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Abstract—An improved method for extracting the Brillouin frequency shift in postprocessing of a given Bril-
louin gain spectrum is presented. Modification of the method made it possible to expand the boundaries of
its applicability to the region of noisy spectra with a signal-to-noise ratio (SNR) below 0 dB. The modified
method can be successfully used in distributed fiber-optic sensors operating on the Brillouin scattering prin-
ciple, especially in long-distance sensing lines.
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INTRODUCTION

Distributed fiber-optic sensors are increasingly
being used in various fields of science and technology.
Sensors based on Brillouin scattering play a significant
role. Since Brillouin scattering is an inelastic effect of
the interaction of photons with acoustic lattice vibra-
tions, phonons, the change in the photon energy is
directly related to the phonon energy. The Brillouin
frequency shift (BFS) of a photon νb is given by the
ratio νb = 2n /λ, where n is the refractive index,  is
the sound velocity of the longitudinal acoustic wave,
and λ is the wavelength in vacuum. Both the refractive
index and the velocity of sound depend on external
influences, such as the temperature and deformation;
thus, determining the BFS can yield information
about the magnitude of these influences along the
fiber.

Spontaneous and forced Brillouin scattering are
distinguished. Spontaneous scattering occurs on ther-
mally activated phonons that are present in a fiber at
any nonzero temperature. In case of forced scattering,
phonons artificially created due to the electrostriction
effect (changes in the material density under the influ-
ence of a strong electromagnetic field) play a role.
To create such phonons, two optical waves of different
frequencies are launched into the fiber from different
ends.

Brillouin optical time domain reflectometers work
on spontaneous scattering, while Brillouin analyzers
of the time domain work on forced scattering.

Since forced scattering has a higher power by
approximately two orders of magnitude, Brillouin
time-domain analyzers are mainly used, especially
with a large length of the measured line. A continuous
probing optical wave with a frequency ν is launched
into the fiber from one end, and a pulsed pumping
wave with a higher frequency ν + Δν is launched from
the other. The pumping-power intensity from the
pump wave (and hence the power recorded by the
photodetector) depends on the ratio of the frequency
difference Δν and the BFS νb. The theoretical depen-
dence of the logarithmic gain on the frequency differ-
ence is described by the Lorentzian function: g(Δν) =
gB(Δ/2)2/((Δ/2)2 + (Δν – νb)2), where g is the logarith-
mic gain, gB is the peak gain, and Δ is the line width.
The maximum is reached at Δν = νb. By changing the
pumping frequency, an experimental spectrum of the
Brillouin amplification of a test wave is obtained.

There is another approach [1] in which the pump-
ing wave is continuous and the test wave is pulsed.
The principle of operation is completely similar, but
spectral scanning is carried out at the frequency of the
probe wave, and the result is the Brillouin absorption
spectrum of the pump wave. The undoubted advan-
tage of this approach is the large power of the useful
response (since most of the power is pumped into the
pump wave with this scheme).

For a typical fiber, the typical values are as follows:
BFS = 11 GHz, Δ = 30–40 MHz; the BFS sensitivity
to temperature is 1 MHz/K and that to deformation is
40–50 MHz/(1000 με). Thus, the accuracy of extract-
ing the BFS from the Brillouin gain or absorption
spectrum directly affects the accuracy of the sensor.
As an example, to measure the temperature with an
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accuracy of 1 K, the BFS must be determined with an
error of no more than 1 MHz.

In general, regardless of the used algorithm, the
error in determining the BFS is inversely proportional
to the signal-to-noise ratio (SNR) of the available
spectrum, proportional to the square root of the fre-
quency scanning step and the square root of the Brill-
ouin spectrum width [2]. Reducing the scanning step,
as well as the signal accumulation (obviously leading
to an increase in the SNR), leads to an increase in the
accuracy of the sensor but reduces its speed at the
same time. Therefore, the main trends in the develop-
ment of time-domain Brillouin reflectometry are to
increase the SNR not due to the signal accumulation
[3–6] and the search for new algorithms for extracting
the BFS.

The used algorithms can be divided into three large
groups.

1. Reconstruction of the spectrum [7–10]. The
approximation of the spectrum by the Lorentzian
function is commonly used. The parameters of the
function—the coordinate of the center, the full width
at half-magnitude, and the amplitude—are deter-
mined based on the original points of the spectrum.
For the considered task of searching for the BFS, it is
enough to determine only the coordinates of the cen-
ter. It is worth noting that the reconstruction algo-
rithms are constantly being optimized in terms of both
the speed and accuracy of parameter determination.
Most commercial reflectometers and analyzers are
equipped with such built-in algorithms.

