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 1. INTRODUCTION

The problem of superconductivity in the limit of
strong coupling has attracted theorists for rather long
time [1]. The significant progress in this field was
achieved by Nozieres and Schmitt�Rink [2], who pro�
posed an effective method to study the crossover from
weak coupling BCS behavior to Bose–Einstein con�
densation (BEC) in strong coupling region. In recent
years the progress of experimental studies of ultracold
quantum gases in magnetic and optical dipole traps, as
well as in optical lattices, allowing controllable change
in the density and interaction parameters (see reviews
[3, 4]) has also increased the interest to studies of
BCS–BEC crossover. One of the simplest models
allowing the study of BCS–BEC crossover is the Hub�
bard model with attractive interaction.

The most effective theoretical method to study
strongly correlated systems both in the case of repul�
sive interactions and in the case of attraction (includ�
ing the region of the BCS–BEC crossover) is the
dynamical mean�field theory (DMFT) [5–7]. Within
the framework of DMFT the attractive Hubbard
model has already been studied in the number of
papers [8–11]. However, there are only few works
devoted to the studies of disorder effects on the prop�
erties of normal and superconducting phases in this
model. Qualitatively the influence of disorder on the
superconducting critical temperature Tc in the region
of the BCS–BEC crossover was studied in [12]. Dia�

 ¶The article is published in the original.

grammatic approach to the analysis of disorder effects
upon Tc and normal phase properties in the crossover
region was developed in [13]. Recently we have studied
[14] the disorder influence on single�particle proper�
ties and optical conductivity in disordered attractive
Hubbard model within our general DMFT + Σ
approach [15], which is especially convenient to take
into account different additional interactions like
scattering by short�range order parameter fluctuations
[16–19], disorder [20, 21] or electron–phonon inter�
action [22]. In this work, we use the DMFT + Σ
approach combined with the Nozieres–Schmitt�Rink
approximation [2] to study the influence of disorder
upon superconducting transition temperature Tc and
the number of local pairs in attractive Hubbard model
for the wide range of interaction parameter U, includ�
ing the BCS–BEC crossover region.

2. BASICS OF NOZIERES–SCHMITT�RINK 
AND DMFT + Σ APPROACHES

We consider the disordered attractive Hubbard
model with the Hamiltonian

(1)

where t > 0 is the transfer integral between nearest
neighbors on the lattice, U is Hubbard onsite attrac�
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lattice site, aiσ ( ) is the electron annihilation (cre�
ation) operator with spin projection σ and local ener�
gies єi are assumed to be independent random vari�
ables at different lattice sites. To simplify diagram�
matic analysis, we assume the Gaussian distribution
for єi:

(2)

Parameter Δ here is the measure of disorder and the
Gaussian random field with short�range (“white�
noise”) correlations is equivalent to the usual “impu�
rity” scattering, leading the standard diagram tech�
nique for the averaged Green’s functions [23].

Below, we will consider the model system with
“bare” semi�elliptic density of states (per elementary
lattice cell and one spin projection) given by:

(3)

so that the bandwidth is W = 2D. All calculations
below were made for the case of quarter�filled band
(electron density per site n = 0.5).

In the absence of disorder superconducting transi�
tion temperature was analyzed in this model in a num�
ber of papers [8, 9, 11] both from the condition of
Cooper instability of the normal phase [8] (divergence
of Cooper susceptibility) and also from the condition
of superconducting order parameter becoming zero
at Tc [9, 11]. In [14] we have determined this critical
temperature from the condition of instability of the
normal phase, as reflected in specific instability of
DMFT iteration procedure. The results obtained in
this way in fact just coincide with the results of [8, 9, 11].

