In the asymptotic limit n → ∞, the smoothed entropy
tends to the Shannon conditional entropy,

(X n|X 'n) → nH(X n|X '), and leakn → nH(X n|X ').
For the binary channel with the error Q, leakn = nh(Q).
In this limit, Eq. (7) gives the remarkable equation for
the critical error of the BB84 protocol to which the
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secret key distribution is guaranteed: 1 = 2h(Qc), Qc ≈
11% [6]. Fundamental entropy uncertainty relations (6)
for single�photon states make it possible to relate the
leakage of information to Eve to the error observed on the
receiver side and to avoid the choice of the optimal attack
among all possible Eve’s attacks. We note that the opti�
mal attack can be constructed in an explicit form [7].
Unfortunately, this remarkable fundamental result [2]
cannot be carried over to real quantum cryptography
systems. The main difficult is in the estimate of

(X n|E n), which contains the entire information on
Eve’s attack.

SECURITY IN THE QUASI�SINGLE�PHOTON 
CASE OF COHERENT STATES

The situation is fundamentally different if quasi�
single�photon coherent states are used as information
states. The set of Nb states is linearly independent,
which is a necessary and sufficient condition of the
existence of unambiguous measurements. Performing
an unambiguous measurement, Eve breaks the chan�
nel with losses (near Alice and Bob). A certain out�
come (break near Alice) can be obtained with the
probability 1 – Pr(?). In this case, Eve resends correct
states to Bob (from the second break). If an uncertain
outcome is obtained (with the probability Pr(?)), Eve
resends nothing. If the probability of losses in the
channel is Pr[Loss(ch)] > Pr(?), Eve knows the entire
key, does not induce errors on the receiver side, and is
not detected. Thus, the key is not secret beginning
with a certain length of the channel (and losses).

Such an estimate is incorrect. It is fundamentally
important to take into account not only losses in the
communication channel but also losses in the receiver
part of systems. Below, losses are treated as total losses
in a given sequence as the ratio of the numbers of the
sent and detected messages, Pr(Loss) = Ndet/Nsend.
Even at Pr[Loss(ch)] < Pr(?), Eve can perform unam�
biguous measurements, using losses in the receiver
part. The total losses are determin η ≈ 0.1–0.25), aver�
age number of photons (μ ≈ 0.1–0.25) in the coherent
state, losses in the receiver optical part, and losses in
the channel. It is noteworthy that internal losses are
1 – ημ ≈ 1 – 10–2, which are equivalent to losses at a
length of 100 km of a line based on SMF�28 fiber. It
seems that Eve cannot compensate internal losses
without access to the receiver part of the system. How�
ever, this is not the case. Eve can compensate losses
inside the system by sending more intense states such
that each resent message after unambiguous measure�
ments is detected. For real avalanche detectors, the
average number of photons immediately in the detec�
tor itself sufficient for guaranteed detection is μ ≈ 50–
60 [8]. The resending of more intense correct states for
protocols with bases results in simultaneous counts in
two avalanche detectors in messages where Alice’s and
Bob’s bases do not coincide and does not result in

Hmin
ε
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erroneous counts in messages where these bases coin�
cide. A change in the rates of double counts requires
the recalculation to the leakage of information to Eve.
However, since avalanche detectors do not distinguish
the average number of photons, a change in the count
rate requires additional assumptions on the count rate
from the number of photons, which is unacceptable.
The decoy state protocol [9] is in fact based on such
assumptions. These assumptions inevitably affect the
length of the final secret key. Even if this circumstance
is ignored, the number of double counts of avalanche
detectors should be recalculated to take into account
the leakage of information to Eve. Such a problem is
very difficult and has not yet been solved appropriately.

REQUIREMENTS TO THE FORMULA 
FOR THE LENGTH OF THE SECRET KEY

The length of the secret key should depend only on
(i) the observed error on the receiver side, (ii) the
numbers of sent and detected states at coinciding
bases, and (iii) the structure of a quantum state sent
through the communication channel. The quantum
efficiency of detectors, the probability of dark noise,
and the number of double counts are the internal
parameters. The length of the secret key should be
independent of losses in the internal optical part and
channel, because they are unknown and can vary in
each message.

QUANTUM KEY DISTRIBUTION PROTOCOL 
WITHOUT INTENSITY CONTROL

Information states are geometrically uniform
coherent states [10] weakened to a quasi�single�pho�
ton level. The average number of photons in a state is
μ = |α|2. The number of information states is specified
by the number of bases Nb (Nb/2 = 2, 3, 4, …). Each
basis includes a pair of nonorthogonal states |ϕib〉 =

|αj〉, corresponding to 0 and 1 (i = 0, 1, b = 1, …, Nb/2
is the index of a basis). Any ith state is obtained by uni�
tary rotation: |αi〉 = Ui |α0〉, where αi = αexp(iϕi) (i =
0, …, Nb – 1). Information states are geometrically
uniform coherent states |αj〉 = U j|α〉 obtained by uni�

tary rotation U j,  = I, where αj = exp( )α (j =

0, 1, …, Nb – 1). The measurement circuit of the
receiver part contains one detector (Fig. 1). In this
case, double counts are disregarded automatically.
This scheme with one detector is resistant against
active blinding and mismatch attacks against ava�
lanche detectors and can be implemented in both one�
and two�pass variants.

