Specific Phase Transformations of K/W/Mn/SiO₂ Composite Catalyst

G. D. Nipan

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991 Russia e-mail: nipan@igic.ras.ru

Received June 26, 2017

Abstract—This paper analyzes results obtained in studies of $K/W/Mn/SiO_2$ composite catalysts for the oxidative coupling of methane (OCM) and examines phase transformations involving melts that form in the $K_2O-WO_3-Mn_2O_3-SiO_2$ system at typical temperatures of the heterogeneous OCM process.

Keywords: phase transformations, multicomponent systems, oxide composites, catalysts **DOI:** 10.1134/S0020168518010119

INTRODUCTION

K/W/Mn/SiO₂ composites are effective catalysts for the oxidative coupling of methane (OCM). Along with Na/W/Mn/SiO₂ composites [1], they ensure high yields of C₂₊ products (ethylene, ethane, and heavier hydrocarbons) in the OCM, but little attention has so far been paid to the potassium-containing catalysts.

Without tungsten, the addition of K (or Cs) to a 10% Mn/SiO₂ catalyst did not increase the yield of C₂₊ products ($Y_{C_2} = 8\%$) in the OCM (800°C, 2.0 L/(g h), CH_4 : air = 0.55 : 1) [2]. The low catalytic activity of a 2.7% K₂WO₄/SiO₂ composite (conversion $X_{CH_4} = 1 -$ 2% and selectivity $S_{C_2} = 33-35\%$) for the OCM (650°C, 2.82 L/h, CH₄: O₂ = 9 : 1, continuous-flow quartz microreactor) probably resulted from the relatively low process temperature and the formation of the $K_2W_2O_7$ tungstate instead of K_2WO_4 (as suggested by Raman spectroscopy data) [3]. Samples with the overall composition K(Rb,Cs)₂WO₄/55SiO₂, prepared via impregnation of a silica support, contained a mixture of cristobalite and tridymite—crystalline SiO₂ polymorphs (no K, Rb, or Cs tungstate was detected experimentally). The C_2 yield in the OCM (850°C, 101 kPa, 1.08 L/h, CH_4 : O_2 : He = 4.5 : 1 : 44.5, continuous-flow alundum microreactor) was 20% for K $(X_{CH_4} = 30\%, S_{C_2} = 67\%), 25\%$ for Rb $(X_{CH_4} = 32\%, S_{C_2} = 78\%)$, and 18% for Cs $(X_{CH_4} = 33\%, S_{C_2} = 55\%)$ [4]. The addition of Mn increased Y_{C_2} to 26% (X_{CH_4} = 29%, $S_{C_2} = 90\%$) for the K-containing composite and reduced Y_{C_2} to 19.5% ($X_{CH_4} = 31\%$, $S_{C_2} = 63\%$) for the Rb-containing composite [4]. However, after powder K-containing of the composite $(2K/W/1.2Mn/55SiO_2)$ was applied to an Y₂O₃-stabilized ZrO₂ (YSZ) ceramic solid electrolyte, the Y_{C_2} yield did not exceed 10% ($X_{CH_4} = 19\%$, $S_{C_2} = 54\%$), no matter whether oxygen was electrochemically introduced into the OCM process (850°C, 3.6 L/h, $CH_4: O_2: He = 9: 1: 27$) or the gases were admitted together [5]. This result can be accounted for by the predominant weight of the YSZ ceramic, which is, per se, capable of ensuring Y_{C_2} near 11% in the OCM process [6]. A 5% K₂WO₄/2% Mn/SiO₂ sample prepared via impregnation made it possible to obtain stable Y_{C_2} at a level of 18.6% (X_{CH_4} = 29.8%) for continuous OCM (800°C, 101 kPa, 25.4 L/(g h), $CH_4: O_2 = 3.2: 1$, quartz microreactor). In addition to cristobalite and trace levels of tridymite and the Mn₂O₃ manganese oxide, it was found to contain K_2WO_4 [7]. Similar results for the OCM (800° C, 6.7 L/h, CH₄: O₂ = 5 : 1, quartz reactor) were obtained with a 5% $K_2WO_4/4\%$ Mn/SiO₂ composite ($Y_{C_2} = 20\%$, $X_{CH_4} = 29\%$, $S_{C_2} =$ 70%) [8]. Samples with the compositions 0.78%K/3.13% W/4% Mn/SiO₂ ($Y_{C_2} = 23\%$, $X_{CH_4} = 32\%$, $S_{C_2} = 73\%$) and 0.1% K/3.13% W/4% Mn/SiO₂ (Y_{C_2} = 16%, X_{CH_4} = 26%, S_{C_2} = 63%) differed markedly in catalytic activity and, synthesized by the same method (impregnation), they contained hubnerite ($MnWO_4$) along with cristobalite, tridymite, Mn₂O₃, and K₂WO₄ [8]. Note that no cesium tungstates were detected in $Cs/W/Mn/SiO_2$ composites, but Y_{C_2} for various compositions was 18-19% [8]. The use of solid-state reaction for the preparation of a 2K/W/2Mn/91SiO₂ composite [9–11] allowed $Y_{C_{2+}}$ values near 27% (X_{CH_4} = 41%, $S_{C_{2}} = 66\%$) to be reached in some cases in the OCM process (882° C, 101 kPa, 60–63 L/(gh), CH₄: O₂ = 2.4: 1, quartz reactor), but the presence of K_2WO_4 in the composite remained open to question [11]. For comparison, the highest $Y_{C_{2+}}$ values for 2Rb/W/2Mn/91SiO₂ and 2Cs/W/2Mn/91SiO₂ composites were 26% ($X_{CH_4} = 42\%$, $S_{C_2} = 61\%$) and 20% ($X_{CH_4} = 40\%$, $S_{C_2} = 52\%$) [11] and the composites were found to contain trace levels of tungstates. Thus, interaction of WO₄ tetrahedral and MnO₆ octahedral groups on the surface of a neutral SiO₂ support [12] cannot explain the OCM mechanism when the most efficient K/W/Mn/SiO₂ catalyst prepared by solid-state reaction is used.

