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Abstract—The properties of cylindrical and spherical modified ion-acoustic waves in a strongly coupled
plasma (containing strongly correlated non-relativistic ions, weakly correlated relativistic (both non-relativ-
istic and ultra-relativistic) electron and positron f luids, and positively charged static heavy ions) are investi-
gated theoretically. The restoring force is provided by the degenerate pressure of the electron and positron flu-
ids, whereas the inertia is provided by the mass of ions. The positively charged static heavy ions participate
only in maintaining the quasi-neutrality condition at equilibrium. By using reductive perturbation method,
we have derived modified Burgers and Korteweg–de Vries equations. Their shock and solitary wave solutions
are also numerically analyzed to understand the localized electrostatic disturbances. The basic features of
modified ion-acoustic shock and solitary waves are found to be significantly modified by the effects of degen-
erate pressure of electrons, positrons, and ion fluids, their number densities, and various charge states of
heavy ions. It is also observed that the amplitude of these shock and solitary profiles are maximum for spher-
ical geometry, intermediate for cylindrical geometry, and minimum for planar geometry. The present analysis
can be helpful for understanding different degenerate and relativistic phenomena in dense astrophysical envi-
ronments as well as laboratory plasma systems.
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Table 1. Approximate density  corresponding plasma
particle (electron, positive ion, and heavy ion) number den-
sities of white dwarfs [13, 23–27]

 gm/cm3

 1030 cm–3 0.05 0.5 5

 1030 cm–3 0.32 3.2 32

 1030 cm–3 0.71 7.1 71

 1030 cm–3 0.51 5.1 51

0,ρ

0,ρ 610 710 810

0,in

0,en

0,pn

0,h hZ n
INTRODUCTION

Nowadays, the study of electron-positron (EP)
plasmas has received a great deal of attention because
of its large applications range in both space and labo-
ratory plasmas. The latter are found in some interstel-
lar compact objects (e.g., in non-rotating neutron
stars, white dwarfs, active galactic nuclei, etc.) and in
the solar atmosphere [1–7]. In case of EP plasmas,
electron and positron fluids have the same masses but
opposite charges. Generally, the EP plasma symmetry
is broken in the presence of ions, and both fast and
slow time scales can occur in the dynamics of elec-
tron-positron-ion plasmas. As a result of evaporation
or seismic process on the surface of an astrophysical
compact objects, the ions are originated [8]. There-
fore, under certain conditions of massive white dwarfs,
the plasma number densities is of the order of 1030 cm–3

or even more [9–11] (Table 1). As the thermal energy
of a white dwarf is slowly lost to the space and the stel-
lar material cools, the ions behavior can be understood
in the classical manner, but under certain conditions,
this behavior is modified by quantum effects. The EP
pairs in white dwarfs can be produced during the col-
lapse of white dwarfs to neutron stars [12, 13]. There-
fore, it is important to study the nonlinear dynamics of
ion oscillations in the presence of electron and posi-
tron fluids.
81
In a relativistically strongly coupled astrophysical
plasma, electron and positron f luids are degenerate
and ions are strongly coupled because of the ion Cou-
lomb coupling parameter , where 
is the charge of ions,  is the inter-ion spacing,  is
the ion temperature, and  is the ion charge state,
respectively [14]. The ions are strongly coupled to each
other through their mutual Coulomb interaction
because of their high charge density. When  1, the
plasma system is said to be strongly coupled. When the
mass and charge of ions are very high, then ion plas-
mas can also show the strongly coupled behavior.
Many authors [15–17] have also showed it experimen-
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tally. Generally, the constituents of plasmas are elec-
trons, ions, and atoms or molecules. On the other
hand, dusty (or complex) plasmas contain static
mesoscopic (multiply charged) particles [18]. The
presence of heavier element like iron can be thought in
case of some relatively massive white dwarfs. The
heavy nuclei are mainly formed into the interiors of
massive stars. When these stars contract to very high
densities, matter in their interiors cool down and
become degenerate under certain conditions. The for-
mation of heavy elements begins in this state of degen-
eracy. When explosion occurs, part of the heavy ele-
ments distribute over the surrounding space and leave
one or more stellar remnants in the form of white
dwarfs [19]. It is important to note that the degeneracy
feature, which is a fundamental aspect of ordinary sol-
ids, arise due to exclusion mechanism because of the
de Broglie thermal wave length 
[20]. The equation of state for degenerate electrons in
such space environments and astrophysical objects are
explained in [21] for two limits, named as non-relativ-
istic and ultra-relativistic limits. The degenerate elec-
tron pressure equation is given in [21, 22] as 
for non-relativistic limit and  for ultra-rela-
tivistic limit, where  is the degenerate electron pres-
sure and ne is the degenerate electron number density.