ATTACKS WITH UNAMBIGUOUS 
MEASUREMENTS

We discuss an attack with unambiguous measure�
ments and obtain the length of the secret key in the
asymptotic limit. Eve performs unambiguous mea�
surements in the fraction δ of messages. She obtains
certain and uncertain outcomes in δ · [1 – Pr(?)] and
δ · Pr(?) messages, respectively. Then, Eve rejects these
messages. In messages where a certain outcome was
obtained, Eve resends more intense coherent states
|α*exp(iϕi)〉, which are certainly detected. In the
remaining 1 – δ messages, she performs individual
measurements, trying to distinguish states with the
minimum probability of an error. Let the result of the
measurement be interpreted as |αexp(iϕi)〉 (possibly
with an error). Then, Eve resends more intense states
|α* exp(iϕi)〉 instead of the initial quasi�single�photon
state in order to compensate losses in the receiver part.
The structure of geometrically uniform states deter�
mines the probability of an uncertain outcome, for
which the exact solution exists [11]:

U Nb i2π
Nb

����� j

Fig. 1. (a) Layout of the receiver part of the fiber optic quantum cryptography system: (PM) phase modulator, (APD) avalanche
single�photon detector, (MZ) Mach–Zehnder interferometer, (QC) quantum channel. (b) Line 1 is the binary Shannon entropy

function h(Q) and line 2 is the function (Q) (see main text).leak∞
Ham
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(8)

LENGTH OF THE SECRET KEY
IN THE ASYMPTOTIC LIMIT

We now determine the length of the secret key in
the asymptotic limit n → ∞. After the coordination of
bases, it is

Rn = H(X n|E n) – leakn. (9)

Let n be the number of sent messages in which bases
coincide and n[1 – Pr(Loss)] be the number of
detected messages:

n[1 – Pr(Loss)] = nδ[1 – Pr(?)] + n(1 – δ), n → ∞, (10)

where the first term is the number of messages for
which a certain outcome was obtained and the second
term is the number of messages for which individual
measurements were performed. Here, it is important
that an unambiguous�measurement attack is possible
even if the probability of total losses Pr(Loss) is smaller
than the probability of an uncertain outcome Pr(?). The
optimal fraction of messages in which Eve performs
unambiguous measurements is δ = Pr(Loss)/Pr(?) ≤ 1.
The critical value is δc = 1 (Pr(Loss) = Pr(?)). In this
case, Eve knows the entire key and does not induce
errors on the receiver side. As a result,

(11)

where Pr(Loss,?) = Pr(Loss)/Pr(?). We emphasize
that the estimate of the leakage of information H(X n|E n)
to Eve is not related to the estimate of the probability of
error, in contrast to single�photon case given by Eqs.
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(6) and (7). For H(X n|E n), the upper conservative esti�
mate is used. The correction of errors in the Shannon

limit requires the transmission of (Q) = h(Q)
bits per position, where Q is the estimate of the proba�
bility of error, through the open channel [12]. In the
real situation, constructive procedures are used to cor�
rect errors. In particular, for the procedures based on
Hamming codes with the additional test of the parity
and the length of a code word (2m – 2m – 1, m), m =
3, 4, 5, depending on the probability of error (one
error per block on average), it is necessary to open

(n → ∞) (Q) = 1 – (0.99827exp(–Q/0.112922) –
0.06851) bits [8]. Formula (11) includes only observ�
ables: the total losses Pr(Loss), the number of opened
bits at correction leak

∞
, the probability of an uncertain

outcome Pr(?), and the classical transmission capacity
of the quantum channel per one shot C1(Nb), which
depend only on the structure of information states.
The length of the key calculated by Eq. (11) is shown
in Fig. 2.

LENGTH OF THE SECRET KEY AT FINITE 
LENGTHS OF TRANSMITTED SEQUENCES

We now calculate the length of the secret key in the
limit of finite transmitted sequences. Here, the num�
ber n has the same meaning as above. Depending on
the estimate of the error Q, a certain classical correct�
ing code is chosen. Let n leak(n, Q) be the number of
bits transmitted through the open channel at the cor�
rection of errors for a given particular sequence with
the length n. After the correction of errors, it is neces�
sary to test the identity of cleaned keys of Alice (XA)
and Bob (XB). One of the procedures involves the com�
parison of the parity bits XA and XB with the random
string Xrand with the same length through the open
channel: Parity(Xrand ⊕ XA), Parity(Xrand ⊕ XB). The
generation of the random string is open. If the parity
bits after M repetitions of this procedure coincide, the
probability that cleaned keys do not coincide is

leak∞
Shan

leak∞
Ham

Fig. 2. Length of the secret key in the asymptotic limit at losses Pr(Loss) = (a) 0.99, (b) 0.999, and (c) 0.9999 for the protocol on
geometrically uniform states, Nb = 8 is the number of states, and Nb/2 = 4 is the number of bases. Lines 1 and 2 correspond to
the correction of errors by Shannon random codes and Hamming codes, respectively (see main text). The number of transmitted
bits at coinciding bases is n = 107 and μ = 0.4.
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Pr[XA ≠ XB] < (1/2)M. After these stages, Eve obtains
n leak(n, Q) + M bits of information, which will be
rejected from the key at the privacy amplification stage.
If the length of the final key satisfies the inequality

