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Abstract—Two groups of experimental data obtained in the vicinity of the critical point are discussed. Group
I describes the level ht of the meniscus separating the two phases of the substance in the cell. The measure-
ments were performed for SF6 under the condition (g = 9.8 m s–2) during an experiment conducted in a space
laboratory. Group II includes data on the density of liquid and vapor measured for C6F6 along the saturation
curve under terrestrial condition. In both cases, the studied two-phase sample is located in a horizontal cylin-
drical cell. In the second experiment, the gravitational effect was also measured along the isotherms as the
dependence of the sample density on the height h measured from the bottom of the cell. An equation relating
the ht level (experiment I) with such functions as the order parameter fs and the average diameter fd is derived
in this work. The obtained equation describes the initial experimental data at relative temperatures τ = (T –
Tc)/Tc = 2 × 10–6–0.01. An approach is considered that takes into account the influence under microgravity
(g = gM ! 9.8 m s–2) on the height h (experiment II). The dependences that represent fs and fd and the density
of the liquid and gas phases along the saturation curve of these substances are obtained. These dependences
agree satisfactorily with the results of experiments I and II in a wide temperature range and correspond to the
scaling theory of critical phenomena.
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Introduction
The objects of this study are the (ρl, ρg, τ) data and

functions ρl(τ), ρg(τ), fd(τ), fs(τ), etc., which are
related to C6F6 and SF6. Here, ρl and ρg are the densities
of the liquid and gas phases, fd is the average binodal
diameter, fs is the order parameter, τ = (T – Tc)/Tc is the
relative temperature, and Tc is the critical temperature.
The (ρl, ρg, τ) data for C6F6 were first measured in [1].
The density behavior along the SF6 binodal was stud-
ied in several works [2–13], including experimental
studies [9, 10]. The scaling models proposed in these
publications are the functions ρl(τ), ρg(τ), fd(τ), fs(τ),
etc., which correspond to the scaling theory (ST) of
critical phenomena.

We can divide models ρl(τ) and ρg(τ) into two
groups: one group generalizes the results [9], and the
other is based on the data in [10]. The equations
included in the first group and the same type equa-
tions of included in the second group differ; this dif-
ference applies to both the structure of the equations
and the corresponding calculated data obtained with
these functions. For example, in the region of relative
temperatures of τ = 2 × 10–4–0.01, we have

• a system of equations [6], which includes fd(τ),
fs(τ) and contains linear and singular components; the

average diameter fd(τ) =  + 
which is included in this system, was obtained from
the data in [10]. Its structure contains five compo-
nents, including scaling terms (  B1-α ), which
reflect the so-called “curvature” of this diameter (Fig. 1a,
curve 2); here, B1 – α, B2β, and B1 are coefficients;

• a system of equations [4] containing only singular
components and the diameter  fd, which corresponds to

the eqaution fd(τ) =  obtained from the data in [10];

• diameter fd(τ) =  [12], which
includes two components obtained from the data in [10];

• diameter fd(τ) =  [12] in the form of a
rectilinear diameter, which is constructed from the
(ρl, ρg, T) data related to the regular temperature range
and measured in [10];

• functions corresponding to the linear form fd(τ) =
and recommended in [8, 9], the coefficients of which
were found from the results of [9].

Concerning the known experimental (ρl, ρg, T)
data, we concluded [2, 3] that the data of [9] and [10]
noticeably differ. In [9], the (ρl, ρg, T) data were
obtained by a direct method, i.e., in a piezometric
experiment. At the first stage, the (ρ, P, T) data were
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Fig. 1. (a) Binodal in the phase plane for SF6: (1) the function Dm = A0 + A1τ; (2) the function Dm constructed with the (ρl, ρg, T) data
[10]; (3) isochore ρ = ρcell = ρc; (9) isochore ρ = ρcell > ρc; (10) bimodal; (b, c) cell and meniscus position in experiments II
and I, respectively (4) a section of a cell having the shape of a horizontal cylinder; (5) virtual horizontal plane placed along the axis of
the cylinder corresponding to the displacement ht0 and height hm0; (6) the meniscus level at ρcell < ρc; (7) direction of gravity in the cell;
(c) cell and position of the meniscus in experiment I: (8) the level of the meniscus at ρcell > ρc.
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measured at the isotherm, where P is the pressure in
the piezometer, e.g., in the liquid phase near the satu-
ration curve. At the second stage, the ρl value was
found via extrapolation of the (ρ, Р) data to the boiling
curve at Р = Рs.

