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Abstract—Numerical simulations are carried out for natural convection in a square enclosure with a conduct-
ing horizontal rectangular cylinder. A two-dimensional solution for steady laminar natural convection flow is
obtained by using finite-volume method for different Rayleigh numbers varying over the range of 103 to 106

and using water as the working f luid (Pr = 6.8). The study goes further to investigate the effect of the inner
rectangular cylinder position and thermal conductivity ratio on the f luid f low and heat transfer in the cavity.
The location of the inner rectangular cylinder is mainly changed horizontally and compared with respect to
the vertical case. The effects of Rayleigh numbers, cylinder locations and thermal conductivity on the stream-
lines, isotherms and average heat transfer of the f luid inside the cavity are investigated. The results indicate
that the f low field, temperature distribution, and average rate of the f low field inside the cavity are strongly
dependent on the Rayleigh numbers, the position of the inner cylinder, and the thermal conductivity.
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INTRODUCTION
Natural convection in an enclosure is relevant to

many industrial applications and tools such as nuclear
and chemical reactors, heat exchangers, and cooling of
electronic equipment. Natural convection heat transfer
exhibits a great variety of complex dynamic behaviors,
which depend largely on the geometry and thermal con-
ditions of the enclosure. In some instances, an obstruc-
tion may be located somewhere within the enclosure,
which could alter the characteristics of flow and heat
transfer. Considerable researches have been performed
with various heat-conducting obstacles placed inside the
enclosure in the form of partitions or partial baffles.
However, there is little information about the natural
convection processes when a solid heat conducting body
is placed within the enclosure and is completely sur-
rounded by the fluid. In applications involving building
energy components, such as walls or windows or an elec-
tronic equipment, the inserted solid body may reduce the
flow, thereby reducing the heat transfer rate across the
enclosure; whereas, heat transfer may be enhanced if the
solid body has a relatively high thermal conductivity.

For instance, House et al. [1] has studied the effect
of a centered conducting body on natural convection
in an enclosure. The effects of Rayleigh number,
Prandtl number, body size, ratio of thermal conduc-
tivities are carried out. The important observation
made is that the heat transfer across the enclosure, in
comparison to that in the absence of a body, may be
enhanced (reduced) by a body with a thermal conduc-
tivity ratio less (greater) than unity.

Oh et al. [2] investigated also the steady state heat
transfer and flow characteristics of natural convection in a

square enclosure containing a conducting heat-generating
body. The results show that the flow field and heat transfer
are affected by the ratio of the temperature difference
across the enclosure to that engendered by the heat source.

This is an important observation as far as conjugate
heat transfer is concerned. Sathe et al. [3] studied the
natural convection arising from a heat generating sub-
strate-mounted protrusion in an enclosure. The
boundaries are maintained at isothermal cold condi-
tions. They concluded that in actual situation, sub-
strate conduction effects cannot be neglected. Also, it
may be inappropriate to prescribe simple boundary
conditions such as constant temperature or heat f lux
on the protrusion faces and solve for the governing
equations only in the f luid. Furthermore, Sun et al. [4]
considered the effect of a heat source and an internal
baffle on natural convection heat transfer in a rectan-
gular enclosure. All the walls are of finite conduc-
tance. The horizontal walls are considered to be adia-
batic on the boundary whereas the vertical walls are
differentially heated. They also concluded that it is
inappropriate to specify simple boundary conditions
on the walls and to neglect the conduction through the
baffles. The complete conjugate heat conduction,
convection and radiation problem for a heated block in
a differentially heated square enclosure is solved by
Liu et al. [5]. The boundary conditions of the enclo-
sure are similar to that of de Vahl Davis [6]. In com-
parison to the problem considered by House et al. [1],
the block is generating heat. The conduction and the
emission of the block have a substantial effect on the
heat transfer situation. Ha et al. [7] conducted a
numerical study of conjugate heat transfer of natural
539



540 SOUAYEH et al.

Fig. 1. Schematical configuration of considered model
with boundary conditions.

L w

g

Adiabatic wall

Adiabatic wall

e

δ

Th Tc

L

 

convection in a cubic enclosure with a centered cubic
heat-conducting heat generating body. Right and left
vertical walls are maintained at differentially heated
condition. All other walls are insulated. The presence
of the solid body results in a larger variation of the
local Nusselt number compared to cases without a
cubic conducting body in the enclosure.

