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Abstract—The propagation of acoustic waves in gas mixtures with vapor, monodisperse drops, and solid par-
ticles of various materials and sizes has been studied. A mathematical model is presented; the dispersion rela-
tion, the equilibrium and frozen speeds of sound, and low- and high-frequency asymptotes for the linear
attenuation coefficient are deduced; the dispersion curves are calculated. The influence of particle size and
disperse phase parameters on dissipation and dispersion of acoustic waves is analyzed for a mixture of air with
vapor, water drops, and aluminum and carbon black particles. Fast Fourier transform is used to calculate the
pulse perturbations in the studied media.
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INTRODUCTION
The study of the propagation of small perturbations

in gas mixtures is a topical problem in the dynamics of
multiphase media. The study of the propagation of
acoustic waves in gas mixtures is complicated by the
fact that gas mixtures are multiphase and polydisperse
and that the interphase interaction is nonstationary
and nonequilibrial. The main models of the wave
dynamics of polydisperse media and several results in
this field are presented in a well-known monograph
[1]. The authors of [2] studied two-phase f lows with
solid particles, drops, and bubbles. In [3], problems of
the formation of zones with an increased concentra-
tion of a disperse phase in multiphase f lows were con-
sidered. The author of monograph [4] presented a
brief review of the results on the study of acoustic per-
turbations of monodisperse gas mixtures without
phase transitions. The authors of [5] studied the influ-
ence of a polydisperse composition of a gas mixture on
the propagation of monochromatic perturbations in
one-component gas mixtures with particles or in vapor
mixtures with drops. The authors of [6] studied pat-
terns of the propagation of monochromatic waves in
two-component, polydisperse gas mixtures with vapor
and liquid drops. The propagation of spherical and
cylindrical low-amplitude waves in polydisperse fogs
with phase transitions was considered in [7], and a
general dispersion dependence of the wavenumber on
the oscillation frequency and thermophysical parame-
ters of phases was obtained. The authors of [8] studied
an anomalous, nonmonotonic dependence of the dis-
sipation of small harmonic and pulse perturbations on
the mass concentration of drops in monodisperse
aerosols with heat and mass transfer. A rather full
description of the linear propagation theory for plane

perturbations in mono- and polydisperse, two-phase
gas mixtures with vapor and liquid drops is presented
in [9].

The authors of [10, 11] studied propagation of
acoustic waves of various shapes in two- and multi-
phase gas mixtures with particles of various materials
and sizes without taking into account phase transi-
tions. The patterns of the propagation of plane, cylin-
drical, and spherical low-amplitude waves in two-
phase, vapor–gas–drop mixtures with solid particles
were analyzed in [12, 13].

The present work studies the propagation of low-
amplitude waves in mixtures of gas with vapor, mono-
disperse drops, and solid particles of various materials
and sizes.

MAIN EQUATIONS
In describing the motion of a multiphase gas mix-

ture by the methods of continuum mechanics, let us
suppose to be valid following assumptions [1]:

• The sizes of inclusions (particles, drops) in the
mixture are considerably larger than the molecular-
kinetic sizes, i.e., the inclusions contain a large num-
ber of molecules.

• The inclusion sizes are considerably lower than
distances over which average or macroscopic parame-
ters of the mixture significantly change, i.e., the inclu-
sions are much smaller than typical studied wave-
lengths.

• We are not taking into account the energy and
other effects of the chaotic and internal motion of
disperse particles (Brownian and rotational and defor-
mational, respectively).
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• There is no coagulation, fragmentation, or for-
mation of new inclusions.

• The viscosity and thermal conductivity are
revealed only upon interphase interaction and are not
upon macroscopic processes of the energy and
impulse transfer.

• The studied acoustic wavelengths considerably
exceed the inclusion sizes and distances between
them, i.e., the medium is acoustically homogeneous
for these waves.