In [10], the (ρl, ρg, T) data were obtained indirectly,
while direct measurements in the form of (εl, εg, T) data
were used as initial data for the density. Here, εl and εg
are dielectric constants measured by two sensors in the
liquid and gas phases. The values of εl and εg substan-
tially depend on the heights hl and hg of the dielectric-
permittivity sensors in the cell. The vertical distances
to the sensors hl and hg are measured from the bottom
of the cell (as compared with the height h measured
from the lower generatrix of the cylinder and deter-
mining the position of the density sensor in experi-
ment II). No information is given in [10] on the values
of hl and hg, the heights at which the two sensors
recording the (εl, εg, T) data are located.

This inconsistency leads, on the one hand, to the
fact that the dimensional mean diameter Dm = (ρl +
ρg)/2 = ρc(1 + fd(τ)) (Fig. 1a, curve 2) contains the

function fd(τ) =  [6], which
is constructed with the (ρl, ρg, T) data [10]. Weiner
first noted the curvature of this diameter in his dis-
sertation in 19741. Curve 2 substantially deviates
from curve 1, which represents the diameter Dm =

 [12].
On the other hand, the authors revealed additional

information on the diameter fd(τ) for SF6. Garrabos et
al. [8] carried out a special experiment I, which
revealed that the gravitational effect is the cause of the
curvature of diameter fd(τ) in [10]. To confirm this

1 Weiner, J., Breakdown of the law of rectilinear diameter,
Ph.D. Thesis, Amherst: Univ. Massachusetts, 1974.
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conclusion, the cell used in experiment I [8], which
has the shape of a horizontal cylinder (Fig. 1b) and
contains a two-phase SF6 sample, was placed under
conditions (g = 9.8 m/s2) in the space laboratory.
Here, the meniscus displacement ht was determined as
the distance from the cylinder axis to the level of the
meniscus separating the phases (Fig. 1b, line 8). The
data on ht, T were measured along several near-critical
isotherms. To generalize these data, the equation
ht(τ) = A(–B(fd/fs) + С/fs) was proposed in [8]; it
includes the functions fd and fs and the constants A, B,
and C. The values of A, B, and C were determined
from calibration experiments. In [8], several versions
of the function ht(τ) were considered, and several con-
clusions were drawn on the diameter fd(τ):

• the diameter fd significantly affects the function
ht(τ) and, therefore, the error contained in the model
fd(τ) determines to a large extent the error of ht(τ);

• ht(τ) (option A) includes the dependence fd(τ)
obtained in [6] based on the (ρl, ρg, T) data [10]. This
option deviates significantly from the mentioned
experimental (ht, T) data. The measurements [10] and
the dependence fd(τ) [6] are associated with the gravita-
tional effect; under microgravity conditions (g = gM), the
dependence fd(τ) [6] is the reason that ht(τ) (option A)
is not consistent with the experimental (ht, T) data [8];

• the linear dependence fd(τ) =  [8], which is
based on the (ρl, ρg, T) data [9], is used in ht(τ) (option B).
This option decreases the deviation from the experi-
mental (ht, τ) data [8] in comparison with option A.
This improvement indirectly indicates that the (ρl, ρg, T)
data [10] contain an error that is a source of curvature
(Fig. 1a, curve 2) and significantly exceeds the error of
the corresponding results [9].

For a detailed study of the role of gravity, the
authors used the results of experiment II performed in

τ1B
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Fig. 2. Density distribution ρ(h – hm) for C6F6 along the
isotherms in the region of high densities (ρ > ρc): (a–c) the
intersection points of the isotherms ρmid(h – hm) with
local meniscus levels (the calculated values of ρl(Т) are
indicated); (1, 2, 6) values (h – hm) corresponding to dis-
placements ht, (3, 4, 5) experimental (ρ, h – hm) data, and
(7, 8, 9) ρmid l values at the temperatures of (1, 3, 7) 515.98,
(2, 4, 8) 516.28, and (6, 5, 9) 516.57 K. 
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Fig. 3. Density distribution ρ(h – hm) for C6F6 at 516.28 K:
(a, a') the intersection points of the approximating func-
tions with the line h = hm; (1) experimental (ρ, h – hm)
data for ρ > ρc; (2) experimental (ρ, h – hm) data in the
range of 2Δh; (3) for ρ < ρc. 
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[1]. In the experiments [1], the authors obtained data
on the gravitational effect, which takes place in a two-
phase C6F6 sample placed in a cell made in the form of
a horizontal cylinder (Fig. 1c). The gravitational effect
is a dependence of ρ(h), which includes the density ρ of
the substance at fixed heights h counted from the lower
generatrix of the cylinder (Fig. 1c, line 11) at tempera-
tures 515.98, 516.28, and 516.57 K (Figs. 2 and 3).

