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Abstract—The possibility of mapping the elasticity modulus during scanning of the material surface with a
piezoresonance probe is proposed. An analytical model is proposed that describes the force of an elastic inter-
action between the surface and an indenter in the form of a truncated cone as a function of a displacement.
Within the framework of this model, dependences were obtained that allow the elasticity-modulus value to
be determined, provided that the data on the average force of a semicontact interaction, the amplitude, and
the frequency of probe resonance oscillations are available. The obtained dependences were used for mapping
the elasticity modulus of the boundaries of deposited aluminum and copper films on glass, as well as for a
TGZ2 test structure. Experiments were performed using a NanoScan 3D scanning nanohardness tester, and
a resolution of 0.2 μm was attained. This technique is applicable to materials that allow only an elastic defor-
mation and can be used in instruments that can operate in a range of contact forces providing predominantly
elastic deformations.
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INTRODUCTION
Determining the mechanical properties at the

nano- and microlevels is a constituent of the complex
estimate of the quality of articles of different purposes
[1, 2]. In some cases, the hardness or elasticity modu-
lus is investigated using the methods for measuring the
dependences of the corresponding quantities on spa-
tial coordinates [3, 4]. In this case, the scanning-probe
microscopy methods pretend to a nondestructive
measurement of a local value of the elasticity modulus
of an investigated nanostructured material.

The mapping of mechanical properties can be per-
formed by using an approach in which a map of the
surface hardness and elastcity modulus results from
processing of an array of single measurements [3],
which are carried out at different points of the sample
surface using the instrumental-indentation method
[5]. A method in which force signals and resonance-
frequency-shift signals are recorded in the semicon-
tact mode during scanning of a sample is used to
obtain hardness maps [6]. The subsequent processing
of the obtained data provides obtainment of the hard-
ness map of the sample surface, if the elasticity modu-
lus is known; if such a priori information is absent, the
method allows mapping of the ratio of the hardness to
the square of the elasticity modulus. Elasticity-modu-
lus maps can be also obtained during the sample scan-
ning process. The appropriate technique implies a

continuous interaction of the indenter tip with a sam-
ple with maintenance of a constant pressing force on
which a harmonic modulation is imposed. Informa-
tion on the shift amplitude and phase at known values
of the force amplitude and phase allows one to obtain
information on the elasticity modulus [7]. Such meth-
ods imply that the probe–surface interaction is
described by purely elastic forces and a plastic defor-
mation of a material is absent; the value of the con-
stant force component usually lies within a range of 1–
100 μN.

Several elasticity-modulus measurement techniques,
which were implemented by manufacturers of atomic-
force microscopes (AFMs), also exist [2, 8–10].
To obtain the elasticity modulus during scanning, the
pressing forces that are used in AFMs are substantially
lower than those in scanning nanohardness testers.
In the considered devices, the typical pressing forces
range from 1 to 100 nN, thus determining the necessity
of using models in which adhesion forces are consid-
ered. It is natural that the measured elasticity-modulus
value depends in this case on the type of the chosen
model [11]. This in turn requires additional a priori
information on the object under study.

This study considers the possibility of mapping the
elasticity modulus using a piezoresonace probe, which
is used in a NanoScan 3D scanning nanohardness tes-
ter. This instrument is able to operate in both the scan-
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ning-probe-microscope (SPM) and instrumental-
indentation modes and was repeatedly described in the
literature [12–15]. Let us brief ly describe its operating
principle.

The probe of the instrument has the form of a tun-
ing fork whose branches are piezoceramic bimorphs.
A diamond indenter, which is attached to the free end
of one branch, was brought into contact with the
material surface during measurements. In the scan-
ning mode and, if necessary, in the indentation mode,
a signal is fed from the self-excited-oscillator channel
to one of the branches. A signal that is picked off the
other branch arrives at the input of the self-excited-
oscillator channel. The tuning-fork branches are
attached to the central leg whose bending stiffness is
low (a probe with a stiffness of 0.4 kN/m was used in
this study). A bend of the leg during a contact of the
probe with the surface is detected by an optical detec-
tor and converted into a force signal. In the SPM

mode, when a constant resonance-frequency shift is
maintained, the probe is able to scan the surface relief.

