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Abstract—The modulus of elasticity is considered a fairly stable physicomechanical characteristic of materi-
als, which is little dependent on their composition and structure. Among the factors influencing the modulus
of elasticity, temperature and anisotropy are distinguished. Information about the influence of scale factor on
the modulus of elasticity is quite limited and sometimes contradictory. The aim of this study is to investigate
the influence of the scale factor on the elastic modulus of steel 45 determined by tension geometrically similar
specimens with different initial diameters. The specimens were tested on an Instron 8801 universal testing
machine at a deformation rate of 0.1 mm/min at room temperature. Elastic deformations during tension were
measured using two methods—with the help of a strain gauge and the digital image correlation method. Both
methods showed fairly close results when testing specimens of the same diameter. However, the digital image
correlation method allowed for measurements of elastic deformations on specimens with small diameters,
where it was not possible to attach a strain gauge. A decrease in the modulus of elasticity with an increase in
the initial diameter of the specimen was established. Graphical dependences of the modulus of elasticity on
the diameter of the specimen and the area of its cross section were obtained. Possible reasons for the decrease
in the modulus of elasticity under the influence of the scale factor are outlined. A decrease in specific surface
area and specific surface energy, an increase in the deformable volume, and a decrease in the deformation rate
at a constant deformation speed are among the main reasons. The decrease in the modulus of elasticity under
the influence of the scale factor should be taken into account in strength calculations and when assessing the
residual life of parts and structures with relatively large cross sections and wall thicknesses.
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INTRODUCTION
The modulus of normal elasticity (Young’s modu-

lus) Em is a fundamental physical and mechanical
property of a metal that characterizes the rigidity of its
crystal lattice, which depends on interatomic attrac-
tion. The higher the modulus of normal elasticity, the
less elastic deformation ε is caused by the same acting
stress, which follows from the Hooke’s law:

(1)
The modulus of normal elasticity is a parameter

widely used in mechanics of materials and structures,
physics, materials science, crystallography, and other
disciplines. For example, Em is used for strength calcu-
lations of parts and structures, assessment of the service
life of metal and products under the influence of operat-
ing factors, establishment of relationships between vari-
ous mechanical characteristics, and other purposes.

It is commonly believed that the modulus of nor-
mal elasticity is a stable physicomechanical character-

istic of metals and alloys, which is not significantly
affected by factors such as chemical composition, heat
treatment conditions, and loading speed. Among the
factors that can influence the modulus of normal elas-
ticity, temperature [1, 2], anisotropy [3, 4], and struc-
tural damage are considered to be the most significant.
However, the influence of the scale factor determined
by the specimen size has been poorly studied. Similar
information can be found in the technical literature,
but it is limited and ambiguous. In some cases, the
diameter or specific surface area of the specimen are
used as scale parameters. For example, in [5], a signif-
icant increase in Em was observed when reducing the
diameters of specimens from 70 to 30 mm for compos-
ite materials. It should be noted that, with decreasing
diameters, the specific surface area of such specimens
increases. However, according to the results of experi-
ments presented in [6], no significant changes in Em
were observed with an increase in the specific surface
area of the specimen. The authors of [7], while study-
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Fig. 1. Instron 8801 testing machine with extensometer for Young’s modulus determination.
ing Em using the resonance method, found a signifi-
cant increase in Em in the transition from the micro- to
nanoscale range.

In light of the above, the aim of this study is to
investigate the influence of specimen size on the mod-
ulus of normal elasticity during its determination by
the tensile testing method.

EXPERIMENTAL

To establish the influence of the scale factor on the
value of the modulus of normal elasticity, a series of
tensile tests were conducted on specimens with differ-
ent sizes. Proportional cylindrical specimens were used,
varying in diameter and gauge length.

The material for the specimens was a rod of 20 mm
in diameter made of medium carbon structural steel
45. Similar proportional cylindrical specimens with
working part diameters d0 of 19.00, 13.01, 10.79, 4.99,
3.05, 1.85, and 0.99 mm were machined from this rod.
In the final stage of preparation of samples, their sur-
faces were treated electrolytically to remove any sur-
face roughness caused by mechanical processing.