Experimental (ρl, ρg, T) data in the temperature
range of 298.79–516.57 K and data on the saturation
pressure P are also presented in [1]. Experiment II
showed that the gravitational component of pressure
(Pg ≈ ρgh), which is a component in the measured
quantity P, leads to the following conclusion: the obvi-
ous distribution of ρ(h), which under microgravity
conditions (g = gM) contains sections ρl = const, ρg =
const and the jump ρl – ρg in the isotherm, turns into
a continuous dependence of ρ(h) (Figs. 2 and 3), while
there is virtually no boundary in the sample as a
meniscus between the liquid and gas phases located at
a height hm. The dependence ρ(h), which refers to T =
516.28 K (Fig. 3), includes an interval 2Δh (Δh ≈
±2.2 mm) near the axis of the cylinder, where the
gravitational effect is significant.

The joint analysis of the results obtained in experi-
ments I and II planned in this study makes it possible
to estimate the quantitative effect of the gravitational
component of Pg on the (ρl, ρg, T) data for C6F6 and
SF6. Experiment II showed that the gravitational
effect significantly affects the function ρ(h) as applied
to C6F6 at constant external P, T. The deviation of the
local density ρ(h) at ρ > ρc can differ from the corre-
sponding density ρl(Т) by ±(2–10)%, depending on
the height. These deviations indicate the level of errors
that may be present in the (ρl, ρg, T) data [10] for SF6.

The information presented for SF6 (the variety of
models, discrepancies in the experimental data on
density, etc.) does not allow the user to give preference
to the results of [9] over the results of [10] or to distin-
guish the equations included in the first group as more
accurate in comparison with similar functions
included in the second group. The construction of
adequate models that describe a bimodal, diameter
fd(τ) and other functions for SF6 in a critical region is
an urgent problem.

In this work, we simultaneously assess the results
obtained in experiments I and II, which are associated
with the quantitative effect of the gravitational compo-
nent of Pg on the (ρl, ρg, T) data for C6F6 and SF6. The
meniscus position is studied and, accordingly, the
(ρl, ρg, T) data for C6F6 are corrected under the condi-
tion of a reduced gravitational effect in the cell [1]. The
(ρl, ρg, T) data for SF6 are calculated near Tc, which is
not covered by the experiment, based on the experi-
mental values of (ht, Т) [8].
HIGH TEMPERATURE  Vol. 58  No. 3  2020
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Table 1. Some results of the second stage of calculations for C6F6

ρl, kg/m3 ρg, kg/m3 τ ρl, kg/m3 ρg, kg/m3 urexp htexp, mm ht, mm

670.3 433.7 0.00131 675.54 437.23 0.01268 0.191 0.207
644.8 455.8 0.000731 640.29 453.49 –0.00212 –0.031 0.157
610.1 491.5 0.000168 609.27 496.73 0.005059 0.079 0.078
We also found new expressions for the functions
ρl(τ), ρg(τ), fd(τ), etc. for C6F6 and SF6 with a signifi-
cant refinement of previously known results in the
near-critical region.

MENISCUS POSITION IN THE CELL
In experiment II, the meniscus position in the cell

is not estimated, but a method is proposed in which a
virtual plane Sv is selected having height hm (Fig. 3,
line 4). This height is hm = 19.1 mm and is located in
the vicinity of Δh near the cell axis (Figs. 2 and 3). The
cell has a length of L = 140.0 mm and a diameter of d =
40.0 mm. In this method, experimental (ρ, h) the
selected data were related, for example, to the iso-
therm T = 516.28 K (Fig. 3, curve 1) at high densities
(ρ > ρc), and were located outside Δh. Then, the (ρ, h)
data were extrapolated to point a at the intersection
with line 4 (Fig. 3). At this point, ρl = 644.8 kg/m3

(Table 1). Similarly, we selected the experimental data
(ρ, h) (Fig. 3, curve 3) with low densities (ρ < ρc) that
are located outside Δh. These (ρ, h) data were extrap-
olated to the point of intersection a' with line 4 (Fig. 3)
to calculate the value of ρg = 455.8 kg/m3 (Table 1).

It is of interest to determine the level hmT at which
the meniscus is placed in the cell (Fig. 1c). We selected
the following boundary conditions:

• the average density of the sample ρcell = M/V is
determined by the equation ρcell = ρc; i.e., line 3 (Fig. 1a)
is a critical isochore, and temperature T satisfies the
inequality of T < Tc (for example, T = 516.28 K);

• the gravitational effect is significantly decreased; the
equilibrium density is ρg(Т) in the upper part of the cylin-
der and ρl(Т) is in the lower part; a meniscus forms in the
cell due to the finite difference in densities (ρl – ρg).

The microgravity condition (g = gM) can be created,
for example, by mixing the substance in the upper part to
a state that corresponds to the equilibrium value of ρg(Т)
and the same mixing of the substance in the lower part
until the density ρl(Т) is reached.