Mezrhab et al. [8] studied the radiation-natural
convection interactions in a differentially heated
square cavity within which a centered, square, heat-
conducting body generates heat. For the solution of
the governing equations, they have used a specifically
developed numerical model based on the finite-vol-
ume method and the SIMPLER algorithm. They have
found that the isotherms and streamlines are strongly
affected by the radiation exchange at high Rayleigh
numbers (Ra ≥ 106). Furthermore, the temperature of
the inner body decreases owing the radiation exchange
effect. Besides, it was seen that for a fixed Ra, the average
Nusselt number at the hot and cold walls (Nuh and Nuc)
vary linearly with increasing the temperature difference.

Bilgen [9] studied natural convection in differen-
tially heated square cavities with a thin fin attached on
the active wall. The Rayleigh number was varied from
104 to 109, dimensionless thin fin length from 0.10 to
0.90, dimensionless thin fin position from 0 to 0.90,
dimensionless conductivity ratio of thin fin from 0 (per-
fectly insulating) to 60. Bilgen’s [9] results demonstrated
that the Nusselt number is an increasing function of
Rayleigh number, and a decreasing function of fin length
and relative conductivity ratio. It was also found that the
heat transfer might be suppressed up to 38% by choosing
appropriate thermal and geometrical fin parameters.

Although many researchers have studied the natu-
ral convection, there is little information about natural
convection processes within a differential square
enclosure containing a conducting rectangular obsta-
cle located at different horizontal positions along the
center of the enclosure. At this situation, the f low and
heat transfer characteristics are largely affected by the
location of the conducting body, the Rayleigh num-
bers and the thermal conductivity ratio. The aim of
this study is to examine the effects of the locations of a
conducting rectangular body in the enclosure and the
conduction on heat transfer and fluid f low, also to
investigate the comparison between a horizontal and a
vertical location of the conducting shape. The numer-
ical calculations are performed for wide ranges of
Rayleigh numbers, the solid-fluid thermal conductiv-
ity ratios and inner rectangular cylinder location.

PROBLEM FORMULATION 
AND GOVERNING EQUATIONS

Physical Model

A concentric conducting rectangular cylinder of
height (w) and width (e) located inside a water-filled
square cavity with sides of length L is shown in Fig. 1.
The left and right side walls are isothermal at the tem-
peratures Th and Tc, respectively, whereas the bottom
and top walls are adiabatic. The rectangular shape
moves along the horizontal wall of the cavity in the
range from 0.2L to 0.8L. All solid boundaries are
assumed to be no-slip rigid walls. Prandtl number is
taken to be 6.8, the Rayleigh number is considered in
the range 103 to 106 and the solid-fluid thermal con-
ductivity ratios are taken as 0.1, 1 and 50. All fluid prop-
erties are assumed to be constant except for the density
variation in the buoyancy term which is treated according
the Boussinesq approximation. The radiation effects are
neglected and the gravitational acceleration acts in the
negative y-direction. The fluid within the enclosure is
assumed incompressible and Newtonian while viscous
dissipation effects are considered negligible. The flow
and thermal fields inside the square enclosure with a con-
ducting rectangular body are described by the Navier-
Stokes and the energy equations, respectively.

Non-dimensional Equations

The governing equations are transformed into a
dimensionless form under the following non-dimen-
sional variables.

The dimensionless variables in the above equations
were defined as

(1)

The dimensionless forms of the governing equa-
tions under steady state condition are expressed in the
following forms:
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Table 1. Results of grid independence tests in a square cav-
ity incorporating a Conducting body located at δ = 0.5 with
Pr = 6.8, Ra = 105, and k = 0.1

Grid

24 × 24 4.493 19.421 19.176

48 × 48 4.537 19.239 18.960

(0.969%) (0.937%) (1.126%)

96 × 96 4.555 19.224 18.905

(0.395%) (0.077%) (0.290%)

192 × 192 4.550 19.176 18.875

(0.043%) (0.249%) (0.158%)

Nu maxψ minψ
(2)

(3)

(4)

(5)

(6)

In the above equations ρ, T, αs, and αf represent the

density, dimensional temperature, thermal diffusivity
of solid and fluid, respectively. The superscript * in
Eq. (1) represents the dimensional variables ui, p, t, θ,

and α are the non-dimensional velocity, pressure,
time, temperature and thermal diffusivity. The above
non-dimensional results in two dimensionless para-
meters:

where ν, g, and β are the kinematic viscosity, gravita-
tional acceleration and volume expansion coefficient.
For the boundary conditions, the velocities are set to
zero for all solid walls. The temperature boundary
conditions and the conditions at the f luid/body inter-
faces are as follows:

At f luid/body interface and θs = θ

where k = ks/kf is thermal conductivities ratio of con-
ducting solid body to f luid.

