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Abstract—The propagation of acoustic waves in multifraction gas suspensions with polydisperse inclusions
has been studied. The disperse phase contains N fractions, which differ in size, the size-distribution functions
of inclusions, and materials. The dispersion relation, which determines the dependence of the complex wav-
enumber on the perturbation frequency, is obtained. The dependences of the relative speed of sound and
attenuation coefficient on the dimensionless perturbation frequency are obtained. The effect of heat transfer
is analyzed.
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INTRODUCTION

Problems of the wave dynamics of multiphase
media are of great interest because of the wide dissem-
ination of such media in nature and their engineering
applications. The specifics of the dynamics of multi-
phase media have been considered in well-known
monographs [1–3]. The propagation of acoustic
waves in monodisperse gas suspensions was studied [4,
5]. However, real gas suspensions are polydisperse,
and the propagation of acoustic waves in polydisperse
media was also studied [2, 6]. The characteristics of
two-phase media with various inclusions have been
described [7–10]. The propagation of acoustic waves
in multifraction gas suspensions with polydisperse
inclusions differing in size and materials is studied in
this work for the first time. The wide application of
acoustic methods in engineering emphasizes the rele-
vance of this study.

MAIN EQUATIONS

Let us consider the one-dimensional motion of a
multifraction gas suspension, the disperse phase of
which includes N fractions. The fractions consist of
various materials, have different sizes, and are
described by their own size-distribution function of
inclusions. The linearized equations for the plane one-
dimensional disturbed motion follow from the general
equations of the two-phase mixture [1] and have the
form [8], but they are written with allowance for N
polydisperse fractions as:

(1)

Here and below, strokes designate the parameter
perturbations, and subscript 0 corresponds to the ini-
tial unperturbed state.

Taking into account N fractions, the equations for
the internal energy of the carrier phase, inclusions,
and their interface are written as

(2)

Let us use expressions for force  and heat transfer
intensity  similar to [9]. For the carrier phase, the lin-
earized equation of state is written as
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Fig. 1. Dependence of the relative speed of sound on the
dimensionless perturbation frequency.
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(3)

Here, ρ is the density,  is the velocity,  is the
pressure, T is the temperature, γ is the adiabatic expo-
nent,  is the volume content,  is the heat capacity, 

is the speed of sound in a pure gas,  is the size-distri-
bution function of inclusions,  is the mass of a particle,
r is the radius of inclusions, and  is the variation range
of the inclusion radius, Subscript 1 refers to the carrier
phase, and subscript 2 refers to the disperse phase.

DISPERSION RELATION

Let us seek the solution of the system of equations
(1)–(3) as progressive waves of perturbations

(4)

where  is the complex wavenumber,  is the lin-
ear attenuation coefficient,  is the phase velocity, 
is the attenuation decrement at a given acoustic wave-
length,  is the perturbation frequency,  is an imagi-
nary unit, and  is the amplitude.

The dispersion relation determining the depen-
dence of the complex wavenumber on the perturbation
frequency is obtained by solving the system of equa-
tions (1)–(3) with allowance for (4):
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Here,  is the mass content,   are the complex
relaxation times of the velocity and temperature,
respectively [1],  is the thermal conductivity,  is
the linear averaging operator [6], and  is the density
of the disperse phase. It should be noted that the dis-
persion relation coincides with that obtained in [8] for
a particular case of two fractions.

CALCULATION RESULTS
Let us consider the propagation of acoustic waves

in a three-fraction gas mixture with water drops,
sand, and aluminum particles. The calculations were
made with dispersion relation (5) for the following
mixture parameters:  MPa, and  K.
The mass contents of inclusions were  for
water drops,  for sand particles, and 
for aluminum particles. The size distribution func-
tion of inclusions were  for water drops,

 for sand particles, and  for
aluminum particles. The radius of inclusions varied
in the range  m for water drops,

 m for sand particles, and

 m for aluminum particles.

Figure 1 shows the dependence of the relative speed
of sound  on the dimensionless perturbation fre-

quency  where  is the relaxation time

of the velocity for the mean radius 
[2]. The presence of three fractions with various inclu-
sion sizes causes three characteristic discontinuities in
the dependence of the relative speed of sound on the
dimensionless perturbation frequency. At low fre-
quencies ( ), the relative speed of sound
takes some equilibrium value. At high frequencies
( ), the relative speed of sound tends toward
unity, i.e., the phase velocity tends toward the speed of
sound in a pure gas.
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Fig. 2. Dependence of the attenuation decrement on the
dimensionless perturbation frequency.
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Figure 2 shows the dependences of the attenuation
decrement at a given acoustic wavelength, , on the
dimensionless perturbation frequency  curve 1 is
obtained with allowance for the heat transfer, and
curve 2 is obtained without it. The presence of three
fractions with different thermophysical properties
causes three local maxima in the dependence of the
attenuation decrement on the dimensionless perturba-
tion frequency. When the heat transfer between the
fractions and the carrier medium is not taken into
account, and the attenuation decrement decreases in
the entire range of the perturbation frequencies.

CONCLUSIONS

The propagation of sound in multifraction gas sus-
pensions with polydisperse inclusions was considered.
We established that the presence of three fractions
with inclusions of various sizes causes three typical
discontinuities in the dependence of the relative speed

σ
Ω5.3;
of sound on the dimensionless perturbation frequency.
Three local maxima in the dependence of the attenu-
ation decrement on given wavelength on the dimen-
sionless perturbation frequency were observed; they
were determined by the different radii and thremo-
physical properties of inclusions of various fractions.
When the heat transfer is not taken into account, the
attenuation decrement is smaller for the entire range of
the studied frequencies.
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