To determine the meniscus level, we consider an
isochoric process in a cell with a volume V (Fig. 1c).
Let the substance in the initial state have parameters
ρ = ρc, Т1 = Тc. We place the virtual horizontal plane
Sv (Fig. 1c, line 5) along the axis of the cylinder. This
position is taken as the reference point ht0 (Fig. 2) for
the displacement ht (Fig. 1c, line 12) of the meniscus
that separates the two phases when the cell tempera-
ture decreases or rises. Let us select the upper and
lower parts of the cell (Vg, Vl), which have a volume of
V/2 (Fig. 1c).

We transfer the substance to state II. In this pro-
cess, the following conditions are satisfied: ρcell = ρc =
const, TII = Tc + ΔT. Here, ρcell is the average density
of the substance in the cell, and ∆T > 0. The substance
becomes overheated in the cell with respect to the crit-
ical temperature, and the meniscus does not occur.

Next, we transfer the substance to state I. In this
process, the following conditions are fulfilled: micro-
gravity is reached (g = gM), ρcell = ρc = const, T2 = ∆T,
and ∆T > 0. This results in

• condensation in the cell, which causes a decrease in
the mass of the substance in the upper part (∆M > 0),

• a difference in the density of the gas phase ρg and
the density of the liquid phase ρl; a meniscus forms due to
microgravity and the finite difference (ρl – ρg), located
below the cell axis and separating the two phases;

• a shift of the Sv plane down to the meniscus (Fig. 1c,
line 6); this displacement ht is marked by line 12 (Fig. 1c).

The phase densities can be written as (ρg, ρl) =
(ρc + ∆ρgρc, ρc + ∆ρlρc), where ∆ρl = (ρl – ρc)/ρc,
∆ρg = (ρg – ρc)/ρc. We write the volume V of the sam-
ple as a function of a number of arguments, including
(∆M, ∆ρg, ∆ρl), as

(1)

The function ΔM/M is expressed from Eq. (1) as

(2)

The functions fd and fs are introduced as

(3)

(4)
After some transformations, substituting Eqs. (3)

and (4) into Eq. (2) with allowance for the equations
∆ρg – ∆ρl = –2fs and ∆ρg∆ρl = , gives

(5)
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The change in the volume of the upper part is rep-
resented as

(6)

With Eqs. (5) and (6), the relative change in vol-
ume ΔVg/V after transformations is written as

(7)

With the equation Δρg = fd – fs and Eqs. (5) and (7),

the function  can be written as follows:

(8)

Let us consider the following conditions: fs > 0 [7]
and ΔVg/V > 0; i.e., the relative volume of the upper
part increases in the isochoric process. Then, we can
obtain the following inequality in the asymptotic tem-
perature region (∆T > 0 is small) from Eq. (8):

(9)

Equation (9) is derived for the first time and is valid
for any form of the functions fd(τ), fs(τ) under the
specified conditions. We represent ΔVg as an elemen-
tary sample volume and write the ratio ΔVg/V as an
approximate function with argument ht, i.e.,

(10)

The displacement ht can be represented with Eqs. (8)
and (10) in the form

(11)

where ur = fd/fs is a temperature-dependent complex.
Equation (11) yields that the displacement ht is not

the only value that would correspond to the height
(hm = 19.1 mm) proposed in [1].

EVALUATION OF THE MENISCUS POSITION 
IN EXPERIMENT II AND SOME NUMERICAL 

DATA ON THE DENSITY OF C6F6

We propose the following approach to construct
the function ht(T) as applied to the temperature con-
ditions implemented in experiment II [1]. First, the
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combined models fs(C, D, τ), fd (C, D, τ) are selected
to represent fs, fd in the form [2, 3, 13]

(12)

(13)

where D = (Tc, ρс, α, β, …) are the critical character-
istics of the model, and C = (Bsi, Bdi) are coefficients.

First, we emphasize that there are no scaling mod-
els in the literature that describe the functions fs, fd,
etc. in the critical region for C6F6. The values of C and
D for Eqs. (12) and (13) were determined with the
nonlinear least-squares method (NRMS) [5, 13] and
experimental (ρl, ρg, T) data for C6F6 [1]. Second, the
structure of models (12), (13) contains the leading
scaling components Bd0τ1–α, Bd0τ2β, which reflect cur-
rent trends in the scaling theory [2, 3, 6, 13].

In the NRMS method, the following information
is selected at the first stage:

• the initial approximation for D is as follows: Tc =
516.62 K [1], ρс = 550.9 kg/m3 [1], α = 0.11 [7], β =
0.325 [7], Bs0 = 2.0 [7], Bd0 = 0.5 [7], and Bdexp = 0.2;

• the leading component fd (Eq. (13)) corresponds
to the inequality Bdexp > 0 (see condition (9)).