Tensile tests on the specimens were performed
using an Instron 8801 machine at a deformation rate of
0.1 mm/min. To determine the modulus of normal
elasticity Em in the elastic region of the stress–strain
diagram, an attached Instron GL10 extensometer with
a gauge length of 10 mm was used (Fig. 1).
The attached extensometer accurately recorded the
change in longitudinal strain of the gauge length of the
specimen (εext) and allowed for the construction of a
diagram in the coordinates of stress σ and strain εext.
Each specimen was loaded in the elastic region until a
stress of at least 200 MPa was reached, after which the
specimen was unloaded to ensure that its deformation
was fully elastic. Such loading–unloading cycles were
repeated at least five times for each specimen. Then, in
the stress range from 0 to 200 MPa, the obtained
stress–strain diagram was approximated by a straight
line using the least squares method, and the modulus
of normal elasticity was determined from the slope of
the obtained elastic region relative to the horizontal
axis using the equation

(2)

The extensometer could not be securely attached to the
gauge length of the thinnest specimens (d0 = 0.99 mm).
Therefore, to determine the modulus of normal elas-
ticity on these specimens, as well as on some speci-
mens with a larger diameter, we used an optical
method of deformation measurement—Digital Image
Correlation (DIC). It is based on obtaining images of
the specimen surface during deformation. Cross-cor-
relation processing of images allows tracking changes
occurring on the surface during testing and calculating
the deformation field with high spatial resolution. The
LaVision StrainMaster system (Fig. 2) was used as the
measuring setup.

m ext/ .E = σ ε
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Fig. 2. Static tensile test scheme for a steel specimen using
a LaVision StrainMaster optical measuring system: PC—
personal computer; TM—testing machine; LS—lighting
system; C1 and C2—cameras; SU—synchronization unit.
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Fig. 3. Photo of the experimental set for Young’s modulus
determination using the digital image correlation method
on an Instron 8801 testing machine.
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The LaVision StrainMaster system consists of two
Imager SX cameras (C1 and C2), an image capture
synchronization device PTU (SU), and a personal
computer (PC) with DaVis 8.4 software. The Imager
SX digital cameras are based on a monochrome CCD
matrix with a size of 2/3" and a resolution of 2456 ×
2058 pixels, pixel size of 3.45 × 3.45 μm, and a bit
depth of the obtained images of 12 bits. The field of
view for registering experimental images for different
sizes of specimens varied in the range from 3.5 × 3.0 to
17.5 × 14.0 mm2. An additional external light source
(LS) was used to obtain high-quality contrast images.

Before the tensile testing of the specimen, a ran-
dom speckle pattern was applied to the lateral surface
of its gauge length using white and black paints to
enhance the image contrast when using the digital
image correlation method. Then the specimen was
fixed in the grips of the machine, and the lighting and
equipment for video recording and deformation mea-
surement were set up. Figure 3 shows a photo of the
experiment using the optical method.

During the tension of the specimen, periodic video
recording of the surface was performed at a frequency
of 2 frames/s with a resolution of 2400 × 2000 pixels.
The sequential automated analysis of the obtained
image series using the software allows reconstructing
the displacement field of speckle points on the work-
ing part of the specimen during tension, the magni-
tude of which can be used to calculate the strain tensor
εopt at any point at any time [8]:

(3)

where i, j = 1, 2, 3 are the ordinal numbers of the ten-
sor elements corresponding to the x, y, z axes; rj are the
components of the spatial vector along the axes; and Vi

opt ,
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are the components calculated during the processing
of the displacement along the axes.

By tracking the kinetics of changes in the deforma-
tion field over time, taking into account machine data
on the applied force, it is possible to construct an elas-
tic section of the tension diagram and estimate the
value of the modulus of normal elasticity at any time
interval at any stage of the test:

(4)

The arithmetic mean of all Em values recorded in
the initial section of tension to a stress σ of 200 MPa
was taken as the value of the normal modulus of elas-
ticity determined by the method of digital image cor-
relation.

RESULTS AND DISCUSSION
Figure 4a shows the elastic sections of the tension

diagram σ–ε for specimens with diameters d0 equal to
10.79, 3.05, and 1.85 mm determined using an
attached extensometer. It is clearly seen that the
straight elastic sections of the tension diagrams for
specimens with different initial diameters d0 are strati-
fied. The smaller the diameter of the specimen, the
steeper the slope of the line, and therefore the higher
the normal modulus of elasticity. Similar results were
obtained using measurements performed with the dig-
ital image correlation method (Fig. 4b). Table 1 pres-
ents the results of determining the normal modulus of
elasticity Em for specimens tested using both measure-
ment methods.

It can be seen that the values of Em determined
using the extensometer and the digital image correla-
tion method are quite close for the same specimen
diameters. A more clear representation of the change

m opt/ .E = σ ε
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Fig. 4. Elastic sections of tension diagrams σ–ε obtained using an attached extensometer (a) and the digital image correlation
method (b) for specimens with different diameters d0; material: steel 45.
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in Em with different d0 can be obtained from Fig. 5.
Since d0 is uniquely related to the cross-sectional area

A0 of the cylindrical specimen (A0 = π /4), the
dependences of Em on A0 and Em on d0 are similar (see
Fig. 5). However, the shape of the cross section of the
specimens may vary, so it is advisable to assess the
influence of the scale factor by comparing Em values
for specimens with various A0. In this case, a more
general relationship between Em and A0 can be
obtained, including for specimens with a different
cross-sectional shape, such as rectangular.

