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Self-consistent equations corresponding to the single-loop approximation at an arbitrary relation between the
Hubbard energy U and hop integral  have been obtained for the determination of the energy spectrum in the
Hubbard model. The conditions of the insulator—metal transition, as well as the conditions for the transition
from the paradielectric to antiferromagnetic state (spin-density wave), have been determined in the case of

an exactly half-filled band.
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It was shown in Hubbard’s classical work [1, 2] that
the dielectric gap can disappear only owing to the scat-
tering on fluctuations of the electron and spin densi-
ties. However, the magnitude of the corresponding
fluctuations calculated from physical reasons corre-
sponds to fluctuations of noninteracting localized
electrons. Thus, Hubbard’s results refer to the high-
temperature limit. Fluctuations in the low-tempera-
ture limit are significantly suppressed owing to the
presence of an energy gap. In this case, a transition to
a metallic state occurs owing to effects of the kine-
matic interaction [3], leading to a decrease and subse-
quent disappearance of the energy gap. This phenom-
enon is studied in this work in the single-loop approx-
imation.

Conditions of the appearance of antiferromag-
netism for alternative two-sublattice systems can also
be obtained in the single-loop approximation.

The Hubbard Hamiltonian IA-I = IA-IO + IEI, can be
expressed in terms of X operators:

Hy = z{(U—zu)&f’z—(wc)ﬁfi"“},
r (D
Ho= S (7 +0X0 YT + 6 X0 )r — ).

Here and below, U is the Hubbard energy and p is the
chemical potential.

At a given projection of the spin &, there are two
independent transitions: from the empty state to sin-
gle-particle state with the projection o and from the
single-particle state with the projection —c to two-
particle state. Correspondingly, we introduce two end

factors each equal to the sum of the occupation num-
bers of the final and initial states

flc = I’l0+l’l?, fzc = n“+n;6, (2)

which are related as f;” + f; = 1.

The equations of the single-loop approximation
are written in terms of the components of the inverse
matrix:

ET _fclytp - Z?l _fclsctp - Z162
—f;th - 2;1 Eg _f(Zytp - 222

Go (p) = (3)

(0,5), (5,2)

0,0 G,2

Fig. 1. Single-loop self-energy parts.
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As is seen in Fig. 1, the off-diagonal self-energy func-
tions of the single-loop approximation are expressed
in terms of the diagonal functions as

Zfz = —0232, Z:(251 = —52?1- 4

Using these relations and the definition of diagonal
matrix elements,

El = io+p+cH, E5 =io+pu+cH-U, (5

we obtain two Hubbard branches:

& = Mi%A/Ws—p+g—cH.

5 (6a)

Here,

Wo = (8°—1) + U= 2U[R° + 1,(f° - )], (6b)

and, instead of the diagonal self-energy parts, we
introduce the two quantities

S =30+33, R =30-39. 7)

Thus, the aim is to determine the relation between the
average occupation numbers, temperature, and chem-
ical potential, as well as to write two equations for the

determination of self-energy parts Zf, 5-

Three desired relations are expressed in terms of
two independent combinations of the single-particle
Green’s functions:

GZ(0,p) = [Go(P)]11 +0[Ge(P)]a 1,
Gi(o,p) = o[Go(P)]12+[Go(P)]»-

In particular, using the definition of the average num-
ber of particles with a given projection o, we obtain

®)

PNIDN -
ns = <aca6> =y +n(lj =f2G

G ind G i®d (9)
= TY [G2(o,p)e™fi + G0, p)e ™ f].

p, ®

The equations for the determination of the self-energy
parts are written similarly:

¥ = _Tth(f_G(co, P,

.o (10)
25 = Ty 1,6 (o, p)e'’.

p, ®

To sum over the complex frequencies io® = i(2n +
1)n T, we substitute an explicit expression for the sin-
gle-particle Green’s function into the right-hand sides

ZAITSEV

of Egs. (9) and (10), decompose into simple factors,
and sum over complex frequencies.