The purpose of this work is to identify the nature of the phase transformations in a $K/W/Mn/SiO_2$ composite at typical OCM temperatures.

RESULTS AND DISCUSSION

According to X-ray diffraction data (Fig. 1), the catalytically effective composite $2K/W/2Mn/91SiO_2$ prepared by solid-state reaction contained cristobalite and trace levels of tridymite, bixbyite (Mn_2O_3), and an unidentified phase (or phases) [11], presumably similar to cryptomelane, KMn_8O_{16} [13]. The phase composition of the $2K/W/2Mn/91SiO_2$ composite is essentially identical to that of a 2% KMnO4/SiO₂ catalytically inert composite (Fig. 1, scan 3) (Rigaku Miniflex 600, Cu K_{α} radiation, $\lambda = 1.541$ Å; sample prepared at a pressure of 2.5 GPa and temperature of 500°C [14]). Moreover, not only are the mixed oxides KMnO₄, K₂MnO₄, and K₃MnO₄ [15] unfavorable for the OCM process, but they also oxidize the forming ethylene [16].

Thus, the presence of crystalline phases of the K– Mn-O system and SiO₂ polymorphs in a composite does not ensure catalytic activity of K/W/Mn/SiO₂ for the OCM process. After solid-state synthesis of the composite, no potassium tungstates were detected experimentally (Fig. 1). Therefore, the catalytic activity of K/W/Mn/SiO₂ is unrelated to metastable tungstates [17] or tungsten bronzes [18] in the K_2O-WO_3 system. Even in the case of the formation of alkali tungstates, their concentration in the composites decreases during heat treatment on account of volatility, which increases in going from Li to Cs [19]. In vacuum, sublimation or vaporization occurs congruently owing to the predominant formation of M₂WO₄ molecules in vapor [19]. In air, the process is incongruent because, in addition to M_2WO_4 molecules, there are M_2O molecules [20] and, in the presence of reductants, M atoms [21]. In the condensed phase, the initial M: W ratio changes and, even though the melting points of phase-pure M_2WO_4 (M = K, Rb, Cs) exceed 900°C, the forming mixtures of K, Rb, and Cs polytungstates [20] melt eutectically at typical OCM temperatures [17] and lose the alkali element during the OCM to the extent of converting into WO₃, which can sublime congruently [21]. Finally, in the course of

Fig. 1. X-ray diffraction patterns of the (1, 2) K/W/Mn/SiO₂ (before and after OCM, respectively) and (3) K/Mn/SiO₂ composites.

prolonged OCM, the alkali tungstates disappear from Li(Na,K,Rb,Cs)/W/Mn/SiO₂ composites [1].

