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Abstract⎯The damaged zone (the inelastic deformation zone) near a crack tip is the region where the stress–
strain state (SSS) cannot be described by fundamental functions in the solution of the elastic problem of a
crack (the Williams solution). For the description of SSS outside the damaged zone, the Williams expansion
is used, which requires a number of regular terms to be considered. It is proposed to use digital optical tech-
niques for measuring the SSS parameters in the crack zone to provide a large amount of experimental infor-
mation in the form of displacement fields on the surface of the studied object directly in digital form.

Keywords: crack, fracture mechanics, evaluation techniques for singular and nonsingular components of dis-
placement fields, modeling errors, plasticity zone
DOI: 10.1134/S0020168517150055

Plastic zones that occur in the crack tip region
reflect the distinctive features of the material behavior
under specific loading conditions of the considered
element of a structure. The information on the sizes of
these zones can be used for the diagnostics of the dam-
age accumulation and failure process [1–5].

The fundamentals of the calculation analysis of the
nonlinear behavior of material in the crack tip zone are
rather well explored at present. The calculation and
analytical methods for solving the corresponding
problems of deformable solid mechanics are described
in [5, 6]. The finite element analysis of the elastoplas-
tic SSS in crack zones is discussed in [3, 4, 7–11, etc.].

Another important component of the current
approaches to the strength, fracture toughness, and
lifetime evaluation of structures is experimental anal-
ysis of the material behavior in crack defect regions
(plasticity, prefracture, and damage accumulation
zones). To solve this problem, diverse techniques are
developed and successfully used: optical [12] and
X-ray [10] fractography, speckle interferometry [13],
and electromagnetic acoustics [12, 14].

For the analysis of the deformed state in crack
zones in actual structures, the most promising are dig-
ital optical techniques: digital image correlation (DIC)
[15–17] and electronic digital speckle interferometry
(EDSI) [18, 19]. These techniques, which are widely
used in both laboratory and actual studies, provide sig-
nificant (almost unlimited) amounts of experimental
information in the form of displacement fields on the

surface of the studied object directly in digital form. In
addition, the advantages of these methods are their
high sensitivity and contactlessness.

The aim of this study is to develop a methodologi-
cal approach and a corresponding program for the
evaluation of the size of the plastic deformation region
(and other types of damage) in crack defect zones on
the basis of the mathematical processing of the results
of the experimental registration of displacement fields.
Here, a “damage zone” is understood as a region
where the stress–strain state (SSS) is different from
the elastic one.

The technique is based on the fact that the SSS in
the local crack tip zone cannot be described by rela-
tions corresponding to the elastic SSS in the crack
region [1–4]. The necessary condition for the practi-
cal application of the proposed technique is its use for
the subsequent mathematical processing of large
experimental information arrays in the form of tan-
gential displacement fields in the considered zone.

The proposed approach is the development of a
technique for the determination of the stress intensity
coefficients (KI, KII) under combined loading on the
basis of processing the interference patterns, which are
the maximum tangential stress τmax fields [20]. The
problem solution is reduced to finding the coefficients
of the Williams functions describing the stress fields in
the crack zone from the condition of the minimum
standard deviation (maximum tangential stress) τmax in a
set of points located in the vicinity of a crack tip (Fig. 1a).
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Unlike the approach in [20], the proposed technique is
based on processing tangential displacement fields u
and  (see Fig. 1a), whose asymptotic behavior (unlike
that of deformations and stresses) is nonsingular.
Apparently, this circumstance has a significant nega-
tive effect on the accuracy of the determination of the
desired parameters. However, note that both
approaches are in fact reduced to the construction of
the analytical solution of the elasticity theory problem
in the form of an expansion in terms of fundamental
functions (Williams functions) corresponding to the
initial experimental information on SSS in the crack
zone.

Because the geometry of the small vicinity of a real
crack tip (both in an actual object and in a sample)
cannot possibly be considered as a “mathematical
cut,” a zone of the order r ≤ (3 − 4)h (h is the crack
width in the vicinity of a crack tip) is excluded from the
localization region of the initial experimental data
(Fig. 1b). Another reason for excluding from consider-
ation the mentioned zone r is the three-dimensional
stress state that occurs in the place of emergence of a
crack on the free surface in the vicinity of the point O
(see Fig. 1) and the SSS asymptotics, which is deter-
mined by equations that are different from the Wil-
liams relations [21].

