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Investigation of the processes in Josephson junc�
tions composed of superconducting (S) and ferromag�
netic (F) materials is of growing fundamental and
applied interest. In particular, theoretical [1–3] and
experimental [4–16] works showed that the critical
current Ic of such structures depends on the mutual
orientation of the magnetization vectors M of the fer�
romagnetic films situated in the weak�link region. This
effect can be used to create superconducting spin
valves, which can be applied as control units of super�
conducting memory compatible with rapid single flux
quantum (RSFQ) logic [17].

However, experimental works [7–16] showed that
the typical voltages Vc = IcRn across the valves (where
Rn is the normal resistance of the junction) containing
two or more F films in the weak�link region lie in the
microvolt and nanovolt ranges, respectively. These val�
ues are several orders of magnitude lower than Vc of
junctions used in RSFQ circuits. Strong suppression
of Ic has a simple physical nature: to accomplish the
control effect, one has to remagnetize one of the F lay�
ers without changing the direction of M in the other F
film. This can be only done if the weak link is a combi�
nation of “strong” and “weak” ferromagnets, i.e., the
materials with considerably different exchange ener�

gies H and/or thicknesses of F layers. As a result, Ic is
manipulated against the background of its consider�
able suppression by the strong ferromagnet. This hin�
ders the use of such valves as control units of supercon�
ducting memory.

Superconductor–insulator–superconducting film–
ferromagnetic metal–superconductor (SIsFS)
Josephson junctions proposed in [6, 18–21] and com�
posed of a series of an SIs tunnel junction with a high
characteristic voltage Vc and an sFS junction with one
F layer, which allows switching this voltage Vc on and
off by applying an external magnetic field Hext, are free
from the above drawback. However, their use in super�
conducting memory units encounters certain difficul�
ties in performing read/write operations. These diffi�
culties are associated with a possible drift of Ic at
Hext = 0 that occurs in multiple information rewriting
to the memory unit. The use of several ferromagnetic
layers in the sFS part, e.g., switching to SIsF1F2S or
SIsF1F2F3S junctions, eliminates the problem of Ic

uncertainty at Hext = 0. However, this solution imposes
serious constraints on the critical current of the tunnel
SIs part of the control element, which must be much
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lower than Ic of the SIsF1F2S or SIsF1F2F3S junctions
at Hext = 0.

In this work, we will show that a possible solution of
the above contradiction is to create an artificial anisot�
ropy in the weak�link region by introducing an inho�
mogeneity, the presence of which leads to the forma�
tion of regions with positive (0 contact) and negative
(π contact) critical supercurrent densities inside the
junction [22–27].

Model of a SF–NFS Josephson junction. We con�
sider a layered structure shown in Fig. 1. It consists of
superconducting electrodes separated by a ferromag�
netic interlayer with the thickness dF or by a sandwich
containing the same F layer and a normal�metal (N)
layer with the thickness dN.

We will assume that the “dirty”�limit conditions
are satisfied for all metals and that the effective elec�
tron–phonon coupling constant in the F and N mate�
rials is zero. For further simplification, we will assume
that the temperature T is close to the critical tempera�
ture Tc of superconducting electrons. Under the above
assumptions, the solution of the problem of comput�
ing the spatial distribution of the superconducting cur�
rent density JS in the structure of interest is reduced to
the solution of the linearized Usadel equations [28]

, (1)

, (2)

(3)

Here, Ω = |ω|/πTc;  = (Ω + ihsgnω); h = H/πTc;

 = (DN, F/2πTc), where DN, F are the diffusion
coefficients; ω = πT(2n + 1) are the Matsubara fre�
quencies; H is the exchange energy in the ferromag�
netic material; FN, F are the Usadel Green’s functions
in the normal and ferromagnetic films, respectively;
and ϕ is the phase difference of the order parameters in
the S electrodes. By writing Eqs. (1) and (2), we spec�
ified the directions of the x and y axes parallel and per�
pendicular to the SF interface and placed the origin at
the SF interface (Fig. 1). The set of Eqs. (1) and (2)
must be supplemented by the boundary conditions
[29]. To write these conditions, we assume that the
suppression parameter γBF = RBF�BF/ρFξF at the SF
interface is large enough,

, (4)

to neglect superconductivity suppression in the super�
conducting electrodes. Here, RBF and �BF are the
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resistance and area of the SF interface, respectively;
ξS = (DS/2πTc)

1/2 and ξF are the coherence lengths in
the superconductors and ferromagnet, respectively; ρS

and ρF are their resistivities; and DS is the diffusion
coefficient of the superconductor. In contrast, the SN
and FN interfaces are thought to be transparent to
electrons. Under the above assumptions, the boundary
conditions [29] can be represented in the form
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Fig. 1. (Color online) Scheme of a spatially inhomoge�
neous layered structure with a thin normal layer introduced
into a part of the SF interface region.
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Here, Δexp(±iϕ/2) is the order parameter in the upper
and lower superconducting electrodes, respectively,
and

. (6)

In the typical experimental situation, supercon�
ductors are made of Nb (ρS ≈ 7 × 10–6 Ω cm, ξS ≈
10 nm) and the normal metal is Cu (ρN ≈ 10–6 Ω cm,
ξN ≈ 100 nm). Setting ρF ≈ 10–5 Ω cm and ξF ≈ 10 nm,
we find relatively high suppression parameters γN ≈ 1
and γS ≈ 0.7 at the FN and SN interfaces.

