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Abstract—The methods for restoration of the orientation distribution function (ODF) from experimental
pole figures have been compared for materials possessing a low symmetry of specimen (by example of the
median section of the hot-pressed band from Mg–4.5% Nd magnesium alloy), namely, the method of texture
components using radial normal distributions on SO(3) with different spreading and the method of superpo-
sition of a large number of normal distributions with equivalent small spreading. Both approaches have
demonstrated similar ODFs. In this case, the former method, which is less sensitive to measurement errors
of pole figures, is based on nonlinear optimization with a complex choice of initial approximations of the
parameters of the model. The latter approach is more sensitive and easier to use.
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The conventional experimental method for the
data acquisition on the predominant orientations of
the crystal planes is the measurement of pole figures
(PFs), which describes the distribution of the normals
to the crystal planes. The most exhaustive information
on texture is given by the orientation distribution func-
tion (ODF) of crystallites. In this case, a possible
approach to eliminate difficulties, which are related to
nonuniqueness of the solution and its instability to
experimental errors, is to investigate the solution in a
particular class and optimize the parameters of the
texture model using regularization [1, 2].

The aim of this work is to compare the texture of
the materials under study possessing high and low
symmetry of lattice and specimen [5–7] of the meth-
ods for ODF restoration from PFs, namely, the
method of texture components using the radial normal
distributions with various spreading [1–3] and the
method of superposition of a large number of radial
normal distributions with an identical small spreading
[1, 2, 4].

The texture was studied on the specimens of the
median section of the hot-pressed band from Mg–
4.5% Nd magnesium alloy. (Because the material pos-
sesses low lattice and specimen symmetry, the use of
other methods for modeling of the ODF (along with
those mentioned above) for the existing set of experi-
mental data is almost impossible.) Primary informa-

tion was obtained in the form of incomplete lines of
PFs {0004}, {1010}, {1120}, {1011}, {1012}, and {1013}
recorded on a DRON-7 X-ray diffractometer in CoKα
radiation (the scanning step by radial and azimuthal
angles is 5° and the range is 0°–70° of radial angle). In
order to increase the exactness of the initial experi-
mental data, the background on the left and right was
recorded by the 2θ angle with the subsequent averag-
ing for each PF (the scanning step and the range are
the same).

Before the ODF restoration, the mean background
intensity was subtracted from the PF intensity at the
corresponding measurement points. The drop of the
intensity at the peripheral part of PF due to the defo-
cusing effect was corrected using correction coeffi-
cients, which were calculated from the X-ray record-
ing conditions of PF [8]. (PFs were not normalized
and the values of unknown adjustment coefficients
were obtained during optimization.)

Both of the considered methods are based on the
representation of ODF in the form of a superposition
of several standard functions (texture components and
ideal orientations with spreading):
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where K is the number of standard functions, Ik and g0k
are the volume fraction and the position of the center
of kth component, and εk is the spreading parameter.

The method of texture components suggests that the
ODF can be represented by the superposition of peak
(Kp) and axial (Ka) components.

Each peak component becomes maximal at point
g0 of the orientation space, while spreading around the
maximum is determined by the parameter ε:

(2)

where

(3)

is the orientational distance. In this case, full width at
half maximum b [9] is related to the spreading param-
eter using the following relation: b ≈ 

The axial component of the radial normal distribu-
tion represents the averaging of the peak component
during rotation around the fixed axis and appears as
follows:

(4)

It achieves maximum at a particular circumference in
the orientation space, which is determined by the axis
of the component n and rotation g0 (one of the possible
positions of the maximum of the distribution on the
circumference), which is determined by the constant
angular distance ρ from the axis of the component
(apex angle).

The parameter ε, as in the case of the peak compo-
nent, describes the spreading near the maximum. The
model ODF is averaged over all equivalent rotations in
accordance with the lattice symmetry of the specimen
and appears as follows:

(5)

where I0 and Ik are the fractions of the background
component (textureless component) and kth compo-

nent (peak or axial) and 

Let us assume that the reciprocal-lattice vector hλ
specifies the direction in the crystallite, while y speci-
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fies the direction in the specimen. The model ODF (5)
generates a PF of the following form:

(6)

In this case, the peak and axial components of the PF
are represented by Legendre polynomials:

(7)

(8)

The ODFs were simulated by the optimization of
the parameters {I0, Ik, g0k,  nk} (5); for this purpose,
the minimization of the weighted residual between the
sets of experimental {  λ = 1…Λ} and model
PFs (6) was used:

(9)

where {W(y)} is the specified set of weights determin-
ing the significance of the measurement point and
{Nλ, λ = 1…Λ} are unknown adjusting coefficients of PF.