The proposed procedure for the evaluation of the
damaged material zone size, which is based on pro-
cessing the experimentally constructed displacement

fields in “undamaged” zones and in the vicinity of a
crack tip, is substantiated by the following circum-
stance. Apparently, in the case where the SSS in the
crack tip zone, which is used for the determination of
the Williams function coefficients, is close to the elas-
tic one, the choice of the localization zone of experi-
mentally registered displacement fields ρmin ≤ ρ ≤ ρmax,
which are used for the problem solution, does not
noticeably affect the results. On the other hand, if sig-
nificant plastic deformations, damaged metal, etc.,
occur in the vicinity of a crack tip, the procedure
becomes unstable. It can be expected that, starting
from some value ρ > ρ* and under its further increase,
the values of the desired parameters do not change.
Then, the value ρ = ρ* can be considered approxi-
mately equal to the radius of the zone where there are
significant problem modeling errors, which is caused
by the presence of plastic deformations or other types
of damaged material.

TECHNIQUE AND PROGRAM 
OF THE DETERMINATION

OF THE WILLIAMS EXPANSION 
COEFFICIENTS BASED ON PROCESSING 

THE TANGENTIAL DISPLACEMENT FIELDS

The displacement fields u,  in the vicinity of crack
tips of types I and II can be presented in the form of
the known Williams expansion:

(1)

where r, θ are the polar coordinates associated with a
crack tip (see Fig. 1); κ is the parameter of the stress

state type (  is for the f lat stress state, and

κ = 3 – 4ν) is for the flat deformed state); and G and ν
are the shear modulus and the Poisson ratio of the mate-
rial. Note that a1 =   
and T are the nonsingular T stresses acting in the xOy
plane [22].

The coefficients an and bn from relations (1) can be
calculated using the following approach. On the basis
of the experiments (or the calculations of the corre-

sponding boundary value problem), the tangential dis-
placements (the displacements that occur on the
body’s surface) at M points are determined:

The positions of the measurement points are charac-
terized by the polar coordinates   i.e.,
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On the other hand, the above displacement values
can be matched to the displacements calculated for the
same points on the basis of the analytical relations (1):

We rewrite expression (1) in a form that is more
convenient for the subsequent calculations:

(2)

The values of the coefficients an and bn should be
determined from the condition of the best correspon-
dence of the displacement fields um,  (m = 1, …, M)
in the region ρmin ≤ ρ ≤ ρmax, –θ1 ≤ θ2 described by
expressions (1) to the array of the experimentally

obtained displacements  This problem can be
solved on the basis of fulfilling the condition of the
minimization of the total deficiency Δ between the
displacements  ui and   The standard devia-
tion can be accepted as the measure of divergence of
the displacements

(3)

It is known that the solution of the above minimi-
zation problem can be obtained from the solution of
the matrix equation

(4)

where U* is the vector of the true displacement values
u* and  A is the vector N of the unknown coeffi-
cients an and bn in the Williams expansion; and F is the

matrix of values of functions (2) at the points   for
the corresponding expansion coefficients (of dimen-

sion 2M × 2N):

Note that relations (1) do not include the linear
and the angular displacements in the xOy plane of a body

with a crack as a rigid whole. Thus, the following compo-
nents are added to the matrix F and the vector A:
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Fig. 1. Vicinity of a crack tip (a) and the localization region of points used for the construction of the analytical representation of
displacement fields in the crack zone (b).

y, v 

x, u

r 

O

ρ*

ρminρmax

y/l ρ = r/l

h

(a) (b)

x/l

θ



INORGANIC MATERIALS  Vol. 53  No. 15  2017

EVALUATION OF THE SIZE OF THE INELASTIC DEFORMATION ZONE 1581

(5)
{ } { }

{ } { }

0

0

0

** * * * * { }1 ( , ) 1 ( , ) {1 sin }
, ,

* * * * * *1 ( , ) 1 ( , ) { cos } { }

u u
nn m m n m m m m

n m m n m m m m

a
af r g r r
bF A

f r g r r b

⎧ ⎫
⎪ ⎪⎡ ⎡ ⎤ ⎡ ⎤ ⎤θ θ − α θ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦= = ⎨ ⎬⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎪ ⎪θ θ α θ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎣ ⎦ ⎣ ⎦ ⎦ ⎪ ⎪

α⎩ ⎭

v v

where a0 and b0 are the displacements along the axes x
and y, respectively, and α is a small rotation angle of a
body as a rigid whole.