The essence of Nozieres–Schmitt�Rink approach
[2] to calculation of Tc in the wide region of coupling
strengths U, providing an effective interpolation from
weak to strong coupling (including the BCS–BEC
crossover region) is to solve the BCS equation for tran�
sition temperature:

(4)

jointly with an equation for chemical potential
(implicitly determined by the band�filling), which
actually controls Tc in strong coupling BEC region. In
[14] we have shown that such calculations, with an
equation for chemical potential solved via DMFT,
produce the dependence Tc on U, which is in almost
quantitative agreement with results obtained via much
more time�consuming exact DMFT calculations.
This is rather surprising, because of neglect of all ver�
tex corrections due to U (ladder approximation) in
Eq. (4), especially in the region of large U. Apparently
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this signifies rather small role of these vertex correc�
tions (fluctuation effects) for BCS�like instability both
in crossover and strong coupling regions. However, in
calculations of chemical potential μ (controlling Tc for
large U) these corrections are quite important and only
their correct account within DMFT allows us to
obtain the correct behavior of Tc in the limit of large U.

This allows us to calculate Tc for the case of disor�
dered attractive Hubbard model using the same
approach. Actually, we solve Eq. (4), from which all
corrections due to disorder scattering just drop out,
except those leading to disorder broadening of the
density of states [24] (replacing N0(ε) in Eq. (4) by dis�
order renormalized density of states), jointly with an
equation for the chemical potential, obtained via the
DMFT + Σ procedure [15], which takes into contri�
butions due to disorder, producing the chemical
potential for different values of U and disorder Δ.

This generalized DMFT + Σ approach [15–18]
supplies the standard dynamical mean�field theory
(DMFT) [5–7] with an additional (“external”) self�
energy Σp(ε) (which can in general be momentum
dependent), taking into account any possible interac�
tion outside the DMFT, which gives an effective calcu�
lation method for either single�particle or two�particle
properties [19, 20]. The success of this generalized
approach is connected with the choice of the single�
particle Green’s function in the following form:

(5)

where ε(p) is the bare electronic dispersion, while the
total self�energy is given by the additive sum of local
Σ(ε), determined by DMFT, and “external” Σp(ε),
thus neglecting any interference between Hubbard
and “external” interactions. This allows us to preserve
the structure of self�consistent equations of the stan�
dard DMFT [5–7]. However, there are two major dif�
ferences with traditional DMFT. During each DMFT
iteration step, we recalculate the external self�energy
Σp(ε) using some approximate scheme, taking into
account additional interactions, and the local Green’s
function is “dressed” by Σp(ε) at each iteration step.

Below for the external self�energy due to disorder
scattering, entering DMFT + Σ cycle, we use the sim�
plest approximation neglecting “crossing” diagrams,
i.e., the self�consistent Born approximation, which in
case of Gaussian distribution of site energies takes the
(momentum independent) form:

Σp(ε)  = (6)

where G(ε, p) is the single�electron Green’s function (5)
and Δ is the disorder amplitude.
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To solve the effective Anderson impurity problem
of DMFT below we use the numerical renormaliza�
tion group approach [25].

3. MAIN RESULTS

In Fig. 1 we show the dependence of superconduct�
ing transition temperature, normalized by the critical
temperature in the absence of disorder (Tc0 = Tc(Δ = 0)),
for quarter�filled band (n = 0.5) for different values of
attractive interaction U. We can see that in the case of
weak coupling (U/2D � 1)disorder somehow sup�
presses Tc (curve 1). At intermediate couplings
(U/2D ~ 1) weak disorder leads to the growth of Tc,
while the further increase in disorder suppresses the
critical temperature (curves 2 and 3). In the strong
coupling region (U/2D � 1) the growth of disorder
leads to significant increase in the critical temperature
(curves 4 and 5).

However, this complicated dependence of super�
conducting critical temperature on disorder is easily
explained by the conduction band broadening by
growing disorder. In Fig. 2 the black curve with pen�
tagonal data points represents the dependence of crit�
ical temperature Tc/2D on attraction strength U/2D in
the absence of disorder (Δ = 0) in Nozieres–Schmitt�
Rink approximation [14]. The growth of disorder
leads to the effective broadening of the conduction
band, so that in our self�consistent Born approxima�
tion for disorder scattering (6) the semi�elliptic form
of the density of states does not change, while the
effective half�bandwidth grows as [20]:

(7)Deff D 1 4Δ
2

D2
�����+ .=

The other data points shown in Fig. 2 represent the
results of our calculations in the combined Nozieres–
Schmitt�Rink and DMFT + Σ approximations for dif�
ferent values of disorder. We can see that all data points
as expressed via appropriately scaled variables U/2Deff

and Tc/2Deff perfectly follow the universal curve,
obtained in the absence of disorder. These results illus�
trate, at least in approximations used here, the validity
of the generalized Anderson theorem [24, 26] (for all
couplings, including the BCS–BEC crossover and
strong coupling regions); i.e., the critical temperature
of superconducting transition (for the case of s�wave
pairing) is affected by disorder only through the
appropriate change in the electron bandwidth (density
of states). From Fig. 2 we can see, that in the weak
coupling region U/2Deff � 1 the critical temperature in
this approximation is close to that obtained in the
usual the BCS model (dashed curve in Fig. 2). For
U/2Deff ~ 1 the critical temperature Tc reaches the
maximum. For U/2Deff � 1 it drops with the growth
of U, showing Tc ~ 1/U behavior [2], as in the strong
coupling region Tc is determined by the condition of
Bose–Einstein condensation of Cooper pairs and
hopping motion of these pairs (via virtual ionization)
appears only in the second order of perturbation the�
ory being proportional to t2/U [2].

Band broadening due to disorder also leads to the
effective suppression of the number of local pairs
(doubly occupied sites). The average number of local
pairs is determined by pair correlation function 〈n↑n↓〉,
which in the absence of disorder grows with the
increase in Hubbard attraction U from 〈n↑n↓〉 =
〈n↑〉〈n↓〉 = n2/4 for U/2Deff � 1 to 〈n↑n↓〉 = n/2 for
U/2Deff � 1, when all electrons are paired. The growth
of Deff with disorder leads to an effective suppression of
the parameter U/2Deff and corresponding suppression

Fig. 1. (Color online) Dependence of the superconducting
critical temperature on disorder for different values of
Hubbard attraction; |U |/2D = 0.6 (1), 0.8 (2), 1.0 (3),
1.4 (4), 1.6 (5).

Fig. 2. (Color online) Universal dependence of the super�
conducting critical temperature on the strength of Hub�
bard attraction for different values of disorder.
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of the number of doubly occupied sites. In Fig. 3 we
show the disorder dependence of the number of dou�
bly occupied sites for three different values of Hubbard
attraction. We see that in all cases the growth of disor�
der suppresses the number of doubly occupied sites
(local pairs). In fact, similarly to Tc, the change in the
number of local pairs with disorder can be attributed
only to the change in the effective bandwidth of the
“bare” band (7) with the growth of disorder. In Fig. 4
the curve with black squares shows the dependence of
the number of doubly occupied sites on Hubbard
attraction for the case of quarter�filled band (n = 0.5)
in the absence of disorder at temperature T/2D =
0.0586. This curve is actually universal: the depen�
dence of the number of local pairs 〈n↑n↓〉 on the scaled
parameter U/2Deff with appropriately scaled tempera�

ture T/2Deff = 0.0586 in the presence of disorder is
given by the same curve, which as shown by circles,
representing data obtained for five different disorder
levels and shown in Fig. 4 for the case of U/2D = 1.

4. CONCLUSIONS

In summary, using the combined Nozieres–
Schmitt�Rink and DMFT + Σ approximations, we
have investigated the influence of disorder on super�
conducting critical temperature and the number of
local pairs in disordered attractive Hubbard model. We
have studied the wide range of attractive couplings U,
from the weak coupling region of U/2Deff � 1, where
normal phase instability and superconductivity is
described by the BCS model, to the strong coupling
region of U/2Deff � 1, where superconducting transi�
tion is related to the Bose–Einstein condensation of
preformed Cooper pairs, which appear in the system at
temperatures significantly higher, than superconduct�
ing transition temperature. Disorder can either sup�
press the critical temperature Tc in the case of weak
coupling, or significantly increase Tc in the of strong
coupling. However, these dependences in fact confirm
the validity of the generalized Anderson theorem: all
changes in the superconducting critical temperature
can be attributed to general broadening of conduction
band by disorder (for the case of s�wave pairing, which
can only be realized in the attractive Hubbard model).
In the weak coupling region transition temperature is
well described by the BCS model, while in the strong
coupling region it is determined by the condition of
Bose–Einstein condensation and drops with the
growth of |U | as 1/|U |, passing the maximum at
|U |/2Deff ~ 1. Similarly, only the band broadening by
disorder is responsible for the change in the number of
local pairs (doubly occupied sites). The growth of dis�
order leads to the effective drop of the ratio U/2Deff

and corresponding drop of the number of local pairs.
This work was supported by the Russian Science

Foundation (project no. 14�12�00502).