The intermediate result has the form

TY G0, )™ = Y Bip)ne(Ey), (D)
® A==

where np(€) is the Fermi distribution and the coeffi-

cients Bﬁ (p) are given by the expression

t—S‘SiU] a2

BEV(p) = ;{1 +sgn(2)2

P

In terms of these two coefficients, the equation of

state (9) and Egs. (10) for the functions S$° and R° are
written in the form

ne =1’
(13)
= S {BET W+ BE T (0 1ne(8y" ")

p. 2

§7 = S {4 [BE () - BE 7 (p)Ine(& ), (14)

p. A

R = =3 {4 [BS (@) + BS 7 (0)]ne(Ey"
PN

)3
(15)

Equations (14) and (15) generalize the Hubbard equa-
tions corresponding to the zero-loop approximation
(Eq. (13) written at .S = R = 0). The inclusion of sin-
gle-loop corrections (14) and (15) results in significant
changes both in the energy spectrum and in the mag-
netic properties appearing when an external magnetic

field is switched on.!

If the lower Hubbard subband is half filled, then
w= U/2 and the integration with respect to the
momentum p occurs over the entire Brillouin zone.
Under the assumption that the density of states p(e) =

ZPS (e — 7,) is an even function of the energy €, we

obtain $° =0, f, =/ = 1/2.

The excitation spectrum glf is expressed in terms of
the single-loop self-energy part R:

! Self-consistent equations (13)—(15) cannot be obtained within
the dynamic mean field theory (DMFT) [4, 5] because the
DMPFT equations are based on the classical Fermi anticommu-
tation relations. For this reason, the contribution corresponding
to an electron loop shown in Fig. 1 is not taken into account.
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LOW-TEMPERATURE PROPERTIES OF THE HUBBARD MODEL
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Fig. 2. Dielectric gap A/t versus the dimensionless Hub-
bard energy U/t (pg=0(1 — 62)/2 n=1)forT=(1)0, (2
0.01, (3) 0.04, and (4) 0.06.

R= [n(&,) = nr(Ey)]

?m

= fpo(e)—=—

(16)

[nF(& ) - ng(E;)]de,
A/e + A

where A is the dielectric gap, which is determined from
the self-consistency condition

i_pl +A2

gy = 2+ A = U'-2UR.
272

(17a)

Here and below, the single-particle bare density of
states is used:

JeE+ AP, (17b)

Thus, the single-loop approximation leads to a signif-
icant decrease in the correlation gap, which disappears
under the condition R = U/2. Substituting this quan-
tity into Eq. (16), we obtain the critical Hubbard
energy below which the system is a metal:

po(e) = D'8(e~1,), & =

€, 1
22

=234l = 2I|€|p0(e)d€. (18)
p

The results of the calculations of the temperature
dependence of A for the flat band model are shown in
Fig. 2. In the region of ultimately low temperatures
T< T, there is an ambiguous dependence A(U),
which disappears at 7 > 0.04 (these results were
obtained by the numerical renormalization group
method [6, 7]).
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Fig. 3. Dielectric gap A/t versus the dimensionless Hub-
bard energy U/t (T=0,n=1). Lines / and 2 correspond to
the semielliptic density of states and square lattice, respec-
tively.

In the limit 7 = 0, the analytical expression for
U(A) for a semielliptic density of states can be

obtained: py(e) = (4/m)A/1 — €. At T= 0, Eq. (16) is
represented in the form

R=R(A) = %A/l LA

(19a)
y {(1 +2A2)E( ! j_zﬁ{ ! ﬂ
J1+A J1+ A’

Here and below, K(x) and E(x) are the complete ellip-
tic integrals of the first and second kinds.

For the square lattice,

%K(Ez) " (e fz)nzK@;tD (19b)

so that numerical integration is necessary:

po(e) =

R=R(A) =2
s

2
et ()
J(2+ |e))ne + A? 2+ el

Thus, the dependence of the Hubbard energy U on
the dielectric gap A (see Fig. 3) can be obtained in the

explicit form
= |R(A)| + VR (A) + A’

Here, A = & U>~2UR is the dielectric gap and all
energy quantities are divided by the half-width |¢|.

(19¢)

(20)
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According to Fig. 3, the energy of the gap decreases
with a decrease in the Hubbard energy U. Finally, it
vanishes, which corresponds to an insulator—metal
transition. The corresponding transition point calcu-

lated in [2] ((U/f). = /3/2 ~ 0.866) for the bare
semielliptic density of states differs slightly from the
value (U/f), = 8/(3m) = 0.848 obtained from Eq. (20).

The possibility of the appearance of the spin den-
sity wave in a two-sublattice crystal system will be con-
sidered below.