The active catalytic component of the $Li(Na,K,Rb,Cs)/W/Mn/SiO_2$ composites is a melt, which favors cristobalite recrystallization into tridymite and quartz [22, 23]. That the alkali metal oxides differ in their solubility in the SiO₂ polymorphs leads to the diffusion of alkali cations and, accordingly, the diffusion of oxygen anions, which determine its activity for the OCM [22, 23]. This is indirectly supported by the catalytic inertness of Mg(Ca,Sr,Ba)/W/Mn/SiO₂ composites [4, 7], because no melts are formed at typical OCM temperatures in systems containing alkaline metal oxides.

In the case of $\text{Li}(\text{Na})/\text{W}/\text{Mn}/\text{SiO}_2$, the components that melt are the starting tungstates $\text{Li}(\text{Na})_2\text{WO}_4$ [24, 25], but in the case of K(Rb,Cs)/W/Mn/SiO₂ this is not so and the phase picture is more complex.

For comparison, Fig. 2a represents a model for the subsolidus phase equilibria in the pseudoquaternary system K₂O-WO₃-Mn₂O₃-SiO₂ at a constant temperature of 600°C and an oxygen partial pressure of 20 kPa. The representative points indicate the compositions of the crystalline phases in an idealized K₂O-WO₃-Mn₂O₃-SiO₂ system. Tungstates, silicates, and manganates are represented by the first letters in the symbols of their constituent cations and the subscripts: $K_4W, K_6W_2, K_2W, K_2W_2, K_2W_3, K_2W_4$, and K_2W_6 correspond to K_4WO_5 , $K_6W_2O_9$, K_2WO_4 , $K_2W_2O_7$, $K_2W_3O_{10}$, $K_2W_4O_{13}$, and $K_2W_6O_{19}$; K_2S , K_2S_2 , and K_2S_4 correspond to K_2SiO_3 , $K_2Si_2O_5$, and $K_2Si_4O_9$. The K_3M , K_2M_4 , and K_2M_8 squares represent nonstoichiometric phases based on K₃MnO₄ [15, 26], K₂Mn₄O₈ [26-29], and K₂Mn₈O₁₆ [27-29], which formally do not belong to the K₂O-Mn₂O₃ system, but can exist at the temperature and oxygen partial NIPAN

Fig. 2. Isobaric–isothermal phase diagrams of the K₂O–WO₃–Mn₂O₃–SiO₂ system: (a) $t = 600^{\circ}$ C, $p_{O_2} = 20$ kPa; (b) $t = 800^{\circ}$ C, $p_{O_2} = 20$ kPa (*q*-SiO₂ = quartz).

pressure chosen. In this paper, phase equilibria involving MnSiO₃, Mn₂SiO₄, and MnWO₄ (represented by triangles); the compounds $K_6Mn_2O_6$ [30], $K_2Mn_2O_3$ [31], and KMnO₂, existing in an inert atmosphere; K_2MnO_4 (decomposes above 550°C [15]); $K_2Mn_4O_9$ (forming at pressures above 50 MPa [33]); and the metastable compounds $K_2Mn_2O_4$ [30] and $K_4Mn_4O_9$ [26] are left out of consideration.

There is particular interest in heterogeneous transformations of $K(Rb,Cs)/W/Mn/SiO_2$ composite cata-

lysts at typical OCM temperatures. Figure 2b shows the phase diagram of the pseudoquaternary system $K_2O-WO_3-Mn_2O_3-SiO_2$ at a temperature of 800°C and oxygen pressure of 20 kPa. Under these conditions, there is a melt *L*, represented by the $K_2O-1-2-$ 3-4-5-6-7-8-9 region in the diagram, with two two-phase cavities, 10-11-12-13 (30-78 mol % SiO₂) and 14-15 (30-58 mol % WO_3), because neither K_2SiO_3 , nor $K_2Si_2O_5$ [34], nor K_2WO_4 [35, 36] melts at 800° C. Line 11-12 corresponds to the melt