2. Correlation methods [11, 12]. They usually rep-
resent the calculation of the cross-correlation function
of a given spectrum and some reference spectra. The
BFS is determined by which of the reference spectra
the maximum value of the cross-correlation function
was achieved.

3. Machine learning methods (neural network
algorithms) [13–18]. At the training stage, the system
looks for connections between some characteristics of
the spectra and the BFS, while, at the measurement
stage, it determines the BFS by the characteristics of a
given spectrum using the found links. Either a con-
nection is immediately sought between the character-
istics of the spectrum and the measured physical
quantities (e.g., temperature or deformation), and the
BFS as an “intermediate link” can be excluded from
consideration altogether.

A few years ago, the authors of this study proposed
a backward correlation method (BCM) [19]. The
essence of this method consists in reflecting the
obtained spectrum relative to the central frequency of
the scanned range and searching for such a shift of the
reflected spectrum relative to the original one, at
which the peaks of these two spectra overlap each
other as much as possible. For example, if the maxi-
mum is exactly at the central frequency in the original
spectrum, it will then be the same in the reflected
INSTRUMENTS AND EX
spectrum and the optimal shift is zero. If the maxi-
mum in the original spectrum is at 1/4 of the distance
from the left border of the spectrum, the maximum in
the reflected spectrum will then be already 1/4 of the
distance from the right in the reflected spectrum bor-
der and the optimal shift will be 1/2 of the spectrum.
The method was described in detail in [19]. It
occurred that, despite all its simplicity, the BCM
yields excellent results at low SNR values and can even
surpass the methods of reconstruction of Lorentzian
spectra; the gain from using the BCM at low SNRs
increases with an increase in the number of points in
the spectrum (i.e., with a decrease in the scanning step
for a given full range). This was explained by the fact
that the value of the convolution of two random
(noise) quantities increases proportionally to  with
increasing the fineness of partitioning, where N is the
number of partition points, while the value of the sig-
nal convolution is proportional to N.

An example of the work of the BCM is shown in
Fig. 1. Figure 1a shows the initial spectrum (the spec-
tral power density is expressed in arbitrary units); Fig. 1b
shows the reflected (right) and reflected shifted (left)
spectra. The magnitude of the shift varies from –400
to +400 MHz since the scanning frequency range is
exactly 400 MHz. Figure 1c shows the dependence of
the convolution of the original and reflected shifted
spectra on the shift magnitude. The maximum convo-
lution is at –170 MHz. Thus, the position of the Bril-
louin peak maximum determined using the BCM is
10600 + (–170/2) = 10515 MHz; here, 10600 MHz is the
central frequency in the scanning range, and –170 MHz
must be halved for the reason that the reflected spec-
trum is shifted to the left (right) by exactly the same
amount when the original spectrum is shifted to the
right (left). The exact value of the Brillouin peak maxi-
mum for the spectrum in Fig. 1, where the spectrum gen-
erated with known parameters was used, is 10513.8
MHz. Thus, in this example, the maximum detection
error was 1.2 MHz.

Later, attempts were made to jointly apply the
BCM with neural network methods and with spec-
trum reconstruction methods [20]. The joint applica-
tion with the methods of spectrum reconstruction
gave no significant results, and the consistent applica-
tion of the BCM and the neural network algorithm
based on the generalized linear model allowed the
reduction of the error in determining the BFS by 0.4–
1.6 MHz depending on the SNR.

According to the above classification, the BCM is
logically attributed to correlation methods, although
no reference spectra are used in this case.

In this paper, the possibilities of improving the
BCM with a view to its potential application in the
processing of spectra with even lower SNRs are inves-
tigated.

N
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Fig. 1. Illustration of the BCM operation: (а) initial spectrum (the spectral power density is expressed in arbitrary units); (b)
reflected nonshifted (right) and reflected shifted (left) spectra; and (c) correlation curve: the dependence of the convolution value
on the shift magnitude.
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METHODOLOGY

Despite the name the “backward correlation
method,” to find the optimal shift of the reflected
spectrum relative to the original one, the search for the
maximum of not correlation but convolution of two
signals was used in [19]. In fact, the Pearson correla-
tion coefficient of two discretely set signals F1 and F2 is
equal to [21]
INSTRUMENTS AND EXPERIMENTAL TECHNIQUES 
where  is the averaging operator and σ are the vari-
ances of the corresponding signals.

During the shift, only  changes; therefore, the
maximum of the coefficient r must coincide with the
maximum of  and, therefore, with the maximum
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of , where summing is performed over all

points. The expression  is just the convolution
of signals.