For understanding the localized electrostatic dis-
turbances in such compact astrophysical objects like
white dwarfs, a large number of theoretical investiga-
tions [28–49] have been made on the nonlinear prop-
agation of ion-acoustic (IA) waves by considering a
degenerate dense plasma model that assumes weakly
coupled non-degenerate ion f luids and degenerate
non-relativistic or ultra-relativistic electron f luids. All
of these investigations, which have shown the exis-
tence of IA solitary and shock structures, are not valid
for strongly coupled non-degenerate or degenerate ion
fluids. Strong correlation among ions can be the
source of dissipation (dispersion) and can be respon-
sible for the formation of shock (solitary) structures in
such compact astrophysical objects. Again, the dense
astrophysical quantum plasmas can be confined by
stationary heavy ions. Therefore, the effect of the
heavy ions has to be taken into account, especially for
astrophysical observations, where the degenerate
plasma pressure and heavy ions play an important role
in the formation and stability of the existing waves.

None of the authors considered the effects of
strongly correlated relativistic ions, nonplanar geome-
try, and various charge states of heavy ions, which can
significantly modify the propagation of solitary and
shock structures under consideration in such plasma
system. As far as we know, the nonplanar modified
ion-acoustic (MIA) waves in such plasma system has
never been addressed. The aim of this paper is to pres-
ent a first study for the nonplanar MIA shock and sol-
itary waves where degenerate plasma pressure,
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strongly coupled non-relativistic ion f luids, both
weakly coupled non-relativistic and ultra-relativistic
degenerate electron and positron fluids, and various
charge states of heavy ions play a significant role.

THEORETICAL MODEL AND BASIC 
EQUATIONS

We consider the nonplanar (cylindrical and spherical)
geometry of the MIA waves in a strongly coupled, col-
lisionless, homogeneous dense plasma. The plasma is
assumed to be composed of non-relativistic degener-
ate ions, both non-relativistic and ultra-relativistic
degenerate electron and positron fluids, and positively
charged static heavy ions. Thus, the equilibrium con-
dition is written as  where  is
the unperturbed number densities of the species s is
(here  for positively charged ion, electron,
and positron, respectively),  is the number of light
ions residing onto the heavy ion surface. The dynamics
of low frequency nonlinear MIA waves in such a
strongly coupled degenerate plasma system is gov-
erned by the well-known generalized viscoelastic
hydrodynamic (GH) equations [50, 51], consisting of
the continuity and momentum equations, given by

(1)

(2)

and by the generalized degenerate pressure equations
for electron and positron fluids

(3)

(4)

The system that is closed by Poisson equation

(5)

where  for one dimensional planar geometry;
 for nonplanar cylindrical (spherical) geometry;

 is the plasma number density of the species s (s = e, i, p)
normalized by its equilibrium value   is the plasma

species fluid speed normalized by 
with  being the electron (ion) rest mass and c
being the speed of light in vacuum;  is the electro-
static wave potential normalized by  with 
being the electron charge; the time variable t is nor-

malized by  and the space vari-
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able r is normalized by  In (2),

 where  is the viscoelastic relaxation

time and  is the effective ion tempera-
ture. The latter consists of  arising from the electro-
static interaction among strongly correlated positive
ions and of  arising from the ion thermal pressure.
Again the longitudinal ion viscosity coefficient

is the normalized longitudinal viscosity, where  and
 are transport coefficients of shear and bulk viscosi-

ties. The parameter  is the electron-to-ion
number density ratio,  is the positron-to-
ion number density ratio and  is the heavy
ion-to-ion number density ratio. It is needed here to
note that  and  We
have defined

There are various approaches to calculating the ion
transport coefficients, similar to those of one compo-
nent of strongly coupled plasmas [50, 52, 53]. The
parameter  (which arises from the electrostatic
interactions among strongly correlated positive ions),
viscoelastic ion relaxation time  and ion compress-
ibility  for our purposes, are written as in [50]:

Here,  is determined by the ion structure and
corresponds to the number of nearest neighbors (viz.,
in crystalline state,  for a bcc lattice, 

for fcc lattice, etc.); ƙ  with  being Thomas–

Fermi screening length and  is a measure of the
excess internal energy of the system and is calculated for

weakly coupled plasmas ( ) as 

We can express  in terms of  for a range of 1 <  <
100 [53], deriving an analytical relation

where a small correction term due to finite number of
particles is neglected. The dependence of the other
transport coefficient  on  is somewhat more com-
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plex and cannot be expressed in such a closed analyti-
cal form. However, tabulated/graphical results of their
functional behavior derived from the molecular dynamic
simulations and a variety of statistical schemes are also
available in literature [50].