At the second stage, the values of C and D are cal-
culated: Tc = 516.65 K, ρc = 550.43 kg/m3, α = 0.131,
β = 0.348, Bs0 = 2.145, Bd0 = 0.595, and Bdexp = 0.1005.

The obtained models (12) and (13) served as the
basis for the functions ρl(τ, D, C) and ρg(τ, D, C) in the
following form:

(14)
Based on Eqs. (11)–(14), we obtained some

numerical values. The (ρg, ρl, T) data were calculated
along the isotherms [1]. The results are consistent with
the (ρl, ρg, Т) data [1] with acceptable accuracy in the
range of 2 × 10–4 < τ < 0.2. The root-mean-square
(RMS) deviations of Sg, Sl for the (ρl, ρg, T) data [1]
for the results of Eqs. (14) were Sg = 0.52% and Sl =
0.12%.

The NRMS approach [5, 13] made it possible to
determine the coefficients for the scaling part fs scale =
Bs0τβ + Bs1τβ+Δ + Bs2τβ+2Δ, fd scale = Bd0τ1–α + Bdexpτ2β +
Bd1τ1–α+Δ, which are included in Eqs. (12) and (13).
The corresponding functions ρl(τ, D), ρg(τ, D) give
satisfactory agreement with the experiment [1] in the
range of 2 × 10–4 < τ < 0.1, while the standard devia-
tions are Sg = 0.31% and Sl = 0.16%.

Table 1 presents some numerical results. The
experimental density values and data on urexp, ht exp,
and T are also listed there. When calculating the latter,
we used the (ρl, ρg, T) data [1], Eq. (11), and the D val-
ues determined at the second stage.

β β+Δ β+ Δ= τ + τ + τ + τ + τ2 2 3
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Table 2. Densities (ρmid l, ρmid g) near the critical C6F6 iso-
therms

T, K ρmid l, kg/m3 ρmid g, kg/m3

515.98 668.94 435.03
516.28 646.49 456.29
516.57 606.49 494.93
The experimental values of ρl and ρg noticeably
deviate from the corresponding calculated values
(Table 1). The revealed deviations of the experimental
values of the densities show that the (urexp, htexp, T)
data are nonmonotonic. The calculated (ht, T) data
monotonously decrease with increasing temperature
(Table 1). Figure 2 shows qualitatively the lines 1, 2,
and 6, which correspond to displacements ht at tem-
peratures 515.98, 516.28, and 516.57 K.

The calculated (ur, ht, T) data substantially depend
on the leading components Bs0τβ, Bd0τ2β in accor-
dance with Eq. (11). When approaching Tc, the values
of ur and ht are positive and tend to zero.

The data on ht, T (Table 1) were used to estimate
the average integral density ρmid l in volume Vl from the
distribution of ρ(h – hm) along the isotherms (Fig. 2).
For this, it is accepted that the meniscus height hmV =
19.1 mm corresponds to the following boundary con-
ditions:

• the corresponding temperature of the sample is
T = 516.57 K (the maximum temperature in the exper-
iment [1]);

• the corresponding displacement of the meniscus
is ht1 = 0.083 mm (Table 1); this state corresponds to
the argument (hi – hm = 0, i = 1) and line 6 (Fig. 2).

At the second stage, the distributions ρ(hti) were
obtained at temperatures of 515.98, 516.28, and 516.57 K
from the distribution of ρ(hi – hm) (e.g., line 5, T =
516.57 K, Fig. 2).

Hypothesis A, which explains the effect of gravity
(g = 9.8 m s–2) on the distribution of ρ(ht) at a given tem-
perature is considered in the third stage. Within the
framework of hypothesis A, several conditions are cre-
ated in the sample: first, the temperature of the sample
corresponds to 516.57 K; its density is ρcell ≈ ρc = const;
and the meniscus has a shift of ht1 = 0.083 mm, which
is implemented above under microgravity conditions
(g = gM).

Second, the gravity in the cell increases, resulting in a
change in the initial distribution ρ(h) that corre-
sponds to microgravity (g = gM) and has a jump of
(ρl – ρg). According to hypothesis A, the pressure
gradient that arises along the height of the cell upon
gravity (g = 9.8 m/s2) causes a process redistributing
molecules in the volume Vl. Therefore, the number of
molecules in the elementary volume, which is located
below, near the plane Sv with an offset of ht1 = 0.083 mm,
decreases. The initial density ρl, which corresponds to
microgravity (g = gM), decreases to the final value
ρ(ht1) (Fig. 2) at g = 9.8 m/s2; i.e., the effect Δρ(T, h) =
ρ(ht1) – ρl caused by gravity (g = 9.8 m/s2) is negative.