Physical quantities of interest in this problem is the
mean Nusselt number which can be expressed as:

(7)

NUMERICAL METHODOLOGY

Solution Method
Equations (2)–(6) subject to the boundary condi-

tions of the present study were integrated using the
finite-volume method and an iterative successive-
over-relaxation scheme [10] with multigrid accelera-
tion. The main idea of multigrid methods can be found
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in [11]. If specific details about the computational
methodology are needed, the reader is directed to Ben
Cheikh et al. [12]. The convergence criterion is the
maximal residual of all the governing equations which

is less than 10–6. In addition to the usual accuracy con-
trol, the accuracy of computations is also controlled
using the energy conservation within the system.

Grid Independency Study

Results of grid dependency tests through the sur-
face average Nusselt number and streamline function

of the conducting body when Ra = 105, Pr = 6.8, k = 0.1,
and δ = 0.5 are regrouped in Table 1 for four different
non-uniform grids namely: 24, 48, 96 and 192. In the
present study, independence of numerical results from
the mesh size was assumed when the difference in the
simulated values computed between two consecutive
grids was less than 1%. As it can be observed from the
deviation values reported in Table 1, a non-uniform
grid of 96 × 96 is sufficiently fine to ensure the grid.

Validation of the Code

Extensive validation of the developed code has
been carried out by comparing the results of a
Rayleigh-Bénard convection square filled with a
square conducting body in the center of the layer with
those of Lee et al. [13]. The average Nusselt number
through the hot wall has been computed for different
thermal conductivity ratio k = 0.1, 1, and 50. The same

has been performed for Ra = 103, 104, 105, and 106 and
a Prandtl number 0.71 corresponding to that of air are
shown in Table 2. Excellent agreement has been
obtained.

RESULTS AND DISCUSSION

Combined Effects of Thermal Conductivity, Rayleigh 
Number, and Location of the Inner Body on the Flow

The basic features of the f low and thermal fields in
a square enclosure of same height and width, with a
conducting rectangular solid cylinder of 0.6L (height)
and 0.2L (width) are plotted for an horizontal position
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Table 2. Values of average Nusselt number on the hot wall with those from [13] according to the cavity with conducting body

K k = 0.1 k = 1 k = 50

Ra present study  [13] error, % present study  [13] error, % present study  [13] error, %

103 0.81 0.81 0.00 1.00 1.00 0.00 1.27 1.27 0.00

104 2.31 2.31 0.00 2.12 2.13 0.46 1.59 1.56 1.92

105 3.85 3.85 0.00 3.86 3.88 0.51 3.93 3.94 0.52

106 6.18 6.30 1.90 6.19 6.29 1.58 6.20 6.31 1.74
for the Rayleigh number in the range of 103–106 and
for a solid-fluid thermal conductivity ratios (k) values
of 0.1, 1 and 50. The Prandtl number of the f luid con-
sidered is 6.8 (water).

Figure 2 shows isotherms and streamlines in the
enclosure for different Rayleigh numbers with heat-
conducting body at k = 0.1 and a thermal diffusivity

 for inner rectangular cylinder location taken
as 0.2 and 0.5. In fact, we are limited just to these loca-
tion values because there is a real symmetry in results
against the center of the cavity and a similarity

between plots of  0.2, 0.3 and  0.4, 0.5.

At low values of Ra, the heat transfer in the enclo-
sure is predominantly due to conduction. When k = 0.1,
the thermal conductivity of f luid is ten times higher
than that of conducting body and as a result the distri-
bution of isotherms at k = 0.1 appear to be nearly pa-
rallel to the active walls and concentrated near the
conducting block for the four rectangular cylinder
location considered.

0.001α =

δ = δ =
Fig. 2. Distribution of isotherms (top) and streamlines
(bottom) for the conducting body at k = 0.1 and α = 0.001
for two horizontal locations (a)–(b).