DESCRIPTION
OF THE MATHEMATICAL MODEL

The proposed method is based on the dependences
that determine the interrelations between the shift of
the resonance frequency ω0 of probe oscillations and
the amplitude and force of the indenter interaction
with the surface. This approach was first demonstrated
in [16], and analogous equations were obtained by
another method in [17], from which it follows that

, (1)

where k is the dynamic rigidity and A is the amplitude
of probe oscillations that follow a harmonic law:

; (2)
h(t) is the depth of the indenter penetration into the
surface:

(3)

F(t) is the indenter–sample interaction force.
In view of the fact that during an elastic interaction,

the force depends on the substance elasticity modulus,
Eq. (1) can be used for mapping this quantity. How-
ever, according to (1), for this purpose, it is necessary
to know the current position z0 of the probe. It is nat-
ural that when a heterogeneous sample is scanned, this
value changes, and determining the elasticity modulus
requires additional information, e.g., on the average
value of the pressing force of the tip applied to the sur-
face. In NanoScan instruments, the force Fa of the
probe interaction with the surface, which is averaged
over a period, is recorded. In the case of measuring the
instantaneous force value several times in an oscilla-
tion period and using the proposed method, the
obtained values should be averaged. The average force
Fa is defined as

(4)

To determine the contact force F(h), let us consider
an elastic interaction of the indenter with the surface.
When the shape of the indenter tip is described by a
paraboloid of revolution, the corresponding depen-
dence of the force on the indentation depth is
described by the Hertz formula [18]. On the other
hand, to take the indenter-tip blunting (which is char-
acterized by the quantity Δh) an approximation corre-
sponding to a truncated pyramid is used [19, 20], for
which the dependence of the area on the height is
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Fig. 1. (a) The indenter-shape-approximating model con-
structed according to (5); (b) model dependences of the
ratio of the pressing force to the elasticity modulus on the
indentation depth of the indenter: (dashed curve) calcula-
tion using formula (13) and (solid curve) calculation using
formulas (11) and (12).

(b)

h, nm

50

100

150

2 4 6 8

F/E*, nm2

(а)

w

α

c r



INSTRUMENTS AND EXPERIMENTAL TECHNIQUES  Vol. 58  No. 5  2015

MAPPING THE ELASTIC MODULUS 713

expressed by the formula A = 24.5(h + Δh)2. Without
taking the pyramid asymmetry into account, this con-
sideration is equivalent to the application of a model in
which the indenter is represented as a truncated cone.
The possibility of disregarding the asymmetry is indi-
cated by the fact that for the instrumental-indentation
technique, the corresponding coefficient β, which
introduces a multiplicative correction into the mea-
sured elasticity-modulus value, differs from unity
quite negligibly [5]. It should be also noted that the
height Δh, by which the model shape was “truncated,”
is only several nanometers [21], and at large indenter
penetration depths into a sample, the indenter shape
becomes close to pyramidal. In view of the fact that typ-
ical probe indentation depths in this study were >10 nm,
it can be stated that in the case of an elastic interaction,
the shape of a truncated cone is more correct than the
shape of a paraboloid of revolution, for it allows con-
sideration for the indenter imperfection and, at the
same time, gives the correct asymptotics of the
increase in the contact area as a function of the probe
penetration into the sample: A ~ h2.

DETERMINING THE FUNCTION
FOR A TRUNCATED CONE

Let us consider that the indenter shape in a polar
coordinate system can be described by the function

(5)

In this case, b = cotα, where α is the angle between the
height and generatrix of the truncated cone and c is the
radius of the area that corresponds to the vertex of the
truncated cone (Fig. 1а).

It was shown in [22] that for an indenter whose
shape results from the rotation of an arbitrary function
w(r) around the vertical axis, the equations that specify
the dependence of the force on the depth have the
form:

 (6)

, (7)

where f(x) is defined by the equation f(r/a) = w(r).
Symbol E* denotes the reduced elasticity modulus,
and a is the radius of the contact region. Original
paper [22] considers the case of indentation of a per-
fectly rigid indenter into a surface; in this case, E* and
the Young modulus E of a material are interrelated
through the formula  Despite the fact
that for a diamond indenter, a correction to a defor-
mation that arises upon a contact with most materials
is small, we take this effect into account by using
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the effective modulus E*, which is defined by the
equation [23]:

, (8)

where Eind and νind are, respectively, the Young modu-
lus and the Poisson ratio for the indenter.