The minimization of residual (9), which is related
to the problems of nonlinear optimization, is solved
iteratively. The number of textural components; their
type; and initial position of centers, axes, and spread-
ing parameters are determined interactively in graphi-
cal form. This implies that the participation of the
researcher is necessary in this approach at the initial
stage, who evaluates the initial values of the parame-
ters. At the following stage, linear characteristics
(weights) and adjusting coefficients are optimized [10,
11]. The resulting normal systems of equations are
usually ill-conditioned owing to the strong overlap of
the components. Therefore, at this stage, regulariza-
tion was used along with the pseudo-inverse algorithm
of the array of the normal system. The threshold of
remaining singular values was chosen in accordance
with the degree of experimental errors. Then, nonlin-
ear optimization of other parameters of the model was
carried out using the Levenberg–Marquardt regular-
ization method [11].
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Table 1. Initial approximations of the parameters of the model

k

Axis in the system of the specimen
Bunge angles for a particular position

of the maximum g0, deg

η, deg θ, deg ϕ1 Φ ϕ2

1 0.01 255 25 345 25 40
2 0.01 290 30 385 30 45
3 0.01 220 30 310 40 45
4 0.02 255 45 350 40 45
5 0.01 70 40 165 45 45
6 0.01 110 40 205 45 45
7 0.01 90 30 180 35 45

ε2
k

The validity of the model was evaluated using the
parameters [12]

(10)

as well as through the calculation of the square of
residual  individually for each PF and the standard
deviation of residuals σλ [10]:

(11)

where n is the volume of the data measured on PF.
The method of superposition of a large number of

radial normal distributions is represented by the super-
position (1) of standard distributions with equivalent
small spreading ε in contrast with the method of tex-
ture components:

(12)

The centers of standard functions g0k are located on a
three-dimensional network in orientational space. As
f s(g, g0k, ε), the superposition of symmetrized peaks
with the form (2) symmetrized according to the lattice
and specimen symmetry was chosen. In calculations,
we considered that function f s(g, g0k, ε2) in the case of
narrow peaks (ε < 0.3) appears in the following analyt-
ical approximation [1]:

(13)

[ω is the orientational distance (3)].
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The PFs corresponding to the distribution (13)
appear as follows [1]:

(14)

where h and y are the directions in crystallite and spec-
imen, respectively, and θ = arccos(hg0y).

Eq. (14) approximates Eq. (7) well. Thus, we have
the function as the model of PF

(15)

The spreading parameter ε is determined by the
angular distance between the lattice points. Standard
functions should overlap at least at half-height of the
peaks. It is clear that the number of standard functions
should be very large (their spreading should be signifi-
cantly less than the distance of each component of real
texture). In this case, they cannot be considered the
components of texture function (each component of
texture function is represented as the superposition of
standard functions).

In order to determine unknown weights Ik, we have
the system of linear equations whose matrix consists of
the coefficients of the effect of standard function fs(g,
g0k, ε) on the pole density. During its solution, an iter-
ative projection method was used [13, 14]. At ill-con-
ditioned matrix of the system, it provides regulariza-
tion of the solution by one of the smoothness func-
tionals  and additionally considers the
condition of positivity of peak amplitudes.

The initial parameters of the model of the speci-
men in the method of texture components (Table 1)
was chosen interactively.

As a result of subsequent optimization, it was deter-
mined that the pole density of the specimen is fit by
the superposition of seven axial components and a tex-
tureless component (Table 2). In Fig. 1, experimental
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Table 2. Parameters of the model in the method of texture components

Components ρk, deg Ik, %
Axis in the system of specimen

η, deg χ, deg

Axial

1 0.94 29.8 0.010 259.2 23.0
2 2.17 18.7 0.012 295.2 30.1
3 6.86 13.3 0.007 223.2 32.6
4 6.62 8.7 0.024 259.2 43.7
5 6.84 6.3 0.014 74.7 36.5
6 6.81 4.9 0.010 114.3 37.3
7 3.20 3.4 0.008 90.0 32.7

Textureless – 14.9 – – –

ε2
k

PFs {0004} and {1120} and their models prepared by
the method of components are given.