Within the framework of the aforementioned
assumptions, let us use the model of multivelocity and
a three-temperature continuum [1] to study the prop-
agation of acoustic waves in mixtures of gas with
vapor, monodisperse drops, and solid particles of var-
ious materials and sizes.

Since the problem is linear, perturbations of the
parameters are small. The drop mass is small as well.
Thus, evaporation and condensation are weak, and
the Stephen flows [14] could be disregarded in the
description of the heat transfer.

As in [9], in a coordinate system in which the
undisturbed mixture is at rest, the linearized equations
of continuity and impulse conservation of phases are
as follows:
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Here and below, index 1 refers to the carrier phase,
l refers to drops, sj  refers to solid particles, V
and G refer to parameters of the vapor and gas compo-
nents the carrier phase;  is the radius of inclusions,

 is the volume concentration of particles of the jth
type,  and  are the concentrations of vapor and gas
in the carrier phase of the mixture,  is the diffusion
flow of vapor to the surface of drop “Σ,” and  is the
intensity of condensation on the surface of a single
drop.

Let us consider the thermophysical parameters of
the carrier phase, which are determined by the param-
eters of vapor and gas:

Here, R,  λ, and μ are the gas constant, heat
capacity at constant pressure, and thermal conductiv-
ity and dynamic viscosity coefficients, respectively.

At  and  the Stokes force

 and the Basset force  are the main forces acting
on a single particle of the disperse phase. Their expres-
sions are as follows:

Let us present  as

where  is the particle mass

The linearized equations for heat influx to the gas
phase, drops, solid particles, and the surfaces of a sin-
gle drop and a single solid particle are as follows:
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where  is the specific heat of evaporation.
The heat f luxes from the outside  and from

within  of the jth inclusion to its surface and the
interphase diffusion f low  are given by the rela-
tions [9]

Here and below,  is the career phase temperature,
 is the temperature in the surface Σ layer of the th-type

particle,  is the temperature of the solid jth-type

particles,  and  are the dimensionless (the Nus-
selt number) and the dimensional coefficients of the
career phase heat exchange with the interface of the
jth-type inclusion,  and  are the dimensionless
(the Nusselt number) and the dimensional coeffi-
cients of the jth-type particle heat exchange with the
interface, λ is the thermal conductivity coefficient,

 and  are the dimensionless (the Sherwood
number) and dimensional coefficients of the carrier
phase mass exchange with the surface Σ layer of the
drop, and  is the coefficient of the binary diffusion.

The heat f luxes  and  are as follows:
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The interphase diffusion flow is [9]

The intensity of nonequilibrial condensation at the
phase interface is given by the Hertz–Knudsen–
Langmuir formula [9]:

Here,  is the characteristic time of the equaliza-
tion of partial vapor pressures on the phase interface
with respect to the accommodation coefficient; β and
γ are the adiabatic exponents.

Along the phase equilibrium curve, the Clapey-
ron–Clausius equation [9] is valid:

where index S relates to parameters on the saturation
line.

From the mass balance on the drop surface, we
obtain

Let us consider the components of the carrier
phase to be calorically perfect gases, and we account
for the fact that the reduced density perturbations are
included into the continuity equations. The equations
of state of the career phase are presented in the follow-
ing linearized form:

The equations of state of the incompressible
disperse phase are

Here,  is the heat capacity of the disperse phase.
Let us enter the velocity potentials of phases
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tical drops, and solid particles of different types and
sizes in the coordinate system in which the unper-
turbed medium is at rest is then written in the form

(1)

The system of equations (1) is closed and might be
used to study the propagation of plane, cylindrical,
and spherical acoustic perturbations in gas mixtures
with vapor, identical drops, and solid particles of dif-
ferent types and sizes.

DISPERSION RELATION

Let us analyze the solutions of the obtained system of
equations as the progressive waves for the perturbations

(2)
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where  is the Hankel function,  is the com-
plex wavenumber,  is the phase velocity, and  is the
attenuation decrement at the acoustic wavelength.