FORMULATION OF NONLINEAR EQUATIONS
Derivation of Modified Burgers Equation

Now we derive a dynamical equation for the nonlin-
ear propagation of the MIA shock waves using Eqs. (1)–
(5). We employ a reductive perturbation technique to
examine electrostatic perturbations propagating in the
relativistic degenerate dense plasma due to the effect
of dissipation. First, we introduce the stretched coor-
dinates [54]

(6)

(7)

where  is the wave phase speed (  with  being
angular frequency and  being the wave number of the
perturbation mode) and  is a smallness parameter
measuring the weakness of the dissipation (0 <  < 1).
Then we expand   and  in power series of 

(8)
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(12)
and develop equations in various powers of  For
the lowest order of  using Eqs. (6)–(12) with
Eqs. (1)–(5) we get 

  and the

phase speed 

which is same as we have obtained in case of linear
waves.

We are interested in studying the nonlinear propa-
gation of these dissipative MIA type electrostatic
waves in a strongly coupled degenerate plasma. For the
next order of  we obtain a set of equations
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(15)

(16)

(17)

Now combining (13)–(17), we deduce a modified
Burgers equation

(18)

where the values of  and  are given by

Derivation of Korteweg–de Vries Equation
Introducing the stretched coordinates [54]

we can expand the perturbed quantities   and 
about the equilibrium values in power series of  and
obtain the   and  which are exactly same
what we have obtained from Burgers equation.

The same is done for the next order of  After some
algebraic calculations we obtain the nonlinear equa-
tion in the form of

(19)

Equation (19) is known as Korteweg–de Vries
(KdV) equation where the nonlinear coefficient A has
the same value as in Burgers equation and the disper-
sion coefficient G is given by

PARAMETRIC INVESTIGATIONS 
AND RESULTS

We first briefly discuss the stationary shock wave
solution for Eq. (18) at  We should note that for

a large value of τ the term  is negligible. So, in our
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parametric analysis, we start with a large value of 
( ) and choose the stationary shock wave solution

of equation (18) for  as our initial pulse. The

stationary shock wave solution of standard Burgers
equation is obtained by considering a frame

  is a small increment of wave speed above
speed of sound) and imposing the appropriate boundary

conditions:  0,  at 

Thus, we can express the stationary shock wave solu-
tion of (18) as

where the amplitude  and the width δ are given by

And the stationary solitary wave solution of (19) is
given by

where  and 

Nonlinear Properties
Figure 1 shows the variation of electron-to-ion

number density ratio β on the cylindrical and spherical
shock and solitary profiles for both non-relativistic
and ultra-relativistic limit. It is observed that the
amplitude of the cylindrical and spherical shock and
solitary structures increase with increasing values of β.
Physically, this happens due to the reason that it
decreases the nonlinearity coefficient A. It is also
observed that the amplitude of this shock and solitary
waves are higher for non-relativistic case than for
ultra-relativistic case.

The effect of positron-to-ion number density ratio
on the cylindrical and spherical shock and solitary
profiles are depicted in Fig. 2 for both non-relativistic
and ultra-relativistic limit. It is found that the ampli-
tude of the cylindrical and spherical shock and solitary
profiles decrease with increasing of λ. It happens on
the basis of the driving force of the MIA wave, as it is
provided by ions inertia. Actually, increase in ion con-
centration (depopulation of electrons) causes decrease
in the driving force, which is provided by the ion iner-
tia, and consequently shock and solitary waves ener-
vates. It is found that the amplitude of these shock and
solitary structures are distinctly higher for non-relativ-
istic case than for ultra-relativistic one.