For the above-described function f(x), these equa-
tions lead to the following result:

; (9)

. (10)

The exact analytical expression for the dependence
F(h) cannot be found from this system, but a good
approximation for a wide range of indentation depths
(from a fraction of the c value and larger) can be
obtained. For this purpose, we expand expressions (9)
and (10) at small values of c/a. As is seen from Eq. (9),
this situation corresponds to large values of h:
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Fig. 2. Experimental (solid line) and model (dashed line)
dependences of (а) the oscillation-frequency shift and (b)
the force of pressing the indenter to the surface on the
indentation depth.
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. (12)

Omitting higher-order terms, the following expres-
sion for the force can be obtained:

(13)

Let us show that this expression for the force cor-
rectly describes the dependence F(h) for typical values
of the parameters b and c in the region of small depths.
The value of the parameter b is determined by the cone
vertex angle. For an ideal cone to have the same ratio
between the height and the cross-sectional area as that
for a Berkovich pyramid (A = 24.5h2), its opening

angle must be 70.32°. In view of the fact that at deep
indentations, the asymptotic value of A/h2 must be
close to 24.5, and the value of b must also be close to
cotan(70.32°).

In this experiment, the values b = cot(70°) and c =
5 nm were used. The dependence exactly for such
parameters is presented in Fig. 1b. The coincidence of
the approximating solution corresponding to formula
(13) (gray dashed curve) with the parametric depen-
dence in accordance with formulas (11) and (12)
(black solid curve) begins already with fractions of a
nanometer.

Averaging according to formula (1) leads to the fol-
lowing result:

(14)

where

(15)

Calculating the average force from formula (4)
leads to the expression

(16)

 Equations (14) and (16) specify the system of equa-
tions

(17)

and at predetermined values of the force Fa, amplitude
A and frequency ω, they can be solved with respect to
the reduced modulus E* and the average value of the
probe position z0.

Thus, by measuring the resonance-frequency shift

 during scanning, the force Fa, and the

amplitude A, one can construct a map of the elasticity

modulus  of a sample. As additional quantities,

information on the parameters ω0, c, α, k, Eind, and
νind is required. The value of the free-probe resonance
frequency ω0 is measured, and the parameters Eind and
νind are usually known, as well as the indenter material.
The value of the parameter α is determined by the
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dependence of the projection of the contact area on
the depth for the used indenter. To determine the val-
ues of the parameters c and k, the “bringing curves”
are used (dependences of the force and resonance-fre-
quency shift on the probe indentation depth into a
sample, Fig. 2). These curves are approximated by the
theoretical dependences, according to formulas (17),
at different values of these parameters. The initial
value of the dynamic rigidity k0 for seeking the actual
value of k can be estimated as k0 ≈ ω0m2, where m is the
mass of the movable part of the oscillating element.
As was mentioned above in the description of the
mathematical model, the value of Δh, by which the
cone is truncated, is usually several nanometers;
therefore, the initial value of c0 = Δhtanα is ( 10 nm.
The correct choice of c and k must provide the coinci-
dence of the initial segments of the indenter bringing
(IB) curves that were measured at different ampli-
tudes.

To obtain the calibration IB curves, fused silica was
chosen as the material that is commonly used to cali-
brate nanoindenters. Typical dependences of the fre-
quency shift Δf and the force Fa on the indentation
depth h in the sample are shown in Fig. 2; in the mea-
surements of these curves, the oscillation amplitude
was 10 nm. The parameter b was chosen equal to
cot70°: this value provides the required asymptotics of
the area as a function of the depth for a pyramid whose
area is close to an ideal one. The parameters c and k,
which provide the coincidence of the calculated and
experimental dependences, occurred to be equal to
5 nm and 3.5 × 106 N/m, respectively. Synthetic dia-
mond (E = 1140 GPa, ν = 0.07), was used as the
indenter at ω0 = 92 × 103 rad/s.

According to Fig. 2, the model dependences coin-
cide with the experimental data to an indentation
depth of ~30 nm. This is a rather large indentation,
and all the data presented below were obtained at
smaller resonance-frequency shifts, forces, and inden-
tation depths, i.e., in the region where the model and
experimental curves coincide.