However, it should be noted that, with a shift, the

signal  may go beyond the boundaries of the defini-

tion area. As an example, let the signal  consist of
400 values with indexes from 1 to 400. The reflected
nonshifted signal consists of the same 400 points in the

reverse sequence: . With a shift by ten

points to the left,  moves to ,  to , etc., up

to a transition of  to . The extreme left points

 do not move anywhere, while there is no cor-

respondence to the points  in the non-

shifted signal. In order for the dimensions of  and 
to coincide, the missing values of the shifted reflected

signal (in this example, these are points from  to

) in [19] were filled with zeros.

Strictly speaking, with such a procedure,  
begins to depend on the shift (the greater is the shift,
the larger number of nonzero initial elements are
replaced by zero), and the above arguments in favor of
the fact that the convolution maximum coincides with
the correlation maximum lose their force. Hence, the
first (I) approach arose: to check how the method
behaves when replacing the search for the convolution
maximum with the search for the Pearson correlation
maximum.

Subsequently, it was additionally found that
another problem arises when processing actual spectra
with a very low SNR. The authors did not encounter it
in [19], because a noise component uniformly distrib-
uted in the range of [–Nsmax, Nsmax] was taken when

modeling, where Nsmax is the maximum noise value,

i.e., the average noise value was zero. In actual spectra,
the values of the spectral power density cannot be neg-
ative; in addition, a statistical analysis has shown that
the noise is distributed according to a normal but not
an equiprobable law.

Figure 2 shows the correlation curves of the depen-
dence of the convolution on the shift for various SNRs
when processing a signal with nonzero average noise.
For a continuous initial spectrum that does not con-
tain noise and is defined in the entire frequency range
[0, ), the correlation curve should be an ideal
Lorentzian function with a width equal to the double
width of the initial spectrum (a detailed derivation of
this relationship is given, e.g., in [20]). In reality,
firstly, there is not the entire spectrum but only a part
of it that falls within the frequency scanning range (for
this reason, we have to add zero elements at the edges
upon a shift); secondly, the spectrum is not continu-
ous but discrete; and thirdly, it contains nonzero
noise. All these factors lead to a deviation of the real
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correlation curve from the ideal Lorentzian function.
However, at moderate SNRs, replacing the missing
elements with zeros leads only to a curve break and
does not affect the search for the maximum in any
way, while the picture changes dramatically at very low
SNRs (see Fig. 2). The maximum convolution does
not now depend at all on the signal position but always
corresponds to a zero shift (the curve for the SNR =
1 dB in Fig. 2d). This fact is explained quite simply.
The contribution from the products of useful signals is
quite small due to the low SNR, and the “parasitic”
contribution due to the products of noise components
increases with a decrease in the artificially introduced

zero signal  values. With a zero shift, such zero values
do not exist at all, and the convolution has the maxi-
mum value. Accordingly, the BCM in the form that
was presented in [19] completely loses its operability.

However, if the replacement of missing elements
was performed not by zeros but by the average noise
value in the original spectrum, then convolutions from
weakly shifted signals would cease to obviously win in
value correlative to convolutions from strongly shifted
signals. In this case, the impact of the contribution

from the product of the missing elements (from  to

 in the above-considered example) on the corre-

sponding elements  is approximately the same
(accurate within the statistical error) as the contribu-
tion from other noise elements. Or, what is absolutely
equivalent, it is possible to subtract the average noise
from the initial signal and then apply the algorithm
used in [19]. This is the second approach (II) (Fig. 3):
to work not with the original spectrum but with a pre-
processed one, from which the average noise has
already been subtracted. Of course, such a signal looks
a bit unusual from the point of view of physics: the
spectral power density takes negative values at certain
points, but the addition of zeros upon a shift does not
lead to a strong signal change.

The example shown in Fig. 3 demonstrates the
effectiveness of this approach. The maximum of the
correlation curve after preprocessing of the spectrum
no longer falls on the zero shift; it returned to where it
was at high SNRs.

The problem of determining the average noise is
proposed to be solved as follows. The width of the
Lorentzian peak in the Brillouin scattering spectrum
is approximately known; accordingly, the number of
points at which the useful signal is of great importance
is known. Excluding from consideration, for instance,
two or three times the number of points in the original
spectrum with the highest values and averaging the
value of the spectral power density over the remaining
ones, we obtain the average noise. In this case, it does
not matter that the remaining points may not form a
continuous range (after excluding the largest ele-
ments, points from the useful signal area may remain
and, conversely, those from the noise area may not
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Fig. 2. Evolution of the correlation curve with decreasing the SNR: (a–c) initial spectra with the same maximum position with
decreasing SNRs: (a) 6, (b) 3, and (c) 1 dB; (d) corresponding correlation curves.
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remain), since it does not matter whether we dropped
a point from the noise region or a point with the same
value from the signal area. This algorithm was tested
on the generated spectra with different SNRs and gave
excellent results when excluding both two and three
times as many points as the Lorentzian peak width.