We consider the procedure of choosing the optimal
number of N terms considered in the expansion. For
the current (chosen) number of terms N, equation (4)
is solved, where A and F are used in the form (5). As a
result, the corresponding expansion coefficients are
determined

Note that the matrix F = FN has the dimension 2M ×
(2N + 3). Further, on the basis of relations (1), the
vector of the displacement values UN is calculated and
the deficiency ΔN is found according to formula (4),
both values corresponding to the current number of
terms in the expansion N. The above calculation pro-
cedure is repeated for sequentially increased N, start-
ing from N = 1 (under the increase in N by one, the
number of columns in the matrix F and the number of
elements of the vector A increase by two). For each N,
the deficiency ΔN is determined. The condition for ter-
mination of the procedure and the choice of the opti-
mal value of N can be fulfilling one or two of the fol-
lowing conditions simultaneously: (1) 
(2)  where the parameters εΔ and ε%

are chosen on the basis of the accuracy of the calcula-
tion for the determination of some assigned parame-
ters or on the basis of the allowable deviations between
the displacement fields um,  and  

The presented technique for determining the coef-
ficients of the terms in the Williams expansion and,
thus, finding an analytical representation for displace-
ment fields in the crack zone was implemented in the
MatLab environment in the form of a program with a
graphical interface (Fig. 2).

The developed program performs the following
operations.

1. Loading the resulting experimental data (or the
calculation results based on a numerical experiment),
which are the u*,  values and different components
of the stress tensor; visualizing displacement fields and
stresses using interpolation of the data.

2. Forming the r*, θ* coordinates uniformly dis-
tributed within the region of measurement points (for
the numerical determination of the displacement
value in them using ANSYS).
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3. Performing the retrieval of the arrays r*, θ* and
u*,  to be used for the determination of the coeffi-
cient of the Williams expansion from the available
arrays of measurement points (this function provides
the possibility to evaluate the influence of the localiza-
tion of measurement points on the accuracy and con-
vergence of the solution process).

4. Determining the expansion coefficients an, bn
and a0, b0, α in accordance with the chosen criterion
of completion of the calculation.

5. Visualizing the calculated displacement fields on
the basis of the found coefficients (the graphical com-
parison of these fields to the initial one helps to check
the correctness of the obtained solution in general and
in particular, i.e., in specific regions near a crack tip).

DETERMINATION OF THE PARAMETERS 
OF FRACTURE MECHANICS AND THE SIZE 

OF THE ZONE OF DAMAGED MATERIAL

As mentioned above, in the case where SSS occurs
in the vicinity of a crack tip and, as a result of plastic
deformations, damaged metal, and other indicators, it
significantly differs from an elastic one, the procedure
of determination of the parameters of fracture
mechanics is unstable. On the other hand, it can be
expected that, by excluding the “damaged zone” from
the initial data region for the calculation of the param-
eters of fracture mechanics, a stable problem solution
can be obtained, which helps to evaluate the size of the
damaged zone. To determine the possibilities of this
approach, the boundary value problem of the SSS of a
plate (b = 20l) with a tensile loaded central through

*v

Fig. 2. Interface of the program for the calculation of the
Williams expansion coefficients for the SSS visualization
in the crack zone.
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crack with the length of 2l was considered (Fig. 3). The
problem was solved for the case of a f lat stress state.

At the first phase, the influence of the localization
zone of the initial data on the accuracy of determina-
tion of KI and the T stresses in the absence of plastic
deformations was evaluated. Some results of these cal-
culations are presented in Table 1. They show that
excluding zones of large size from the initial data
(ρmax = 0.3 and more) hardly affects the results of the
evaluation of the desired parameters of fracture
mechanics. In addition, for the analytical representa-
tion of displacement fields, multiple Williams expan-
sion terms (N > 15) can be used. Thus, relations (1)

can be used for the analytical representation of large-
sized regions (r > l).

For the evaluation of the influence of the random
error of the initial data, the calculations of the same
problem modeling the error of the experimental results
were performed. After the SSS calculations, the error
was added to the found “exact” displacement values u,

 using a random number generator (with preset vari-
ance of the relative errors δu, ). The calculations
showed that, even if the variance of the relative errors
is δumax,  ≤ 15%, they do not significantly affect
the accuracy of the results (the relative error of the KI
determination is at least two times less than δumax,

).