INORGANIC MATERIALS Vol. 54 No. 1 2018

Fig. 3. Section of the isobaric–isothermal phase diagram of the K₂O–WO₃–Mn₂O₃–SiO₂ system ($t = 800^{\circ}$ C, $p_{O_2} = 20$ kPa) at 75 mol % SiO₂.

composition in the three-phase equilibrium $K_2S-L-K_2S_2$. The melt surface facing Mn_2O_3 includes curves 2–8, 3–7, and 4–6, which correspond to the melt composition in the three-phase equilibria $Mn_2O_3-L-K_2M_8$, $K_2M_8-L-K_2M_4$, and $K_2M_4-L-K_3M$. The curves divide the surface into regions that represent the melt compositions in the two-phase equilibria Mn_2O_3-L (1–2–8–9), K_2M_8-L (2–3–7–8), K_2M_4-L (3–4–7–8), and K_3M-L (4–5–6).

Under these conditions, the stable SiO₂ polymorph is quartz, but because the K₂O–SiO₂ system has a tendency toward the formation of metastable states, which persist for a long time [22, 23], the phase diagram in Fig. 2 includes the actually forming polymorphs: cristobalite (c-SiO₂) and tridymite (t-SiO₂). In a stable state, they coexist in the range 900– 1470°C. Between 870 and 900°C, there is tridymite– quartz stable equilibrium [22, 23]. A point of critical importance is the presence of two SiO₂ polymorphs. The melt composition corresponding to tridymite crystallization is represented by curve 1–9.

The SiO₂ content of K/W/Mn/SiO₂ composites usually exceeds 90 mol %, and the corresponding sections are similar to a section of the isobaric–isothermal diagram of the Na₂O–WO₃–Mn₂O₃–SiO₂ system ($t = 800^{\circ}$ C and $p_{O_2} = 20$ kPa) [24], a considerable part of which is the $L + Mn_2O_3 + t$ -SiO₂ three-phase field, but sections below 80 mol % SiO₂ will differ markedly. Figure 3 shows a section of the isobaric–isothermal phase diagram of the K₂O–WO₃–Mn₂O₃–SiO₂ system ($t = 800^{\circ}$ C and $p_{O_2} = 20$ kPa) at 75 mol % SiO₂. In addition to the $L + Mn_2O_3$ (melt–bixbyite) region, there is the small region $L + K_2Si_2O_5$ (melt–silicate) and the wide region $L + K_2Mn_8O_{16}$ (melt–cryptomelane), as confirmed by experimental data.

CONCLUSIONS

Analysis of isobaric—isothermal phase diagrams of the K₂O–WO₃–Mn₂O₃–SiO₂ system demonstrates that, in the course of the oxidative coupling of methane, effective K/W/Mn/SiO₂ composite catalysts contain a melt *L*, which comprises all the components of the catalyst and favors the formation of tridymite (*t*-SiO₂) on the surface of the cristobalite (*c*-SiO₂) matrix and the conversion of bixbyite (Mn₂O₃) into nonstoichiometric cryptomelane (K_{2-x}Mn₈O₁₆). It seems very likely that such phase transformations take place in the case of Rb/W/Mn/SiO₂ [4, 9–11] and Cs/W/Mn/SiO₂ [4, 8–11] poorly studied composites.

ACKNOWLEDGMENTS

I am grateful to Professor A.S. Loktev (Gubkin Russian State University of Oil and Gas) and Senior Researcher V.A. Artukh (Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences) for their assistance in the experimental work. This study was supported by the Russian Federation Ministry of Education and Science (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; basic research).