To determine the conditions for the appearance of
the spin density wave, the spin magnetic susceptibility
will be calculated. When a weak magnetic field
depends on the coordinates, it is convenient to pass to
the momentum representation: 84, = 6h, exp(iqr). It is
assumed that corrections to the electron density dx, to
the end factors &f;, ([8, 9]), and to the self-energy
parts 8%, ([10]) depend on the coordinates through
the single Fourier component:

dn; = 8fy, = —8f; . = dng exp(iqr)
= 8f7 (@)exp(iqr) = —8f;(q)exp(igr);
Xy, = SXi(q)exp(iqr),
835 . = 8Z3(q)exp(iqr).

An equation for the susceptibility y, is obtained by
varying the equation for the Green’s function G, (p, q),
which is expressed in terms of the variation of the mag-

1)

Sl
8Gs,0(P, q) =

0-Shq - 6f(ly(q)tp+q - 62?1((1) _Gaflj(q)tlwq + GSE;(‘])

ZAITSEV

netic field hy, end factor f, = 8f,, = —&f,,, and sin-
gle-loop self-energy parts S, = X, + 2, and R, =
2iq— 2ag

Snq = 8/ T [GZ (9) — G o(P)]

o, p

+ATY G (0, )+ T Y 3G (b, q),

«,p o, P, q

2 = T 4[867,(p, ) - 8G, (P, )],

o, p

0 = T 4,[8G7,(p, ) +8G. (P, )].

o, Pp

(22)

%
Il

7}
=

a
|

The expressions for the Green’s functions in the first
sum in the first equation are determined by means of
Egs. (11) and (12). The variations of the Green’s func-
tions are determined in terms of the variation of the
inverse function (3) with the use of the general formula

5Go(p) = ~Go(p)3Go o(p, )Go(P+q).  (23)

Here, the Green’s functions are calculated at zero
magnetic field and the variation of the inverse Green’s
functions is determined using general formulas (3)—

(5):

(24)

~684(Q)ty+ 08ZT1(q) 08/~ 8/5(Q)ty. 4~ 8Z2(q)

Below, it will be taken into account that all variations
in our problem change sign at change in sign of the
projection of the spin:

8 ° = =8fy, 8Z|] = -8Xj, 8%y = -8%3,. (25)
Furthermore, according to the identity £ + f, =1,
8f, = —8f, . Therefore, the aim is reduced to the

solution of the system of equations
df = Fdf} + FsdS+ FrdR +f"dh,
dS = Sdf} + SsdS+ SpdR + S'dh,
dR = Rdf} + RydS+ RzdR + R'dh.

(20)

Here, 8f, = 8f,", 85 = 85* = 8%, + 8%,,, and SR =
SRt =38%,, —8%,,.

The coefficients of Egs. (26) are given by the
expressions

U - +
F= Y e -nele)))
! ;‘:p_ép

Uty, (= Exfi—E L+ S)
+T§: Wo(p, q)

b

o~ UESL-Efi-B)
fs =T 2W,(p, q)

U-ES -Ef,+95),
2W,(p, @)

Fy = TZ
o, p
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= TZ{ R+S(2 —fi+)]E,
1

[- R+ SQ2+f-f)]E, flEz -HE }m,

l\)l»—i

Utt
=T p'p+q
ZW (0, Q)
Utp(_El - E2 + 2tp+q)

, 27
2W,(p, q) @7

Sy=TY

o, p

U't,
Z2W(p,q)

A tl) .
S = UTZ(E1+E2—tp+q—S)m,
o, p

R =TY
o, p

U(~E, - E, + 25)t.t

W, (p, q)

PPtq

s

Ut,(U-2R-Fi,,,)
2W,(p, q) ’

Ry =Ty
o, p

Ut,(~E, — E, +25)
2W,(p, q)

R =T
o, p

=-T {28+~

o, p

[ —285+ (fl fZ)tp+q

28— (fl _fz)tp+q_ R]El

]E2+E +E2}W( q)

Here, U=E,—E,, Ej are the energies in the upper and

lower Hubbard subbands defined in Egs. (6a) and
(6b), respectively, and

Wo(p, q) = (io - &) (i0 - &)

X (i =&y ) (i = &y 1)

In the case of the exactly half-filledbandn=1, p =
-U/2, E,=io,+ U/2, E, =in, — U2, fi=f=1/2,
and §,=0 should be set in the equations. As a result,
the coefficients determining the magnetic susceptibil-
ity have the form

[nF(E:;) - nF(E,..T)] )

U
F =
! Zp:A/A2+tl2,
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F = T — ) F = 03
s §4Wm(p,q) :
z 40) — (28)
4W(p,q)
S, = US;, Sg=-S ppre g = (),
! S ZW(p,q) :

Rr=Ry=R =R =0.
Here, the definition of the energy gap is used, A =

JU =2RU , in terms of which the energies in the
upper and lower Hubbard subbands are expressed:

s 1
& = E(i./A2+t]2,+tp).