Finally, the third approach (III) is to combine the
two previous ones: to work with a preprocessed spec-
trum and look for the maximum correlation.

All three approaches were tested as follows.

1. A certain SNR was set.

2. 1000 spectra were generated with a given SNR
and a random position of the Brillouin scattering max-
imum. The noise component had a nonzero average
value and was distributed according to the normal law.

3. For each of the 1000 spectra, all three new meth-
ods, as well as the old method from [19], were used to
determine the value of the Brillouin peak frequency.

4. The absolute difference between the found and
generated Brillouin-peak frequency value was aver-
aged for each of the methods.

5. The procedure was repeated for other SNRs.

All modeling was performed using software spe-
cially developed by the authors, which was modified in
comparison with the software used when obtaining the
INSTRUMENTS AND EXPERIMENTAL TECHNIQUES 
results described in [19]. An object-oriented code in
the C# language was used.

RESULTS AND DISCUSSION

Figure 4 shows the obtained dependences of the
averaged error in determining the BFS on the SNR
with the following parameters of the initial spectrum:
the scanning frequency range is 10 400–10 800 MHz,
the scanning pitch is 4 MHz (i.e., the spectrum con-
sists of 100 points), the half-width of the Brillouin spec-
trum is 40 MHz, and the Brillouin scattering peak has a
random value in the range of 10 450–10 750 MHz.

It can be seen that the usual BCM loses its opera-
bility, starting from an SNR of approximately 5 dB,
while all three of its modifications at this moment still
provide an acceptable accuracy in determining the
BFS. The gain in the SNR range is ~5 dB.

There is no significant difference in the results of
all three modifications. The authors explain this by the
fact that any of the approaches (I or II) eliminates the
problem associated with replacing nonzero noise
points with zero. This is due to the fact that the signal
is not distorted at all during replacement in approach
II, while the drop in the convolution of signals when
replacing nonzero points with zero is compensated by
 Vol. 66  No. 5  2023
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Fig. 3. Illustration of the operation of the approach II-modified BCM: (а) (1) initial spectrum and (2) spectrum processed by
subtracting the average noise; (b) correlation curves obtained when processing the (1) initial and (2) processed spectra.
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Fig. 4. Dependence of the averaged error in determining the BFS for the scanning range of 400 MHz and a scanning pitch of
4 MHz for the BCM [19] and its modifications I–III.
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Fig. 5. Dependence of the averaged error in determining the BFS for a scanning range of 400 MHz and a scanning pitch of
0.5 MHz for the BCM [19] and its modification I–III.
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a proportional change in F2 in approach I. Accord-

ingly, approach III does not provide an additional
accuracy gain anymore.

Figure 5 contains similar results but at a scanning
pitch of 0.5 MHz (800 points in the spectrum).

The results are similar to the results of the previous
experiment, but the gain in the SNR range is much
greater; thus, the modified methods continue to yield
an acceptable result even in the region of negative
SNRs.

It should be noted that there was no additional gain
in the SNR compared to the results presented in [19].
However, the results from [19] were obtained only on
spectra with a zero average noise value, and the accu-
racy of conventional BCM decreases significantly
when processing actual spectra, while modified meth-
ods operate with any noise.

In conclusion, it is worth answering the question:
which of the presented modifications of the BCM is
the most effective? From the point of view of the num-
ber of arithmetic operations, approach II is optimal
since fewer operations are required to calculate the
convolution of signals than to calculate the Pearson
correlation. However, the computational costs of all
methods are relatively small (e.g., the entire calcula-
tion of data for Fig. 4 takes less than 5 min on a budget
office computer); thus, it is logical to use the simplest
approach I, especially since, in this case, it does not
require calculating the average noise value.

CONCLUSIONS

In this paper, variants of modification of the BCM
for processing the spectra obtained in experiments
with nonzero average noise were studied. The results
INSTRUMENTS AND EXPERIMENTAL TECHNIQUES 
obtained with the help of modeling indicate that the
modified method continues to be effective in the
region of low SNRs, where the usual BCM described
in [19] already ceases to work. The gain in the SNR
range may be several decibels and depends on the
number of points in the spectrum: the more points,
the greater is the gain.

Since the correlation curves in the modified
method do not contain kinks that are characteristic of
conventional BCM [19], it is planned to combine the
modified method with the Lorentzian spectrum
reconstruction method in the future. Perhaps, this will
allow us to correctly extract the BFS from spectra with
an even lower SNR: the lower curve in Fig. 4b has a sig-
nificantly higher SNR than the lower curve in Fig. 4a;
therefore, the Lorentzian reconstruction of the shape
should give better results. As already noted, attempts
to integrate the usual BCM into the chain of process-
ing methods have not brought significant improve-
ments [20].
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