REFERENCES

- 1. Li, S., Reaction chemistry of W–Mn/SiO₂ catalyst for the oxidative coupling of methane, *J. Nat. Gas Chem.*, 2003, vol. 12, no. 1, pp. 1–9.
- Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Oxidative processing of light alkanes; state-of-the-art and prospects, *Russ. J. Gen. Chem.*, 2009, vol. 79, no. 6, pp. 1251–1263.
- Erdöhelyi, A., Németh, R., Hancz, A., and Oszkó, A., Partial oxidation of methane on potassium-promoted WO₃/SiO₂ and on K₂WO₄/SiO₂ catalysts, *Appl. Catal.*, *A*, 2001, vol. 211, no. 1, pp. 109–121.
- Palermo, A., Varquez, J.P.H., and Lambert, R.M., New efficient catalyst for the oxidative coupling of methane, *Catal. Lett.*, 2000, vol. 68, nos. 3–4, pp. 191– 196.
- Lapeña-Rey, N. and Middleton, P.H., The selective oxidation of methane to ethane and ethylene in a solid oxide electrolyte reactor, *Appl. Catal.*, *A*, 2003, vol. 240, nos. 1–2, pp. 207–220.
- Seimanides, S., Tsiakaras, P., Verykios, X.E., and Vayenas, C.G., Oxidative coupling of methane over yttriadoped zirconia solid electrolyte, *Appl. Catal.*, 1991, vol. 68, no. 1, pp. 41–53.
- Ji, S., Xiao, T., Li, S., Chou, L., Zhang, B., Xu, C., Hou, R., York, A.P.E., and Green, M.L.H., Surface WO₄ tetrahedron: the essence of the oxidative coupling of methane over M–W–Mn/SiO₂ catalysts, *J. Catal.*, 2003, vol. 220, no. 1, pp. 47–56.
- Gholipour, Z., Malekzadeh, A., Ghiasi, M., Mortazavi, Y., and Khodadadi, A., Structural flexibility under oxidative coupling of methane; main chemical role of alkali ion in [Mn + (Li, Na, K or Cs) + W]/SiO₂ catalysts, *Iran. J. Sci. Technol.*, 2012, vol. 36, no. A2, pp. 189–211.
- Nipan, G.D., Dedov, A.G., Loktev, A.S., Ketsko, V.A., Kol'tsova, T.N., Tyunyaev, A.A., and Moiseev, I.I., SiO₂-based composites in the catalysis of methane oxidative coupling: role of phase composition, *Dokl. Phys. Chem.*, 2008, vol. 419, no. 2, pp. 73–76.
- Tyunyaev, A.A., Nipan, G.D., Kol'tsova, T.N., Loktev, A.S., Ketsko, V.A., Dedov, A.G., and Moiseev, I.I., Polymorphic Mn/W/Na(K,Rb,Cs)/SiO₂ catalysts for oxidative coupling of methane, *Russ. J. Inorg. Chem.*, 2009, vol. 54, no. 5, pp. 664–667.
- Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Oxidative coupling of methane: influence of the phase composition of silica-based catalysts, *Appl. Catal., A*, 2011, vol. 406, nos. 1–2, pp. 1–12.
- 12. Kou, Y., Zhang, B., Niu, J.-Z., Li, S.-B., Wang, H.-Li., Tanaka, T., and Yoshida, S., Amorphous features of

working catalysts: XAFS and XPS characterization of $Mn/Na_2WO_4/SiO_2$ as used for the oxidative coupling of methane, *J. Catal.*, 1998, vol. 173, no. 2, pp. 399–408.