EXPERIMENTAL VERIFICATION
OF THE METHOD

The above-described method was used to process
signals that were obtained during scanning of several
structures having regions with different mechanical
properties.

TGZ-type test structures have been properly stud-
ied and are widely used in SPMs [24–26]. They are
manufactured via oxidation of the initial silicon sub-
strate and subsequent etching of the oxide layer. As a
result, a structure with a known step and a known
height is formed, and the silicon-oxide layer thickness
of the grating, which was used in the experiment, was
102 nm. Proceeding from the complete multichannel
image consisting of 512 × 152 points, we calculated an

elasticity-modulus map whose fragment is shown in
Fig. 3а. The calculated elasticity-modulus values were
filtered with a median filter with a size of 3 × 3 points.
The tip oscillation amplitude during scanning was
~4–8 nm, the average pressing force was 10–16 μN,
and the operating resonance-frequency shift during
scanning was 60 Hz. A spatial resolution of 0.2 μm was
attained. The obtained data properly correlate with the
elasticity-modulus values for silicon and its oxide.

Metals that are deposited onto solid substrates
often serve as objects of nanostructural investigations.
An example of mapping mechanical properties of a
thin molybdenum layer on glass is shown in Fig. 3b.
The coating thickness is 96 nm. The number of pro-
cessed points is 256 × 50. The obtained elasticity-

Fig. 3. Elasticity-modulus maps: (a) TGZ test structure;
(b) molybdenum films on glass; and (c) copper films on
glass.
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modulus values were filtered with a median filter with
a size of 5 × 5 points. The probe oscillation amplitude
during scanning was ~5–8 nm, the average pressing
force was ~6–17 μN, and the operating resonance-fre-
quency shift during scanning was ~60 Hz. The
obtained data coincide with the elasticity-modulus
values for molybdenum and cover glass.

Thus, the obtained data demonstrate the possibility
of quantitative measurements of the elasticity moduli
of thin coatings and heterogeneous materials during
scanning.

A copper film on glass was also studied. The coat-
ing thickness was 410 nm. The number of processed
points was 256 × 91. The obtained elasticity-modulus
values were filtered with a median filter with a size of
5 × 5 points. The result is shown in Fig. 3c. The probe
oscillation amplitude during scanning was ~3.5–8 nm,
the average pressing force was ~6–18 μN, and the
operating resonance-frequency shift during scanning
was ~60 Hz. The image in Fig. 3c has a specific fea-
ture—an apparent increase in the elasticity modulus in
the transition region between the copper layer and
glass. Such a distortion in the actual map of the
mechanical properties may be due to a substantial
change in the geometry of the contact region: the
height difference was rather large (0.415 μm), and a
situation becomes possible in which a face of the pyr-
amid but not its tip is in contact with the surface in a
given scanned region. Hence, it can be expected that
sharp height differences may influence the obtained
results when scanning with indenters with large vertex
angles.

CONCLUSIONS

The data obtained in this study show the possibility
of quantitative mapping of the elasticity modulus of
nanostructured materials directly during the scanning
procedure. The experimentally attained spatial resolu-
tion was 0.2 μm. The proposed theoretical model and
the algorithm for processing data on the frequency
shift, the amplitude, and the average pressing force of
the probe tip applied to the surface were found to be
serviceable.

The obtained results indicate the necessity of
developing new-generation probes for NanoScan
instruments, which must combine high values of the
dynamic rigidity of the tuning-fork branches and low
values of the static rigidity of the tuning-fork leg.
In this case, the required force of pressing the probe
tip to the surface of a material can be considerably
reduced and soft polymer materials will be available
for mapping their elasticity moduli during scanning.
At present, when piezoresonance probes are used,
which are standard elements for NanoScan instru-
ments, materials with hardnesses of >1 GPa and elas-
ticity moduli of >50 GPa are successfully mapped.
When operating with softer materials at pressing forces

that are necessary for obtaining a required signal-to-
noise ratio, a plastic deformation of the material sur-
face layer is observed in measuring channels, and data
on the elasticity-modulus value become distorted.

The proposed approach can be used in both con-
ventional SPMs and nanohardness testers, which are
equipped with the in situ surface scanning function
and the possibility of monitoring the pressing force,
the indenter oscillation amplitude, and the contact
rigidity in the region of interaction between the tip and
surface.
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