( )
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(b)
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 0
.1

k 
=

 0
.1

Ra = 103 Ra = 104 Ra = 105 Ra = 106

δ = 0.5
When Rayleigh number increases, the f low velocity
increases and it causes a stronger circulation near the
hot and cold walls. If the Rayleigh number is increased

to 105, the thickness of the thermal layer formed on the
side walls becomes thinner due to the f low accelera-
tion and the gradient of thermal boundary layer
becomes larger, meaning that the heat transfer rate
increases with increasing Rayleigh number, isotherms
are stratified in the center of the cavity and tightened
at the active walls specifically in the upper corner of
the cold wall and the bottom corner of the hot wall.
Besides, the isotherms move in the direction of clock-
wise and become almost horizontal in the inner body
especially in the center of the cavity. When the iso-
therms are stratified horizontally across the cavity,
boundary layers are intensifying across the hot and
cold wall, so we notice that the Rayleigh number

increases to 105 and 106, the effect of convection on
the f luid f low and heat transfer in the enclosure
increases and become more dominant than conduc-
tion. These observations are considered valid for all
selected positions of the conducting shape δ = 0.2 and
0.5 in the cavity, which means that position has no
effect on the temperature fields.

As regards the thermal conductivity ratio k = 1

which correspond a thermal diffusivity , the dis-
tribution of the temperature in the enclosure is given
by isotherms in Fig. 3. As we can see, the isotherms
show a high thermal gradient at the vertical walls and a
net stratification of temperatures in the center. By
increasing the Rayleigh number (Ra), isotherms
become constricted near the active walls and the phe-
nomena of the stratification of the temperatures are
more pronounced especially in the center of the cavity.

Figure 4 shows isotherms in the enclosure for dif-
ferent Rayleigh numbers with heat-conducting body

at k = 50 and . When k = 50, a thermal con-
ductivity of f luid is 50 times less than solid thermal
conductivity. Because a heat-conducting body con-
ducts more heat through the body, as aforementioned,
when k = 0.1, the thermal conductivity of conducting
body is very smaller than the f luid. Thus the tempera-
ture in the conducting body is not uniform and has a
large gradient. However, the temperature in the con-
ducting body for the case of k = 50 is almost uniform
due to large thermal conductivity of conducting body.

As a result, when Ra = 103 and 104 at which the con-
duction is the dominant heat transfer mode, the tem-

1α =

0.05α =
HIGH TEMPERATURE  Vol. 57  No. 4  2019
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Fig. 3. Distribution of isotherms (top) and streamlines
(bottom) for the conducting body at k = 1 and α = 1 for
two horizontal locations (a)–(b).
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Fig. 4. Distribution of isotherms (top) and streamlines
(bottom) for the conducting body at k = 50 and α = 0.05
for two horizontal locations (a)–(b).
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perature fields for the case of k = 50 have different dis-
tribution from those for the case of k = 0.1 and k = 1.
Especially differences in the inside of the enclosure
and around the conducting body are large. When the

Rayleigh number increases to 105 and 106, the thermal
resistance for conduction in the conducting body does
not change but the thermal resistance for convection
in the f luid decreases with increasing convective heat

transfer. Thus, when Ra = 105 and 106, the distribution
of isotherms for k = 50 is similar to that for k = 0.1,
except for the slight difference in and close to the con-
ducting body.

Concerning streamlines for the lowest value of
Rayleigh number and for the same conducting body
locations, the f luid f low circulating in the clockwise
direction around a conducting body is forming a single
eddy emerges occupying the whole volume of the
enclosure with the center of recirculation positioned
approximately near the center of the cavity and that
stretches to the cold wall at higher values of Ra. As Ra
is increasing, streamline patterns show regions of f low
separation. We note therefore that the position of the
HIGH TEMPERATURE  Vol. 57  No. 4  2019

Table 3. Comparison of average Nusselt numbers for differen

Ra δ = 0.2 δ = 0.3 δ =

105 (horizontal locations) 3.558 4.589 4.5

105 (vertical locations) 3.966 4.653 4.8
conductive body does not affect the isotherms and a
very slight variation on the streamlines occur espe-
cially for small Rayleigh numbers, where the eddies in
the center of the cavity are significant for small

Rayleigh numbers (103–104) at 0.2 then disappear

when Ra = 106 at δ = 0.5. The f low fields for the case
of k = 50 are generally similar to those for the cases of
k = 0.1 and k = 1.