To solve the boundary value problem given by
Eqs. (1), (2), and (5a)–(5h), it is convenient to divide
the ferromagnetic film into five segments (see Fig. 1)
and, in the first approximation, to neglect the contri�
butions to the function FF from the angular segments
denoted by the digits 2 and 4 in Fig. 1. Assuming fur�
ther that the derivatives of the function FF along the
directions of the normal to the boundary between the
angular segment and the other parts of the ferromag�
netic layer vanish, the problem can be reduced to the
solution of one�dimensional Eqs. (1) and (2) in the
regions 1, 3, and 5.

The solution in the region 1 can be expressed as

(7)

where FN(dN) is the integration constant. It follows
from Eqs. (1) and (7) that, in the region y = dN, 0 ≤ x ≤
W1,

(8)

Typical thicknesses of the normal film lie in the
range of dN � 20 nm, which is much less than ξN. In
view of this circumstance, it is readily found from

Eq. (8) that, if the inequalities γN dN/ξN � 1 and
γNdN/γBFξN � 1 hold, condition (8) is greatly simpli�
fied and in the first approximation with respect to
these small parameters is reduced to the equality
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The solution of the boundary value problem speci�
fied by Eqs. (1), (2), and (5a)–(5h) in the region 3 can
be expressed as

(10)

and therefore
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It follows from Eq. (11) that γN  � 1 at dF �
ξF. Since the derivative on the left�hand side of
Eq. (11) at W1 � ξN varies at a distance on the order of
ξN so that ξN∂FN/∂x ≈ 1, condition (11) in the first

approximation with respect to (γN )–1 � 1 is
reduced to the boundary condition of the first kind:

. (12)

This condition holds at the entire FN interface
located at x = 0.

At last, it follows from Eqs. (5a) and (9) that in the
present approximation we have the fixed boundary
condition at the SN interface:

(13)

Solution of the Usadel equations in the normal film.
The solution of the boundary value problem given by
Eqs. (1), (5g), (9), (12), and (13), which determines
the spatial distribution of superconducting correla�
tions in the normal film, has the form

(14)
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dent of the form of the boundary conditions, by which
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dence of the Green’s functions at the interface of nor�
mal and ferromagnetic layers (0 ≤ x ≤ W1, y = dN):

(16)

which allows turning to the solution of the equations
in the ferromagnetic films.

Solution of the Usadel equations in the ferromag�
netic film. The boundary value problem specified by
Eqs. (2), (5e), and (5h) in the region 0 ≤ x ≤ W1, dN ≤
y ≤ dN + dF is closed by the conditions

, (17)

(18)

and has the solution

(19)

Substituting the function FF, ω(x, dN) given by
Eq. (19) and its derivative with respect to the coordi�
nate y at y = dN into Eq. (3) for the superconducting
current density in the region 1 (0 ≤ x ≤ W1), we find the
sinusoidal dependence JS(ϕ) = Jcsinϕ with the critical
current density Jc1 given by
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The boundary value problem in the region 5
(⎯W2 ≤ x ≤ –dF) has the simple solution [30, 31]

,

.

Substitution of this solution into Eq. (3) for the
supercurrent also leads to the sinusoidal dependence
JS(ϕ) with the critical current density Jc5 given by

(21)

In the regions 3 and 4 of the ferromagnetic film (see
Fig. 1), the projection of the supercurrent density on
the x axis is zero, since in the present approximation
FN = 0 at x = 0, 0 ≤ y ≤ dN, and the projection on the y
axis is much less than JS in the regions 1 and 5. This
allows setting JS = 0 in the regions 2–4 without loss of
generality.

Figure 2 shows the dependences Jc1(dF) and Jc5(dF)
computed with the parameters T/Tc = 0.5, h = 30,
γBF = 0.6, dN/ξN = 0.2, and ξN/W1 = 0.2 correspond�
ing to the typical experimental situation [22].

As follows from these curves, the critical current
densities Jc1 and Jc5 in the segments 1 and 5 can have
the same (positive or negative) or opposite signs
depending on the thickness of the ferromagnetic layer.
The respective distributions computed for the F�layer
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Fig. 2. (Color online) Critical current densities Jc1 and Jc5
of the SNFS and SNS segments of the SF–NFS Joseph�
son junction, respectively, shown in Fig. 1 versus the thick�
ness of the ferromagnetic film calculated with the use of
Eqs. (20) and (21).
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thicknesses dF/ξF = 1.51, 1.96, and 2.34 are exempli�
fied in Fig. 3. In the thickness range of 1.23 ≤ dF/ξF ≤
1.85, the SF–NFS structure is a Josephson 0 junction
with a supercurrent density inhomogeneously distrib�
uted along the x axis. The ground state of this junction
corresponds to the phase difference ϕ = 0 of the order
parameters of the electrodes. At the thicknesses 2.05 ≤
dF/ξF ≤ 2.67, we have an inhomogeneous π junction
with the ground state corresponding to ϕ = π. Finally,
in the range of 1.85 < dF/ξF < 2.05, the ground state of
the junction in the case of interest of low widths W1 +
W2 � λJ (compared to the Josephson penetration
depth λJ of the magnetic field) depends considerably
on the relation between the products Jc1W1 and Jc5W2