REFERENCES

1. A. J. Leggett, in Modern Trends in the Theory of Con�
densed Matter, Ed. by A. Pekalski and J. Przystawa
(Springer, Berlin, 1980).

2. P. Nozieres and S. Schmitt�Rink, J. Low Temp. Phys.
59, 195 (1985).

3. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

4. L. P. Pitaevskii, Phys. Usp. 49, 333 (2006).
5. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv.

Phys. 44, 187 (1995).
6. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen�

berg, Rev. Mod. Phys. 68, 13 (1996).
7. D. Vollhardt, in Lectures on the Physics of Strongly Cor�

related Systems XIV, Ed. by A. Avella and F. Mancini,
AIP Conf. Proc. 1297, 339 (2010); arXiV: 1004.5069.

Fig. 3. (Color online) Dependence of the number of local
pairs on disorder for different values of Hubbard attrac�
tion; U/2D = 0.4 (1), 1.0 (2), 1.4 (3).

Fig. 4. (Color online) Universal dependence of the num�
ber of local pairs on the strength of Hubbard attraction for
different values of disorder. 

1.2



196

JETP LETTERS  Vol. 100  No. 3  2014

KUCHINSKII et al.

8. M. Keller, W. Metzner, and U. Schollwock, Phys. Rev.
Lett. 86, 4612 (2001); arXiv: cond�mat/0101047.

9. A. Toschi, P. Barone, M. Capone, and C. Castellani,
New J. Phys. 7, 7 (2005); arXiv: cond�mat/0411637v1.

10. J. Bauer, A. C. Hewson, and N. Dupis, Phys. Rev. B 79,
214518 (2009); arXiv: 0901.1760v2.

11. A. Koga and P. Werner, Phys. Rev. A 84, 023638 (2011);
arXiv: 1106.4559v1.

12. A. I. Posazhennikova and M. V. Sadovskii, JETP Lett.
65, 270 (1997).

13. F. Palestini and G. C. Strinati, arXiv:1311.2761.

14. N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii,
Zh. Eksp. Teor. Fiz. 146 (1) (2014, in press); arXiv:
1401.2295.

15. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Phys. Usp. 55, 325 (2012); arXiv:1109.2305.

16. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
JETP Lett. 82, 198 (2005); arXiv: cond�mat/0506215.

17. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii,
Th. Prushke, and V. I. Anisimov, Phys. Rev. B 72,
155105 (2005); arXiV: cond�mat/0508585.

18. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Low Temp. Phys. 32, 398 (2006); arXiv: cond�
mat/0510376.

19. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Phys. Rev. B 75, 115102 (2007); arXiv: cond�
mat/0609404.

20. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
J. Exp. Theor. Phys. 106, 581 (2008); arXiv: 0706.2618.

21. E. Z. Kuchinskii, N. A. Kuleeva, I. A. Nekrasov, and
M. V. Sadovskii, J. Exp. Theor. Phys. 110, 325 (2010);
arXiv: 0908.3747.

22. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Phys. Rev. B 80, 115124 (2009); arXiv: 0906.3865.

23. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii,
Quantum Field Theoretical Methods in Statistical Physics
(Pergamon, Oxford, 1965); M. V. Sadovskii, Diagram�
matics (World Scientific, Singapore, 2006).

24. M. V. Sadovskii, Superconductivity and Localization
(World Scientific, Singapore, 2000).

25. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys.
60, 395 (2008).

26. P. G. de Gennes, Superconductivity of Metals and Alloys
(W. A. Benjamin, New York, 1966).