Effects of Governing Parameters on Heat Transfer Rate

For Ra = 103, we may note that the variations pro-
files of average Nusselt number versus the position
corresponding to the three values of the thermal con-
ductivity ratio k = 0.1, k = 1 and k = 50 are almost f lat
and symmetrical with respect to median plane of the

cavity at  that is to say that the position has no
effect on the heat transfer rate for the same Rayleigh
number and the different conductivity of reports con-
sidered. In contrast, the conductivity ratio of the solid
relative to the f luid has significant effect because more
than k increases more the average Nusselt number

0.5δ =
t locations for Pr = 6.8, k = 0.1, and Ra = 105

 0.4 δ = 0.5 δ = 0.6 δ = 0.7 δ = 0.8

60 4.555 4.560 4.589 3.558

06 4.830 4.806 4.652 3.966
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Fig. 5. The effect of δ on average Nusselt number for different Rayleigh numbers and thermal conductivity ratios k.
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increases. Similarly, for Ra = 104, the symmetry about
the median plane is also exhibited. It is also noted that
the position of the conductive body has a significant
effect on the average heat transfer rate. For k = 0.1, we
may see that average heat transfer rate increases until a

maximum value at  after which it decreases.
For k = 1, the same phenomena happens but for both

maximum  and  At the value k = 50, the
opposite phenomenon occurs which means that the
heat transfer lowers with respect to the position of the
solid conductor until reaching a minimum value

 and then increases again. At the value Ra =

105, a symmetry with respect to the center of the cavity

( ) is always present, the average heat transfer
rate strengthens between the positions of the conduc-

tive body in the cavity  and . Then, at

0.5δ =

0.4δ = 0.6δ =

0.5δ =

0.5δ =

0.2δ = 0.3δ =
the positions of the solid conductor between 0.3 and

0.7, the average heat transfer is almost steady after

which it decreases again. Another gradual decrease is

seen again passing from  to . We also

note that the heat transfer means varies disproportion-

ately compared to conductivity ratio k. Finally for

Ra = 106, still a marked symmetry is observed with

respect to the middle of the square cavity. It also noted

that the average heat transfer decreases with the con-

ductivity ratio of the solid with respect to the f luid. For

k = 0.1 and k = 1, the average heat transfer is almost

constant that is to say the position of the solid con-

ductor has no effect on this transfer while for k = 50

and  between 0.2 and 0.3 the average heat transfer

augments significantly, returns to be stable between

0.7δ = 0.8δ =

δ
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Fig. 6. Average Nusselt number as function of Ra for various
thermal conductivity ratios k.
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0.3 and 0.7 and then decreases passing from the posi-
tion 0.7 to 0.8.

So we conclude that Fig. 5 showing the variation of
average Nusselt number as a function of the horizontal
locations of the conducting body for various Rayleigh
numbers with k = 0.1, 1 and 50, proves that for Ra =

103, average Nusselt number remains constant for the
range ofconsidered indicating that conductionis the
dominant mode of heat transfer. Therefore, when Ra

rises until reaching 106, the increase of  generates a
significant increase in the average Nusselt number and
this is due to the convection, which is the dominant
mode of heat transfer.

By analyzing the variations of the average heat

transfer for the Rayleigh number between 103 and 106

through the two vertical walls of the cavity and accord-
ing to the positions of the treated solid conductor

( ) and for the thermal conductivity ratio
of reports studied: k = 0.1, 1 and 50, we can see that for
a definite position of the solid conductor and a fixed
ratio conductivity, heat transfer rate increases with the
Rayleigh number. However, this transfer rate increases
in generally with the thermal conductivity ratio for the
same Rayleigh number with some exceptions, and for
a fixed position of the conductive body. Quantita-
tively, concerning the conductivity ratio k = 0.1, it is

observed that for small Rayleigh numbers (103–104),
the heat transfer is optimal for a position of the solid
conductor δ = 0.5, this finding is more approved in

Fig. 5. However, for large Rayleigh numbers (Ra = 105),
the heat transfer is maximal when the solid conductor
is close to the active walls. By further increasing the

Rayleigh number up to 106, this transfer is more
enhanced by approaching more the two vertical walls:

 and . According to the conductivity
ratio k = 50, it is seen that the phenomena observed in
k = 0.1 and k = 1 are inverted that is to say that the
heat transfer is optimal near the active walls and

small Rayleigh numbers 103–104, but increasing this

number to reach 105–106, the heat transfer is maxi-
mal by further moving away from the two hot and
cold vertical walls.