Substituting solution (2) into system of equations (1)
we obtain the following system of linear algebraic
equations:
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(3) The system of equations (3) does not depend on
parameters  and is the same in its description of
plane, cylindrical, and spherical waves in the multi-
fraction gas mixture with vapor, identical drops, and
solid particles of different types and sizes.

From the condition of the existence of a nontrivial
solution for the system of linear algebraic equations (3),
we obtain the following dispersion relation:

(4)
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The low-frequency asymptotic  is written as

where

The dissipation of low-frequency perturbations is
strongly affected by both the interphase friction and
the interphase heat and mass transfer.

The high-frequency asymptotic  is

where

The attenuation of high-frequency perturbations
 in the studied gas mixtures is directly propor-
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Fig. 1. Dependences of the attenuation coefficient on the
dimensionless oscillation frequency for an air mixture with
vapor, water drops, and aluminum and carbon black parti-
cles at various mass contents of inclusions: (1) m = 0.15
(ma = 0.05, ms = 0.05, ml = 0.05), (2) m = 0.225 (ma =
0.075, ms = 0.075, ml = 0.075), (3) m = 0.3 (ma = 0.1, ms =
0.1, ml = 0.1); the dashed line is (a) the low-frequency and
(b) high-frequency asymptotic.
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Fig. 2. Dependences of (a) the relative speed of sound and
(b) the wavelength attenuation decrement on the dimen-
sionless oscillation frequency for an air mixture with vapor,
water drops, and aluminum and carbon black particles at
various mass contents of the disperse phase (1–3 are the
same designations as in Fig. 1).
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tional to the mass content of the disperse phase. At the
propagation of high-frequency perturbations in multi-
fraction gas mixtures, the effects of interphase friction
are the governing dissipative effects.

RESULTS
As an example, let us consider the acoustic wave

propagation in an air mixture with vapor, water drops,
carbon black, and aluminum particles at a temperature
of  K and a pressure of  MPa and the
following thermophysical parameters: for the carrier
gas, we have  kg/m3,  m/s,

 m2/(s2 K),  kg m/(s3 K),

 kg/(m s), ; for the aluminum
particles, we have  m,  kg/m3,

 m2/(s2 K),  kg m/(s3 K); for the
carbon black particles, we have  m, ρ20s =
1200 kg/m3,  m2/(s2 K),  kg m/(s3 K);
for water drops, we have  m,  kg/m3,

 m2/(s2 K),  kg m/(s3 K).
Figure 1 shows the dependence of the attenuation

coefficient on the dimensionless oscillation frequency
 for various mass contents of the inclusions.

Clearly, an increase in the mass content results in an
increase in the value of the attenuation coefficient.

Figure 2 shows the influence of the inclusion mass
content on the dependences of the relative speed of
sound and the wavelength attenuation decrement on
the dimensionless oscillation frequency  The cal-
culated dependences are plotted with dispersion rela-
tion (4).

Note that both the speed of sound dispersion and
the wave dissipation increase with an increase in the
mass content of the inclusions. Accounting for the
three-fraction composition and the difference in the
thermophysical properties of the fractions causes
characteristic inflections in the dependence of the rel-
ative speed of sound within the frequence range that
are inversely proportional to the relaxation times for
the velocities of phases   and  (Fig. 2а). Fig-
ure 2b shows that the difference in the sizes and the
thermophysical parameters of inclusions leads to the
occurrence of three maxima in the dependence of the
wavelength attenuation decrement at characteristic unity
values for each of the three:   and  = 1.

Figure 3 shows the dependences of the wavelength
attenuation decrement on the dimensionless oscilla-
tion frequency  Calculations were made for a
three-fraction mixture of air with vapor, water drops,
and aluminum and carbon black particles with the
mass content of drops , aluminum particles

, carbon black particles  (curve (1)),
and for monodisperse air mixtures with carbon black
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= 0.2am = 0.2sm
particles for  (curve (2)), with aluminum parti-
cles for (curve (3)), and with vapor and water
drops for  (curve (4)). The radius of inclusions
was m for drops,  m for aluminum
particles, and m for carbon black particles.