and can correspond to ϕ = 0, π, or some intermediate
value in the range of 0 ≤ ϕ ≤ π [32–34]. In this case, the
critical current of the junction depends on the angle θ
between the magnetization of the ferromagnetic film
and the direction separating the SFS and SNFS seg�
ments of the SFS–SNFS structure.

Critical current of SFS–SNFS Josephson junc�
tions. To prove the above statement, we consider for
simplicity the structure with a square cross section
with the side length W = W1 + W2 = λJ and set W1 =
W2. To calculate its critical current as a function of the
magnetization rotation angle in the contact plane (the
(xz) plane in Fig. 1), one has to solve the two�dimen�
sional sine�Gordon equation

(22)

Here, the spatial coordinates x and z and the time t are
normalized to λJ and to the inverse plasma frequency

, respectively (ωp = , where C is the
capacitance of the junction), and α = ωp/ωc is the
damping constant, where ωc = 2πIcRn/Φ0. The critical
current density Jc(x) and the bias current density j are
normalized to the critical current density Jc1 of the
SNFS segment. The magnetization vector M = (Mx,
0, Mz) is represented in Eq. (22) by its components ηx

and ηz with the normalization η = 2πμ0|M|ΛλJ/Φ0,
where μ0 is the vacuum permeability and Λ is the mag�
netic thickness of the junction.

Figure 4 presents the magnetization dependence of
the critical current Ic calculated for the ferromagnetic
layer thicknesses lying in the ranges of 1.85 ≤ dF/ξF ≤
2.05 and 1.23 ≤ dF/ξF ≤ 1.85. In the first interval, the
critical current density of the segment 1 in Fig. 1 is
nonnegative, Jc1 ≥ 0, at the chosen parameters,
whereas the SFS segment appears in the π state, i.e., it
exhibits a negative critical current density Jc5. Its abso�
lute value is 0.66Jc1. In the second interval, both Jc1

and Jc5 are positive and, as in the previous case, Jc5 =
0.66Jc1.

As is seen, the character of the curves in the first
interval of the thickness dF depends considerably on
the angle θ between the z axis and the magnetization
vector M. At θ = 90°, the dependence Ic(η) is a nearly
Fraunhofer waveform typical of pointlike Josephson
junctions [35]. With a decrease in θ, the dependence
Ic(η) transforms and has a minimum at θ = 0°, η = 0,
whereas the critical current increases sharply at η � 1.

In the second interval of thicknesses, transforma�
tion of the dependence Ic(η) with the angle θ is insig�
nificant.

Thus, our calculations actually proved that intro�
duction of a spatial inhomogeneity to the weak�link
region of the Josephson junction containing just one
ferromagnetic layer leads to the formation of a super�
conducting spin valve of a new type. The magnitude of
the critical current in this structure is determined by
the orientation of the magnetization vector of the fer�
romagnetic film with respect to the direction separat�
ing the SFS and SNFS segments of the SF–NFS junc�
tion (the z axis in Fig. 1). Such a spin valve can appear
in two states with substantially different critical cur�
rents. These states correspond to mutually orthogonal

ϕtt ϕxx– ϕzz– Jc x( ) ϕsin+ αϕt j ηx– ηz.–+–=

ωp
1– 2πIc/CΦ0

Fig. 3. (Color online) Critical current density versus the
coordinate x near the step of the normal layer calculated
for the ferromagnetic layer thickness dF/ξF = (a) 1.51,
(b) 1.96, and (c) 2.34.
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directions of the vector M, which allows switching the
valve by applying mutually orthogonal external mag�
netic fields. Maintenance of these states does not
require external energy sources. The SF–NFS
Josephson junction can be used as a control element of
SIs–F/NF–S structures in the development of super�
conducting memory units [36].

It should be mentioned that the characteristic volt�
age of the proposed SIs–F/NF–S junction is close to
Vc of the SIsFS Josephson junctions. Actually, the
presence of the additional normal layer weakly affects
Ic of its s–F/NF–S part owing to a small thickness of
the normal film (dN � ξN) and a considerable differ�
ence between ξN and the lateral dimensions W of the
structure. The only mechanism of the additional sup�
pression of the critical current in the s–F/NF–S junc�
tion is a possible difference between the absolute val�
ues of the critical current of its sFS and sNFS seg�
ments. Such a suppression is on the order of the ratio
of these absolute values and can be diminished by
choosing proper layer thicknesses. Thus, the proposed
SIs–F/NF–S valve can be a convenient solution of
the contradiction formulated at the beginning of this
work.
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