The possibility of establishing antiferromag-
netism (spin-density wave) in the case of a two-sub-
lattice crystal system under the condition 7, o = —,
(complete nesting) will be analyzed below In thls
case, W, (p, Q) is an even function of the energy
parameter ®:

Q) = [0’ +(&) 1[0’ + (&) ]

The coefficients determining the magnetic suscep-
tibility at q = Q have the form

W, (p, (29)

f}:

~[1e(5,) - ne(&)],

A/A +t

2

Fg=T P ——— } Fr = 0,
s Z4Woo(p, Q
,p

2

4o’ —
30
Z4W 5.Q 0

t2

— - _C = _ R =
S, = USs, Sg=-§ = -UTY gy Sk=
o, p

Rr=Rs=R =R =0.

Since the momentum dependence of the right-hand
sides in Egs. (30) appears only in the hop integral 7, it
is convenient to introduce the bare density of states
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Fig. 4. Dielectric gap A/t and inverse antiferromagnetic
susceptibility )((Q)_1 for the semielliptic density of states.

P = 3 B(e=1). If pe) = p(-e), Eas. (30)

become

U

JeE+A’

A2
FS:AO(T)_Za FR:O’

[np(&c) - np(E)]de,

Fr = [p(e)

AZ
f'= AN - A(D7T 31)
S, = USs, Sg=-S8=-UD,, Sp=0,
Rr=Rs=R =R =0,
where
k
()]
4= Ty fp(e)vw(e)de’
Vo(e) = [0 +(ED [0+ ()],
(32)

2

D, =Ty jp(e)Ve(E)de,

£f = %[ei JAT + €.

According to Egs. (32), the antiferromagnetic correc-
tion at any temperature is R = 0. The remaining sys-
tem of equations has the form

df,
ds

F,df, + FsdS +f'dh,

(33)
Sidf; + SsdS+ S'dh.

1.0
0.8F
< 06 ; Square lattice
=
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Fig. 5. Dielectric gap A/t and inverse antiferromagnetic
susceptibility )((Q)_1 for the square lattice.

The coefficients in these equations at 7= 0 are

A A}
F, = UA, Fy(0) = 7 f =0,

1

2
€ +A

4= [p(e) de,

(3

SA0) = USs(0), Ss(0) = §'(0) = 2%R,

2

R = Ip(e) 26 2a’cs.
€ +A

The substitution of these coefficients into the system
of equations (33) makes it possible to obtain the
inverse magnetic susceptibility:

: (35)

__A
44AUR

5~

(1 _va+2rY ARQD.
A A

Thus, the condition of the appearance of antiferro-
magnetism at 7= 0 is modified to the form

2
1-uva+2RZ-4RY = 0.

A A

The Hubbard energy U is related to the dielectric
gap A as

U= UA) = R(A) + JR(A) +A”. (37)

All other coefficients entering into Eq. (35) can be
similarly expressed in terms of the parameter A: A(A)
and R(A).

The substitution of these functions into condi-
tion (36) makes it possible to determine the critical
value U/t < 1 that corresponds to the appearance of
the spin density wave (see Fig. 4).

(36)
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According to Figs. 4 and 5, antiferromagnetic
ordering occurs in the dielectric phase in a close vicin-
ity of the point of transition from the dielectric to
metallic phase.

Thus, not only the point of transition from the
dielectric to metallic state but also the point of appear-
ance of the antiferromagnetic order parameter with
the use of Eq. (36) can be determined in the single-
loop approximation.

The calculations in the single-loop approximation
provide the general conclusion that a metal—insulator
phase transition can be detected in the simplest S-
electron Hubbard model for the exactly half-filled
band. In this case, antiferromagnetic ordering (spin
density wave) at T = 0 exists in the entire metallic
region (1> U,).

The physical reason for a decrease in the dielectric
gap should be attributed to the so-called kinematic

interaction, which is attractive at a high electron den-
sity (n >2/3) [10].
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