The redistribution of molecules in the elementary
volume, which is located near the lower generatrix of
the cylinder, significantly changes the initial density
ρl: it increases to the value of ρ(ht) since the effect
Δρ(T, h) is positive for h – hm = 0.

The initial density profile thus turns into a contin-
uous dependence ρ(h) (Fig. 2, line 5). According to
hypothesis A, the average density ρmid l in volume Vl
does not change due to the indicated processes, and
the condition of ρmid l = ρl is fulfilled.

Based on hypothesis A, we found
(a) the elementary masses Δhti Ls(hti)ρ(hti), i = 1,

…, N, where Δhti = (ht(i + 1) – hti) is the height of the
elementary volume, s(hti) is the length of the secant,
which refers to the cell section and is separated by hti
from the axis of the cylinder, and N is the number of
sections in the interval from 19.1 mm to ht1; and

(b) the elementary volumes ΔhtiLs(hti), i = 1, …, N
in the range from ht1 to htN.

At the fourth stage, we performed a numerical inte-
gration of the specified masses and volumes in the
interval from ht1 to htN. This treatment resulted in the
determination of Mmid l, Vmid l and their ratio, ρmid l =
606.49 kg/m3 (Fig. 2, line 9; Table 2), which rep-
resents the density of the sample in volume Vl.

Mmid g, Vmid g, and their ratio, ρmid g = 456.29 kg/m3

(Table 2), which represents the average density of the
sample in volume Vg, were calculated similarly.

Figure 3 shows an example of the experimental dis-
tribution of ρ(h) (lines 1–3) from the lower generatrix
of the cylinder to the upper one at T = 516.28 K.

At the fifth stage, we determined ρmid l and ρmid g
along the isotherms at 515.98 and 516.28 K from the
distributions ρ(h – hm) obtained in experiment II with
the calculation circuit considered above (Table 2).

These results made it possible to form a modified
array of (ρl, ρg, T) data, including

• the experimental (ρl, ρg, T) data [1] at tempera-
tures 298.79–516.57 K, from which points related to
temperatures of 515.98, 516.28, 516.57 K are excluded;

• the (ρl, ρg, T) data contained in Table 2.
Based on the modified data array and NRMS proce-

dure, we calculated the parameters C and D included in
models (12) and (13) (Table 3).

The densities ρi and local deviations δρ = 100 (ρi –
ρ(14)i/ρi are calculated, where ρ(14)i is the density value
calculated with Eqs. (14) and ρi is the density included
in the modified (ρl, ρg, Т) data.
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Table 3. Parameters of models (12), (13) for C6F6

ρc, kg/m3 Tc, K α, β Bs0 Bs1 Bs2

550.77 516.65 0.12985 0.34799 2.14345 0.134753 –1.253085

Bs3 Bs4 Bd0 Bdexp Bd2 Bd3 Bd4

1.40842 –0.897481 0.59485 0.09995 0.042626 1.490123 –2.520365
Thus, Eqs. (14) represent the experimental (ρl, ρg,
Т) data [1] with acceptable accuracy in the range of
2 × 10–4 < τ < 0.2. The standard deviation for (ρl, ρg, T)
data [1] from the values obtained by Eqs. (14) is
defined as Sg = 0.48% and Sl = 0.12%.

The location of the meniscus under the boundary
conditions of experiment I is of interest, because

• ρcell follows the inequality ρcell > ρc (Fig. 1a, line 3);
• the temperature T corresponds to the inequality

T < TCX, where TCX is the temperature that refers to the
point c (Fig. 1a) at the saturation curve; the density at
point c corresponds to the equality ρl = ρcell;

• the gravitational effect is significantly decreased
in the cell, e.g., due to its placement in the space lab-
oratory (microgravity conditions, g = gM).

Let us consider state III for a sample in a cell when
its parameters correspond to the equalities T = Tcross,
ρ = ρcell (Fig. 1a, point d); the meniscus displacement
ht = 0; the upper and lower parts have a volume of
V/2.The densities of the substance correspond to the
equalities ρg = ρg(Tcross), ρl = ρl(Tcross).

We transfer the sample to state IV. Its parameters are
as follows: TCX > T > Tcross, ρ = ρcell (Fig. 1a, point e). In
state IV, the meniscus corresponds to line 8 (Fig. 1b).
For this state, the mass balance is used, and Vg/V is
written as

(15)

Introducing the functions Δρl, Δρg, and Δρсell =

 in Eq. (15), we can express Vg/V in the form of

(16)

We can write the function Δρсell related to state IV as

(17)

Introducing the displacement of the meniscus ht
into the ratio Vg/V, using Eqs. (10), (16), and (17), we
obtain

(18)

ρ − ρρ + − ρ = ρ =
ρ − ρ

g cell l
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Using Eq. (18), we write ht(T) as

(19)

Equation (19) shows that the displacement ht sub-
stantially depends not only on the ur complex but also
on the sample density ρсell.