The considered elastoplastic problem of the calcula-
tion of the SSS in the crack zone was a boundary value
problem (see Fig. 3a) for a plate made of D16T material,
whose deformation diagram is shown in Fig. 3b. The SSS
was calculated using ANSYS software. The resulting dis-
tributions of displacements and equivalent (von Mises)
stresses that occur at σ = 2/5σt = 150 MPa, which cor-
respond to the elastoplastic SSS, are shown in Fig. 4.
Note that, in the image of the equivalent stress field,
the plasticity region, whose size does not exceed 0.15–
0.2l, is marked in gray.

The calculation results for the parameters of fracture
mechanics of the KI and the T stresses obtained using
the developed program for displacement fields u and 
using different localization regions of the initial data are
shown in Fig. 5. (Note that it follows from the solution
of the elastic problem at the accepted load values that
the nominal “elastic” values are KI = 42.6 MPa m1/2

and T = –77.9 MPa.) For the calculations, the “mea-
surement” points were located uniformly in a circular
sector ρmin ≤ ρ ≤ ρmax, 0 ≤ θ ≤ π.

v
δv

maxδv
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v

Fig. 3. Scheme of loading a plate with a crack (a) and deformation diagram of plate material (b).
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Table 1. Values of KI and the T stresses depending on the
localization zones of initial data and the number of expan-
sion terms N

ρmin ρmax N T/σ

0.1 0.6 2 0.992 –0.58
3 0.997 –0.97
5 1.014 –1.04

10 1.014 –1.04
15 1.014 –1.04

0.2 0.6 2 1.014 –0.59
3 0.978 –0.96
5 1.014 –1.04

10 1.014 –1.04
15 1.014 –1.04

0.3 0.6 2 1.014 –0.60
3 0.961 –0.96
5 1.015 –1.04

10 1.014 –1.04

IK lσ π
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The number of considered Williams expansion
terms N was taken equal to 15 because in some cases a
zone located at a significant distance from a crack tip,
where the influence of the singular component of a
stress field is less pronounced than the influence of its
regular component, was used as the localization zone
of “measurement” points.

Similar calculations were also performed for mod-
eling the error of experimental data. The results were
close to the estimates of the influence of the errors
obtained for the elastic problem (for δumax,  ≤
15%, the relative error of the KI determination is at
least two times less than δumax,  while that of the
determination of the T stresses is somewhat higher,
but also lower than the error of the initial data).

The main results of the calculation of KI and the T
stresses (see Fig. 5) were obtained as follows. Under
the constant value of the “upper” limit of the range of
initial data (ρmax = const), a series of calculations of
the Williams coefficients were performed under the
sequential increase in the ρmin values on the basis of
the processing of the initial data localized in the region
ρmin ≤ ρ ≤ ρmax. For each subsequent calculation, the
ρmax value was increased until stable values of the
desired parameters (KI and the T stresses) were
reached. The value of the dimensionless radius corre-
sponding to this state is denoted by  The point
ρ = ρ* of the curve KI = KI(ρmin) after which the KI

value becomes stable ( ) can be consid-
ered the boundary of the zone where the inelastic behav-
ior of material occurs (see Fig. 5a). Apparently, the ana-
lytical representation of displacement fields in the form of
the expansion in terms of Williams functions found using
the initial data in the range  as the local-
ization zone describes the SSS in this region correctly.

Note that, using this representation, the values of
the parameters of fracture mechanics, KI and the T
stresses, which would correspond to the state of the
studied object with a crack in the absence of plastic
deformations and other types of damage in the vicinity
of a crack tip, can be determined with high accuracy.

Hence, the region ρ < ρ* is considered the inelastic
deformation zone (the damaged material zone). This
is a conventional concept, which essentially means
that the SSS in this zone does not correspond to the
asymptotic solution of the crack problem. Along with
that, this approach can give rather useful information
for the analysis of the crack behavior based on the

maxδv
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Fig. 4. Distributions of displacements along the axes x(u) and y( ) and the equivalent stresses (σeq) in the crack zone.
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experimental information on displacement fields reg-
istered by the advanced optical correlation techniques.
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