Figure 3 shows that the largest contribution to the
dispersion and dissipation of acoustic waves is
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−= 510lr
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Fig. 4. Influence of the mass content on the evolution of
the plane Gaussian pulse perturbation.
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Fig. 5. Influence of the three-fraction content of the
disperse phase on the evolution of the plane Gaussian
pulse perturbation.
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observed at characteristic unity values for each of the
three frequencies   and  = 1.

Next, we study the propagation patterns of low-
amplitude pulse perturbations in a three-fraction,
vapor–gas–drop mixture with solid particles upon
phase transitions. The calculations were performed
with dispersion relation (4) and the fast Fourier trans-
form software code [15].

Figure 4 shows the influence of the mass content of
inclusions on the evolution of a Gaussian pressure
pulse in a mixture of air with vapor, water drops, and
aluminum and carbon black particles with the mass con-
tent of aluminum particles  carbon black parti-
cles  and water drops  (curves (1));

  and  curves (2));
  and  (curves (3)). The

radius of inclusions was  m for aluminum par-
ticles,  m for carbon black particles, and

 m for water drops. The calculated profiles
were plotted at distances of 4 and 8 m from the pulse
radiating point, respectively.

Clearly, the increase of in the inclusion mass con-
tent leads to both increased attenuation and a stronger
change in the shape of the pressure pulse due to the
larger dispersion of the speed of sound and dissipation
of waves.
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Figure 5 shows the influence of the three-fraction
content of the disperse phase on the evolution of the
Gaussian pressure pulse in a mixture of air with vapor,
water drops, aluminum and carbon black particles for the
mass content   and  (curve (1)); in a
two-fraction mixture of air with aluminum and carbon
black particles for the entire content of particles

 (curves (2)); and in a monodisperse mixture
of air with vapor and water drops with the mass con-
tent of drops (curves (3)). The radius of inclu-
sions was  m for aluminum particles,

 m for carbon black particles, and  m
for water drops. The calculated profiles were plotted with
dispersion relation (4) and the fast Fourier transform
software code [15] at distances of 4 and 8 m from the
pulse radiating point, respectively.

The pulse attenuation in the air mixture with vapor,
water drops, and aluminum and carbon black particles
with the entire mass content  is larger than that
in the two-fraction gas mixture with aluminum and
carbon black particles and lower than in the air mix-
ture with vapor and water drops. A considerable
change in the pulse shape is observed for the air mix-
ture with vapor, water drops, and carbon black and
aluminum particles, as well as for the air mixture with
vapor and monodisperse drops, due to dispersion of
the speed of sound and dissipation of perturbations.
Therefore, the presence of contaminations (for
instance, aluminum and carbon black particles) sig-
nificantly influences the dynamics of small waves in
air fogs.

CONCLUSIONS

The present work contains a closed system of linear
differential equations of motion for a multifraction gas
mixture with vapor, liquid drops, and solid particles of
different sizes and with different thermophysical prop-
erties. We deduced the dispersion relation governing
the propagation of plane, spherical, and cylindrical
low-amplitude perturbations. The dispersion curves
were calculated. We obtained the low- and high-fre-
quency asymptotes for the linear attenuation coeffi-
cient, as well as the equilibrium and frozen speeds of
sound. We analyzed the influence of the disperse
phase parameters for a three-fraction gas mixture with
aluminum and carbon black particles, as well as with
water drops on dissipation and the dispersion of
acoustic waves. We found that the presence of con-
taminants (solid particles) substantially influences the
weak wave dynamics in vapor–gas–drop mixtures, a
fact that should be taken into account in the develop-
ment of methods of acoustic testing of multifraction
gas mixtures.
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