Statistical parameters of the models are given in
Table 3 (errors correspond to the measurement error
of experimental PFs).

In Fig. 2, the sections of ODF obtained using the
methods under study are given. It is evident that both
methods give similar results; however, the capacity of
the textureless component of ODF obtained by super-
position is significantly less, while the maximum of
ODF is less than the analogous maximum derived
from the method of textural components.
Fig. 1. (a, c) Direct experimental and (b, d) calculated PFs
{0004} and {1120} using the method of components (RD is
the rolling direction and TD is the transverse direction).

RD RD

RD RD

TD TD

TDTD

1.8 3 4.2 5.4 6.6 7.8 9 1.8 3 4.2 5.4 6.6 7.8 9

0.7 1 1.3 1.6 1.9 2.2 2.5 0.7 1 1.3 1.6 1.9 2.2 2.5

(a) (b)

(c) (d)
This is caused by the fact that each textural compo-
nent in the superposition method, as previously men-
tioned, is the sum of a large number of standard distri-
butions. This can be stated about the textureless com-
ponent, which is also approximated by the sum of the
distributions with almost equivalent weights. It is rea-
sonable to further include the constant corresponding
to the volume fraction of the textureless component in
the model function in order to develop the superposi-
tion method (the parameter is linear and can be deter-
mined iteratively, as well as other weights). A great
advantage of this method is that it is completely auto-
mated.
INORGANIC MATERIALS  Vol. 54  No. 15  2018

Fig. 2. ODFs calculated from PFs using (a) the method of
components (fmin = 0.15 and fmax = 9.20) and (b) a large
number (3000) of orientations (fmin = 0.04 and fmax = 8.70).

ϕ2 = 0° ϕ2 = 0°

ϕ2 = 20° ϕ2 = 20°

ϕ2 = 40° ϕ2 = 40°

ϕ2 = 60° ϕ2 = 60°

(a) (b)
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Table 3. Statistical parameters of the models

PF

Method of texture components Method of superposition

adjustment, Nλ RP (0.5), % RP (1.0), % resλ σ RP(0.5), % RP(1.0), %

{0004} 502 19 16 8.33 0.225 – –

{1120} 2628 15 10 4.48 0.121 – –

{1010} 2374 14 10 3.72 0.101 – –

{1011} 26777 16 10 3.86 0.104 – –

{1012} 3481 9 7 3.13 0.084 – –

{1013} 4278 10 8 3.29 0.089 – –

Mean of PFs – 13.8 10.2 – – 19.1 15.9
Using the method of texture components, the first
stage of optimization, which consists of the choice of
the number of textural components and the initial val-
ues of nonlinear parameters of the model, cannot be
formalized and requires the participation of the
researcher. Further iterations occur in automatic
mode. However, the method provides the description
of complex texture formations using a small number of
parameters which are necessary for the further study of
the properties of polycrystal materials.

During the generation of the ODF model of the
specimen under study, the experimental data were
specified. In this case, the parameters of the model
remained stable and only the parameters which were
used for the evaluation of validity were varied. The
model generated using the superposition method var-
ied more significantly, though with the retention of
intrinsic features of texture. A greater stability of the
model in the method of texture components is ratio-
nalized by the small number of model parameters.

Thus, ODFs calculated using both methods agree
well with each other. The considered methods for the
ODF restoration can be employed during the study of
the texture of the materials possessing low symmetry
of lattice and specimen. In this case, the main advan-
tage of the method of components is that the quantita-
tive description of texture is achieved by using a lim-
ited number of orientations in the form of radial nor-
mal distributions with different spreading and volume
fraction, which facilitates the analysis of the evolution
of texture formation of materials during plastic defor-
mation and heat treatment. However, the choice of
INORGANIC MATERIALS  Vol. 54  No. 15  2018
initial values of textural components is not formalized
and requires the direct participation of the researcher.
On the contrary, the method of superposition of a
large number of radial normal distributions is com-
pletely automated.
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