SOME NUMERICAL DATA ON THE DENSITY 
OF SF6 AND ASSESSMENT OF THE POSITION 

OF THE MENISCUS IN EXPERIMENT I

In experiment I, we used a cylindrical cell with d =
(10.606 ± 0.005) mm and an effective volume of V =
221.7 mm3. A series of measurements was carried out in
the experiment, including the displacement ht (Fig. 1b,
line 13) and the temperature of a two-phase sample in
a given interval under the condition of ρcell > ρc. Gar-
rabos et al. [8] presented the results, including

• a graph of the experimental function y = ht/r in the
temperature range of 308 K to temperatures very close to
Tc, while the minimum deviation from Tc is ~1 mK;

• the analytical form for the function y(τ), namely,

(20)

where 0.002 = Δρсell =  x = 0.06 is the correc-

tion term associated with the effective cell volume.
The following values are given in [8]: Tc =

318.707297 K, TCX = 318.707270 K, 317.823 > Tcross >
318.123 K, ρc = (742.0 ± 1.5) kg/m3. The function y(τ) is
shown in Fig. 4 at relative temperatures of τ = 10–6–10–2.

An interesting problem is the construction of (ρg,
ρl, T) data based on the values of (y, T) [8] at relative
temperatures τ = 10–3–10–6. At the first stage of the
solution of this problem, combined models (12) and
(13) were selected to represent the functions fs, fd with the
values of C and D for SF6, reported in [3]. In [3], we used
the experimental (ρg, ρl, T) data [9] to calculate the values
of C and D at temperatures τ = 2 × 10–4–0.3. For D val-
ues, we presented Tc = 318.7095 K, ρc = 741.61 kg/m3,
α = 0.1098, β = 0.34745, Bd0 = 0.25491, Bs0 = 1.9569,
and Bdexp = 0.08499.
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Fig. 4. Dependences of y(τ): (1) y(τ) (20) and (2) experi-
mental (yexp, τ) data.
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Fig. 5. Comparison of the combined (ρl, ρg, T) data with the
functions ρl(τ, D, C) and ρg(τ, D, C): (1) δρg and (2) δρl.
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Funke et al. [9] estimated the error δρexp ≤ 0.1% for
their (ρg, ρl, T) data and determined such D values as
Tc = 318.723 K and ρc = 742.26 kg/m3.

Next, the experimental data yexpi, Ti, (i = 1, …, N)
are selected that were reported in [8] at τ = 10–3–10–6

(Fig. 4). Some quantities were calculated based on
these values and the function fs (Eq. (12)), the coeffi-
Table 4. Some results of the second stage of calculations for S

T, K yexp fs u

318.583 0.00712 0.12897 0.00
318.678 0.0185 0.07964 0.00
318.707 0.0251 0.03576 0.02
318.709 0.0315 0.02353 0.04

Table 5. Parameters of models (12) and (13) for SF6

ρc, kg/m3 Tc, K α4, β4

741.645 318.7101 0.1112 0.34
Bs3 Bs4 Bd0 Bde

–0.938958 1.211974 0.25941 0.085
cients of which are given in [3]; some of them are
shown in Table 4, i.e.,

• data on fsi, Ti (i = 1, …, 4);

• values of uri, Ti (i = 1, …, 4) obtained from Eq. (20)
and data on yexpi, Ti and fsi, Ti;

• values of fdi, Ti (i = 1, …, 4) obtained from uri, Ti
and fsi, Ti;

• ρgi, ρli, Ti (i = 1, …, 4) obtained from Eqs. (14),
fdi, Ti; fsi, Ti, and ρc [3].

The combined (ρg, ρl, T) data was generated. This
array combined the data from Table 4 and experimental
data [9]. The parameters C, D included in models (12),
(13) were determined from this array with the NRMS
(Table 5).

Let us compare the results based on the functions
ρl(τ, D, C), ρg(τ, D, C) containing the parameters D
and C (Table 5). First, the local deviations are calcu-
lated δρl = 100(ρi – ρl(τ, D, C)/ρl, δρg = 100(ρg – ρg(τ,
D, C)/ρg. The combined (ρg, ρl, T) data are used for
comparison. The standard deviations of the corre-
sponding functions ρl(τ, D, C), ρg(τ, D, C) are defined
as Sg = 0.067% and S = 0.029%. Second, the equations
ρl(τ, D, C), ρg(τ, D, C) transmit combined (ρg, ρl, T)
data with an acceptable accuracy in the range of 2 ×
10–6 < τ < 0.3 (Fig. 5). The (ρg, ρl, T) data [9] have an
error estimated by the authors as δρexp ≤ 0.1%.