- Wang, S., Zheng, H., Zhang, Q., Li, Lin., Wu, H., Li, G., and Feng, C., Effects of polyaniline coating of cryptomelane-type KMn₈O₁₆ on electrochemical performance for lithium-ion batteries, *J. Nanopart. Res.*, 2014, vol. 16, no. 2, paper 2232.
- Nipan, G.D., Artukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Effect of pressure on the phase composition of Li(Na)/W/Mn/SiO₂ composites and their catalytic activity for oxidative coupling of methane, *Inorg. Mater.*, 2014, vol. 50, no. 9, pp. 912–916.
- Herbstein, F.H., Ron, G., and Weissman, A., The thermal decomposition of potassium permanganate and related substances. Part I. Chemical aspects, *J. Chem. Soc. A*, 1971, part II, pp. 1821–1826.
- Liu, Z.-X., Che, M.-W., Baeg, J.-O., and Lee, C.W., Removal of ethylene over KMnO₄/Al₂O₃–SiO₂, *Bull. Korean Chem. Soc.*, 2006, vol. 27, no. 12, pp. 2064– 2066.
- Gelsing, R.J.H., Stein, H.N., and Stevels, J.M., The phase diagram K₂WO₄–WO₃, *Rec. Trav. Chim.*, 1965, vol. 84, no. 11, pp. 1452–1458.
- Zimmerl, T., Schubert, W.-D., Bicherl, A., and Bock, A., Hydrogen reduction of tungsten oxides: alkali additions, their effect on the metal nucleation process and potassium bronzes under equilibrium conditions, *Int. J. Refr. Met. Hard Mater.*, 2017, vol. 62, part B, pp. 87–96.
- Kazenas, E.K., *Termodinamika ispareniya dvoinykh* oksidov (Thermodynamics of Binary Oxide Vaporization), Moscow: Nauka, 2004.
- 20. Spitsyn, V.I., Thermal stability and volatility of normal alkali tungstates, *Zh. Obshch. Khim.*, 1950, vol. 20, no. 3, pp. 550–552.
- Yamdagni, R., Pupp, C., and Porter, R.F., Mass spectrometric study of the evaporation of lithium and sodium molybdates and tungstates, *J. Inorg. Nucl. Chem.*, 1970, vol. 32, no. 11, pp. 3509–3523.
- Nipan, G.D., Buzanov, G.A., Zhizhin, K.Yu., and Kuznetsov, N.T., Phase states of Li(Na,K,Rb,Cs)/W/Mn/SiO₂ composite catalysts for oxidative coupling of methane, *Russ. J. Inorg. Chem.*, 2016, vol. 61, no. 14, pp. 1689–1707.
- Nipan, G.D., Melt-assisted phase transformations of A/W/Mn/SiO₂ (A = Li, Na, K, Rb, Cs) composite catalysts, *Inorg. Mater.*, 2017, vol. 53, no. 6, pp. 553–559.
- Nipan, G.D., Phase states of Na/W/Mn/SiO₂ composites at temperatures of catalytic oxidative coupling of methane, *Inorg. Mater.*, 2014, vol. 50, no. 10, pp. 1012–1018.
- Nipan, G.D., Phase states of Li/W/Mn/SiO₂ composites in catalytic oxidative coupling of methane, *Inorg. Mater.*, 2015, vol. 51, no. 4, pp. 389–395.
- Scholder, R. and Protzer, U., Uber Alkalomanganate(III) bis (V), Z. Anorg. Allg. Chem., 1969, vol. 369, nos. 3–6, pp. 313–326.

INORGANIC MATERIALS Vol. 54 No. 1 2018

- 27. Delano, P.H., Classification of manganese dioxides, *Ind. Eng. Chem.*, 1950, vol. 42, no. 3, pp. 523–527.
- 28. De Carvalho, A.J.C., Stages in the preparation of potassium manganate from pyrolusite, *J. Appl. Chem.*, 1957, vol. 7, no. 4, pp. 145–151.
- Delmas, C. and Fouassier, C., Les phase K_xMnO₂ (x ≤ 1), *Z. Anorg. Allg. Chem.*, 1976, vol. 420, no. 2, pp. 184– 192.
- 30. Brachtel, G. and Hoppe, R., $K_6[Mn_2O_4]$ und $K_6[Fe_2O_4]$ ein Verleich, Z. Anorg. Allg. Chem., 1978, vol. 446, no. 1, pp. 64–76.
- Seipp, E. and Hoppe, R., Ein neues oxomanganat(II): K₂Mn₂O₃, *Z. Anorg. Allg. Chem.*, 1985, vol. 530, no. 11, pp. 117–126.
- 32. Jansen, M., Chang, F.M., and Hoppe, R., Zur Kenntnis von KMnO₂, *Z. Anorg. Allg. Chem.*, 1982, vol. 490, no. 1, pp. 101–110.

- Endo, T., Kume, S., Shimada, M., and Koizumi, M., Synthesis of potassium manganese oxides under hydrothermal conditions, *Mineral. Mag.*, 1974, vol. 39, no. 3, pp. 559–563.
- Allendorf, M.D. and Spear, K.E., Thermodynamic analysis of silica refractory corrosion in glass-melting furnaces, *J. Electrochem. Soc.*, 2001, vol. 148, no. 2, pp. B59–B67.
- 35. Chang, L.L.Y. and Sachdev, S., Alkali tungstates: stability relations in the systems A₂O · WO₃−WO₃, *J. Am. Ceram. Soc.*, 1975, vol. 58, nos. 7–8, pp. 267–270.
- 36. Xue, L., Lin, Z., Chen, D., Huang, F., and Liang, J., Subsolidus phase relations in the systems $K_2O-ZnO-AO_3$ (A = Mo, W), *J. Alloys Compd.*, 2008, vol. 452, no. 2, pp. 263–267.