(12)

the key is ε�secret.

It is necessary to recall that n messages refer to the
case where Alice’s and Bob’s bases are already coordi�
nated (identical). In view of the superadditivity of the
smoothed min�entropy, we obtain (details see in [3])

(13)

The estimate of the entropy ( ) for the

part of unambiguous measurements is reduced to the
situation of the classical binary channel with blocking
(do not confuse with the channel with erasing). The
probability of the erasing outcome is Pr(?). As a result,

(14)
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where δ? = log(5) . In the remaining
part of messages n(1 – δ), Eve performs individual
measurements:

(15)

where δc = log(5) . In this case,
H(ρXE|ρE) is limited by 1 – C1(Nb). Here, the conser�
vative estimate was taken in favor of Eve. The quantity
C1(Nb) should be calculated for a quantum ensemble
of Nb states before the opening of the bases. We assume
in favor of Eve that she knows a basis and should only
distinguish a pair of states inside the basis. In this case,
H(ρXE|ρE) ≥ H(ρXEB|ρEB) (here, ρXEB and ρEB are the
density matrices in the known basis). In addition,
Eq. (15) includes the transmission capacity per shot
rather than the Holevo value (transmission capacity

(Nb)) [13]. This is due to the duality of quantum

communication channels [14, 15]. The value (Nb) is
reached on collective measurements on the known
code table of the sequence of quantum states. In our
case, such a table is absent and Eve should distinguish
quantum states “on�line” [16]. Owing to the property
of duality for quantum channels, collective measure�
ments without a code table provide no more informa�
tion than optimal individual measurements. For two
states, the transmission capacity per shot is given by

2 1/2ε?( )/nδlog

Hmin

εc ρXE
⊗ n 1 δ–( )[ ] ρE

⊗ n 1 δ–( )[ ]( )

> n nδ–( ) H ρXE ρE( ) δc–[ ]

=  n nδ–( ) 1 C1 Nb( )– δc–[ ],

2 1/2εc( )/ n nδ–( )log

C

C

Fig. 3. Length of the secret key at a finite length of the sequence with losses Pr(Loss) = (a, d) 0.99, (b, e) 0.999, and (c, f) 0.9999
for the protocol on geometrically uniform states, Nb = 8 is the number of states, and Nb/2 = 4 is the number of bases. Lines 1 and
2 correspond to the correction of errors by Shannon random codes and Hamming codes, respectively (see main text). The num�
ber of transmitted bits at coinciding bases is n = 1012, μ = 0.4, and ε? = εc = (a–c) 10–32 and (d–f) 10–9.
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the expression [13] C1(Nb) = (ξ–logξ– + ξ+logξ+)/2,

where ξ± = 1 ±  and εb = |〈αi|αi + 1〉| is the scalar
product of the states in the same basis.

As a result, the length of the secret key is

(16)

where n[1 – Pr(?)][leak(n, Q) + M] is the number of
really opened bits for a given sequence with the length
n[1 – Pr(?)] (the number of detected counts at the
coinciding bases). The calculated lengths of the secret
key are shown in Fig. 3.

CONCLUSIONS

Internal losses in any quantum cryptography sys�
tem are about 1 – ημ ≈ 1 – 10–2 even at zero length of
the communication channel. Eve can use these losses
at attacks on the key by resending more intense states
in order to compensate these losses. As a result, proto�
cols with a small number of information states, e.g.,
the BB84 protocol and similar protocols, cannot
ensure the security of keys because the probability of
the uncertain outcome Pr(?) is small. For a protocol
with eight states, the probability of the uncertain out�
come is Pr(?) ≈ (1 – 10–6)–(1 – 10–8) (at μ = 0.4–
0.25), which makes it possible to ensure the security at
losses in the channel of 1–10–4. Furthermore, in this
case, it is not necessary to control the intensity of input
states on the receiver side and, correspondingly, to
recalculate the change in the rate of double counts tak�
ing into account the leakage of information to Eve.
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1 εb
2–

Rn

n
���� 1 Pr(Loss)–( ) 1 leak n Q,( )– M–[ ]=

– 1 Pr(Loss,?)–[ ] C1 Nb( ) δc+[ ]

– Pr(Loss,?) 1 Pr(?)– δ?+[ ],