Third, local deviations of δρl and δρg (Fig. 6) were
obtained, which relate to the (ρg, ρl, T) array [10].
These experimental results were used in [2–6, 11, 12]
to construct the scaling models fs(τ), fd(τ), Dm(τ), etc.
for SF6. We estimated the following values:

(a) the arithmetic mean deviation δρlm = (Σδρli)/N2
(i = 1, …, N2, N2 = 33) for the (ρl, T) data [10] as
δρlm = –0.95%;

(b) the arithmetic mean deviation δρgm = (Σδρgi)/N2
(i = 1, …, N2) for the (ρg, T) data [10] as δρgm = –1.05%.
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F6

r fd ρg, kg/m3 ρl, kg/m3

713 0.000923 646.65 837.92
351 0.000281 682.76 800.86
60 0.000935 715.78 768.81
88 0.00115 725.02 759.91

Bs0 Bs1 Bs2

77 1.95825 0.021714 –0.060572

xp Bd2 Bd3 Bd4

21 1.02283 –0.84764 0.620608
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Fig. 6. Comparison of the (ρl, ρg, T) data from [10] with the
functions ρl(τ, D, C) and ρg(τ, D, C): (1) δρg and (2) δρl.
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Several models are studied in the mentioned works,
including

(1) the model of the average relative density along
the binonodal fd = (ρl + ρg)(2ρc)–1 in the form of Fd =
A0 + A1τ [12], where A0 = 1.0024, A1 – α = 1.018, Tc =
318.707 K, and ρc = 733 kg/m3;

(2) Fd = A0 + A1–ατ1–α [12], where A0 = 1.0012,
A1–α = 0.6909, and α = 0.11;

(3) fd = B2βτ2β [4], where 2β = 0.78, Tc = 318.707 K,
and ρc = 733 kg/m3;

(4) fd = B1–ατ1–α + B2βτ2β + B1τ +… [6] (the results
of this model correspond to line 2, Fig. 1a), where
B2β = 1.0864, B1–α = −7.990, B1 = 9.770, α = 0.11, β =
0.325, Tc = 318.707 K, and ρc = 733 kg/m3.

Models (12)–(14) constructed for SF6 give an
independent basis to estimate the error in the models
presented in the literature. As a separate problem, one
should consider the issue of a method that makes it
possible to the decrease systematic errors of (ρg, ρl, T)
data [10] discussed above. This issue deserves separate
consideration.

CONCLUSIONS
We studied the altitude density distribution ρ(h) for

a C6F6 sample immersed in a cell [1] under gravity (g =
9.8 m/s2). The equation proposed for ht(T) describes
the position of the meniscus in the cell under the
boundary conditions ρcell = ρc along the near-critical
isotherms under microgravity (g = gM). The resulting
equation shows that ht(T) substantially depends on the
complex ur and the order parameter fs.

Some numerical data that relate to temperatures from
515.92 to 516.57 K and include (a) displacements ht in the
range from 0.208 to 0.079 mm and (b) the (ρl, ρg, Т) data
were calculated. Based on the combined array of (ρl,
ρg, Т) data, we constructed models (12), (13) that are
applicable for C6F6 in the range of 2 × 10–4 < τ < 0.2.

We also proposed an equation for ht(T) that
describes the meniscus position in a cell with a two-
phase sample of SF6 as applied to experiment I under
microgravity (g = gM). The selected experimental data
included the values yi = hti/r, Ti (i = 1, …, N) [8] in the
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temperature range of τ = 10–2–10–6 and the range of ht
from –0.101 to 0.159 mm. We developed a method that
enables

• the calculation of (ρl, ρg, Т) data from the speci-
fied (y, T) values;

• the formation of a combined array of (ρl, ρg, T)
data that include new values and points [9] in the
range of 2 × 10–6 < τ < 0.3;

• the obtaining of parameters D and C of models
(12), (13) for SF6.

The obtained functions ρl(τ, D, C), ρg(τ, D, C) for
SF6 and C6F6 satisfactorily describe the corresponding
initial (ρl, ρg, Т) data. Thus, the deviation of the com-
bined (ρl, ρg, Т) data, including points [9], is satisfactory
(Sg = 0.067%, Sl = 0.029%) in the range of 2 × 10–6 < τ <
0.3. The comparison shows that the (ρl, ρg, T) data
[10] contain a systematic deviation of δρm ≈ –1.0% in the
range of τ = 2 × 10–4–0.02. The function fd (Eq. (13))
contains a scaling component (Bdexp > 0) and does not
include a linear term. These features ref lect the cur-
rent trends in the scaling theory [2, 3, 6, 13].
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