Analysis of the results of determining the modulus
of normal elasticity Em (see Table 1) allows the follow-
ing conclusions to be made. As the initial diameter of
the specimen d0 decreases, Em increases. However, if
the decrease in d0 from 19 to 5 mm results in a rela-

2
0d
Table 1. Young’s modulus Em of steel 45 determined by tensio
method (average values)

d0, mm А0, mm2 measurements b

N/mm2

19.00 283.4 187528
13.01 132.9 197229
10.79 91.4 200217
8.00 50.2 209578
4.99 19.6 212897
3.05 7.3 219556
1.85 2.7 235463
0.99 0.8 –
tively small increase in Em (approximately 10%), then
at smaller d0 it occurs more intensely. For a specimen
with d0 = 1.85 mm, this increase is already about 20%,
and for a specimen with d0 = 0.99 mm, it is about 25%.
It can be assumed that, at d0  1 mm, an even more
intense increase in Em will occur.

According to the authors of this work, the main
reason for the increase in Em with a decrease in speci-
men diameter is the influence of the scale factor. It
should be noted that the scale factor has a similar
effect on other mechanical properties of materials
determined on specimens of different diameters. For
example, significant increases in the tensile strength of
glass fibers with decreasing diameter were observed in
studies by Griffiths [9] and Aleksandrov and Zhurkov
[10]. Similarly, an increase in the true tensile strength
and true fracture strength of steel specimens with

!
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n tests with an extensometer and the digital image correlation

Еm

y extensometer digital image correlation method

kg/mm2 N/mm2 kg/mm2

19116 – –
20105 191768 19555
20409 – –
21364 – –
21702 206187 21025
22381 – –
24001 235803 24045

– 246320 25118
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Fig. 5. Young’s modulus Em as a function of initial diameter d0 (a) and cross section A0 (b) of specimen; material: steel 45.
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decreasing diameter was noted in [11, 12]. According
to [11], the true fracture strength of a 30KhN3 steel
specimen with a diameter of 1.5 mm increased by
approximately 30% compared to this characteristic for
a specimen with a diameter of 15 mm. Similar
increases in yield strength and ultimate tensile strength
have been established upon reduction of the diameter
of the specimen from 10 to 1.5 mm [8]. Scale depen-
dences of material hardness are well known [13–16].
When determining hardness by microindentation, its
values are significantly increased compared to the
macrolevel. And when transitioning to the nanolevel
of indentation, hardness can increase by an order of
magnitude or more [14]. The strong influence of the
scale factor is also manifested in cyclic tests of speci-
mens of different diameters at a cycle amplitude below
the elastic limit [17]. Thus, it can be assumed that the
scale factor also influences the modulus of normal
elasticity.

There are various approaches to explanation of the
reasons for the influence of the scale factor on the
mechanical properties of materials [10]. Among these
approaches, the statistical one (a greater number of
defects of various origins in the volume of a large spec-
imen), the structural-mechanical one (the heteroge-
neity of the structure, properties of materials, stress
and strain distributions across the specimen cross-sec-
tion), and the energetic one (differences in the elastic
energy storage) can be mentioned.

In the monograph by Chechulin [12], a large
amount of experimental data on the influence of spec-
imen sizes on mechanical properties was systematized
for the first time, and theories of the scale effect of
mechanical strength for ductile and brittle fracture of
materials were considered.

Some of the positions of the aforementioned
approaches to explaining the influence of the scale
factor can also be applied to the modulus of normal
elasticity. However, in small specimens (microspeci-
mens), the number of initial defects and imperfections
INORGANIC MATERIALS  2024
in the crystal structure of the metal at the atomic level,
including dislocations, is significantly smaller, which
leads to an increase in the stiffness of the crystal lattice
and, consequently, to an increase in the modulus of
normal elasticity.

CONCLUSIONS

The modulus of normal elasticity was determined
for specimens of different diameters made of steel 45
using tensile testing with an extensometer and the dig-
ital image correlation method for strain measurement.
It was shown that the values of the modulus of normal
elasticity obtained using the extensometer and the dig-
ital image correlation method are fairly close. This
allows the use of the digital image correlation method
to determine the modulus of normal elasticity on small
specimens where it is not possible to reliably attach an
extensometer. A decrease in the modulus of normal
elasticity with increasing specimen diameter was
observed. For example, as the specimen diameter
increased from 0.99 to 19 mm, the modulus of normal
elasticity decreased by approximately 25%. Graphical
dependences of the modulus of normal elasticity on
the specimen diameter and cross-sectional area were
obtained. The main reason for the increase or decrease
in the modulus of normal elasticity determined on spec-
imens of different diameters is the influence of the scale
factor. This influence should be taken into account in
strength calculations for components and structures of
various sizes, especially for large-scale products.
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