In the realm of thermal engineering applications,
the overall effectiveness of heat transfer is unquestion-
ably the most relevant parameter. For this purpose, the
average Nusselt number Nu defined in Eq. (7) is
graphed versus Ra in Fig. 6 for the four horizontal
locations of the conducting body and the considered
thermal conductivity ratio: k = 0.1, k = 1 and k = 50.
It can be confirmed that Nu is almost invariant and

close to unity whenever Ra ≤ 104 for all selected loca-
tions of the conducting shape and dimensionless
thermal conductivity; this is means that the heat
transfer mechanism is almost due to convection. At

Rayleigh numbers Ra higher than 104, the average
heat transfer increases significantly due to enhanced
natural convection. Finally, the numerical results
obtained for the average Nu in conjunction with the

δ

0.2 0.8≤ δ ≤

0.2δ = 0.8δ =
HIGH TEMPERATURE  Vol. 57  No. 4  2019
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different Ra have been post processed for 103 ≤ Ra ≤ 106.
From these figures, it can be observed that no signif-
icant effect are observed of solid-f luid thermal con-
ductivity ratios (k) on the average Nusselt number
values.

Comparison of Different Location Results

From Table 3 and for a fixed Rayleigh number

Ra = 105 and a solid-fluid thermal conductivity ratios
k = 0.1 and for the same rectangular-shaped conduct-
ing body which is positioned vertically in this case and
in the same locations chosen when it was positioned
vertically, it can be seen that average Nusselt numbers
are greater than the corresponding values when the
rectangular cylinder is positioned horizontally for the
selected values of (δ). Moreover, in this case the aver-
age Nusselt number values are increasing gradually
until (δ = 0.5), then we observe a symmetric behavior
against the mid-cavity.

CONCLUSIONS

Natural convection in a differentially heated enclo-
sure filled with water containing a rectangular con-
ducting body, was successfully solved numerically. We
made a detailed analysis for the distribution of stream-
lines, isotherms, and Nusselt number in order to
investigate the effect of the locations and the presence
of a conducting body with different thermal conduc-
tivity ratios of k = 0.1, 1, and 50 on the f luid f low and
heat transfer in the horizontal enclosure for the

Rayleigh numbers in the range of 103 ≤ Ra ≤ 106. Com-
parison between horizontal and vertical locations of
the conducting shape in the enclosure was made.

The results demonstrate that for a fixed solid–fluid
thermal conductivity ratios (k), the position of the
conductive body (δ) does not affect the isotherms and
a very slight variation on the streamlines occur espe-
cially for small Rayleigh numbers, also the thermal
boundary layers near the hot and cold sides increase
and concentrate as the Rayleigh number increases.

For low values of Rayleigh numbers, average Nus-
selt number remains constant for the range of δ con-
sidered indicating that conduction is the dominant
mode of heat transfer. Therefore, when Ra rises until

reaching 106, the increase in δ generates a significant
increase in the average Nusselt number and this is due
to the convection, which is the dominant mode of heat
transfer.

The average heat transfer for the Rayleigh number

between 103 and 106 through the two vertical walls of
the cavity and according to the positions of the treated

solid conductor ( ) and for the thermal
conductivity ratio k = 0.1, 1, and 50 was studied. We
can see that for a definite position of the solid conduc-
tor and a fixed ratio conductivity, heat transfer rate
increases with the Rayleigh number. However, this
transfer rate increases generally with the thermal con-
ductivity ratio for the same Rayleigh number with
some exceptions, and for a fixed position of the con-
ductive body.

For a fixed Rayleigh number Ra = 105 and a solid–
fluid thermal conductivity ratio k = 0.1 and for the
same rectangular-shaped conducting body, it can be
seen that when the conducting solid is positioned ver-
tically the average Nusselt numbers are greater than
the corresponding values when it is positioned hori-
zontally for the selected values of δ. Moreover, in this
case the average Nusselt number values are increasing
gradually until δ = 0.5, then we observe a symmetric
behavior against the mid-cavity.
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