The effect of heavy ion-to-ion number density
ratio on the amplitude of the cylindrical and spherical
MIA shock and solitary structures are shown in Fig. 3.
It is found that the amplitude of the cylindrical and
spherical shock and solitary structures decrease with

τ
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Fig. 1. Variation of cylindrical (a) and spherical (b) shock
waves with  for different values of β: the solid curves rep-
resent the non-relativistic case and the dashed ones repre-
sent the ultra-relativistic case; (1)  and (2) 
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Fig. 2. Variation of cylindrical (a) and spherical (b) shock
waves with  for different values of λ: the solid curves rep-
resent the non-relativistic case and the dashed ones repre-
sent the ultra-relativistic case; (1)  and (2) 
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the increasing of  Physically, this happens due to
the reason that it decreases the phase speed of the MIA
waves (see expression for ).

The amplitude of the shock and solitary structures
also depend on the kinematic viscosity coefficient η. It
is observed that the amplitude of the cylindrical and
spherical shock and solitary structures decrease with
the increasing values of η. This happens due to the
reason that it increases the dissipative constant B.

The nonplanar shock and solitary wave properties
have been significantly affected by the relativistic fac-
tors, namely,  and γ. There are two relativistic limits
called non-relativistic ( ) and ultra-relativ-

istic  which significantly modify the

shock and solitary profiles. It is found that the ampli-
tude of the shock and solitary profiles are higher for
non-relativistic case than for ultra-relativistic case.

The amplitude of the shock and solitary profiles
significantly affected by the nonplanar geometry. The
amplitude of the shock and solitary profiles are maxi-
mum for spherical ( ) geometry, intermediate for

.hμ

pV

α
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cylindrical ( ) geometry, and minimum for planar
( ) geometry (Fig. 4).

Figure 5 illustrates the amplitude of cylindrical
shock and solitary profiles in time. The amplitude of
these shock and solitary profiles decreases with the
increasing absolute values of 

The amplitude of the cylindrical and spherical sol-
itary and shock structures are significantly modified
by the various charge states of heavy ions. Figure 6 shows
the variation of the amplitude of the cylindrical shock
and solitary structures with  for different values of 
The amplitude of the cylindrical shock and solitary
structures decrease with the increasing values of 

It is important to note here that when dispersion
(dissipation) effect is much more pronounced than
the dissipation (dispersion) effect, and the dissipation
(dispersion) effect is neglected, strongly coupled
degenerate plasma supports solitary (shock) waves. It
is important to mention that the ranges of plasma
parameters (Table 2) used in this investigation are cor-
respond to space and laboratory plasma system.
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Fig. 3. Variation of cylindrical (a) and spherical (b) shock
waves with ξ for different values of  the solid curves repre-
sent the non-relativistic case and the dashed ones represent the
ultra-relativistic case; (1)  and (2) 
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Table 2. Approximate ranges of the plasma parameters used
in this investigation [30, 31]

Parameter Parameter range

β 0.1–0.5
λ 0.1–0.7

0.1–0.45

η 0.1–0.8
0.1–1

hμ

0u
CONCLUSIONS
A rigorous theoretical investigation of the nonlin-

ear propagation of nonplanar MIA shock and solitary
structures in an unmagnetized, collisionless, strongly
coupled, degenerate plasma was conducted. We
derived the modified Burgers and KdV equations by
using the reductive perturbation method and numeri-
cally analyzed their shock and solitary profiles. It was
observed that the plasma system under consideration
supports MIA shock and solitary structures, whose
basic properties were found to be significantly modi-
fied due to the plasma particles number densities. Our
results also shown how the presence of the ions of the
heavier elements (C or O instead of He) can modify
the basic features of MIA waves.

The relativistic effects (ultra-relativistic and non-
relativistic) of electrons and positron fluids, electron-
to-ion number density positron-to-ion number den-
sity, and heavy ion-to-ion number density ratios,
heavy ions charge states, nonplanar geometry, and
degenerate pressure significantly influence the basic
properties (amplitude, width) of the MIA waves.
Since, in many astrophysical situations there are
extremely dense plasma and finite amplitude MIA
waves, we propose to develop a theory for the propa-
gation of MIA waves and arbitrary relativistic plasma
medium through a generalization of our present work
to such kind of waves and modes. We finally hope
that our present investigation will be very much help-
ful for understanding the basic features of the local-
ized electrostatic disturbances in a strongly coupled
relativistic degenerate electron-positron-ion plasma,
which occurs in some astrophysical compact objects,
e.g. non-rotating white dwarf stars, neutron stars, etc.
[55–57].
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