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Abstract—A new analytical solution to the problem of wave heat transfer in the orthotropic half-space under
the action of a time-dependent point heat f lux is obtained and studied. The heat transfer is described by a
hyperbolic heat conduction wave equation, in which the directions of the thermal conductivity coincide with
the Cartesian coordinate system axes (the orthotropic solid). The obtained analytical solution has allowed us
to trace the behavior of the point temperature profile in the vicinity of the initial time moment during a num-
ber of relaxation times, which is impossible to do when the classical parabolic heat conduction equation is
used.
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INTRODUCTION
The wave heat transfer in solids is described by the

wave heat conduction equation of a hyperbolic type,
constructed on the basis of the Vernotte–Cattaneo–
Lykov (VCL) law [1, 2]:

(1)

where q is the heat f lux rate vector, r is the spatial posi-
tion vector, Λ is the thermal conductivity tensor, T  is
temperature,  is the relaxation time—the heat f lux
delay time relative to the temperature gradient. Since
for solids,  has an order of  s, the heat
conduction law (1) is observed at very high heating
rates 

The presence of such a small multiplier creates
additional difficulties for the solution of wave heat
transfer problems, since very large or very small num-
bers arise when one divides or multiplies by  which
results in inadequate results. Therefore, it is conve-
nient to solve the wave heat transfer problems in
dimensionless variables [3, 4].

Analytical methods for the solution of heat transfer
problems are widely presented in the scientific litera-
ture (e.g., [1, 4–6] and others); however, there are
many fewer publications concerning the wave heat
transfer [2, 7]. Studies on the heat transfer in anisotro-
pic nonlinear media are also very rare [8–12]. At the
same time, the research on wave heat transfer is
extremely important for the simulation of fast pro-
cesses, for the study of the interaction between plasma

and solids, and for relativistic mechanics, since the
main errors in forming the temperature profile arise at
small time intervals in the vicinity of the initial
moment and the solid boundary. Therefore, the ana-
lytical solution of the wave heat conduction equation
in the vicinity of the spatial-time boundary makes it
possible to obtain an essentially nonstationary tem-
perature field with no systematic errors. It should be
noted that it is nearly impossible to do this experimen-
tally.

In this work, a new analytical solution to the prob-
lem of heat transfer in a semi-infinite orthotropic solid
under the action of a time-dependent point source of
heat was obtained via the subsequent application of
the Fourier transform with respect to the longitudinal
variable and the Laplace transform with respect to
time. With the help of this solution, the temperature
fields are obtained at the time moments equal to several
relaxation times. The temperature profiles show that,
if the surface temperature exceeds the vaporization
(sublimation) temperature, then the crater inside the
solid must form with a shape similar to that of the tem-
perature profile.

PROBLEM STATEMENT
Let us consider the following problem of the wave

heat transfer in an orthotropic half-space under the
action of a time-dependent point heat source (Fig. 1):
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Fig. 1. Calculation region.
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Here,  is the Dirac delta function.
The additional constraint conditions are as follows:

(6)

For the components of the thermal conductivity
tensor

(7)

in the orthotropic case, where the angle ϕ between the
 axis and the principal axis  is zero, we have

(8)

In (7) and (8),   are the principal components
of the thermal conductivity tensor, which is diagonal.

Let us reduce the heat conduction equation (2) to a
dimensionless form, dividing it by  and introducing
the new spatial variables:

(9)

where L is an arbitrary thermal conductivity. Then,
multiplying the obtained equation by  and introduc-
ing the dimensionless variables
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where  we obtain the equation

(11)

Similarly, introducing variables (10) and taking
into account boundary condition (3), we come to

(12)

If we take the function
(13)

where  is a constant,  = W/m2, r is a dimension-
less constant, then (12) takes the form

(14)

Introducing the difference

(15)
we obtain relations (11) and (14) with respect to

 then, redesignating  by
 we come to the problem
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METHOD OF SOLUTION
To solve problem (16)–(20), let us first apply the Fou-

rier transform  = 
with respect to the variable  and then the Laplace

transform  =  with
respect to variable  We will obtain the problem for an
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ordinary second-order differential equation in a semi-
infinite bar with the second-type boundary condition:

(21)

(22)

(23)

Taking into account that the fundamental solution
with a positive exponent is equal to zero, we get the
following solution to problem (21)–(23)

(24)

where

Let us execute the inverse Laplace transform using
the Mellin transform [2]

where    is the
Heaviside function  at  and  at

  is the zero-order Bessel function of the first
kind; the symbol * stands for the convolution operation.

Thus, the inverse Laplace transform of expression
(24) results in the following expression

(25)

The inverse Fourier transform of (25), with the inte-
grand parity with respect to  taken into account, gives
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(26)

Expression (26) is the analytical solution to prob-
lem (16)–(20) of the wave heat transfer in the ortho-
tropic half-space under the action of a nonstationary
point source of thermal energy.

It is impossible to calculate the improper integral in
(26) with respect to the variable ω from the Bessel
function  for all values  in radicals;
however, we can use the asymptotic formulas for τ0( )
with small arguments, e.g., those less than 1, and with
large arguments.

To extract these asymptotic formulas, let us consider
the function  at  and its approxima-
tions at  and  (Fig. 2). The zero-order Bessel
function of the first kind is well approximated by the func-

tions  at  and  at 

(27)

(28)

Since we consider fast processes with a duration of
nanoseconds, we will use the small limiting values

 i.e., the asymptotics  ≈ 

where  when integral (26) is
calculated with respect to the variable ω. In this case,
expression (26) takes the form
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Fig. 2. Comparison of functions: (1)  (2) 

and (3) 
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Fig. 3. Dependence of the temperature on  for three va-
lues of time: (1)  = 1, (2)  = 2, and (3)  = 3.
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Fig. 4. Dependence of the temperature on  for three va-
lues of time: (1)  = 1, (2)  = 2, (3)  = 3.
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The final solution to problem (16)–(20) for the
arguments of the zero-order Bessel function of the
first kind, which do not exceed 1, will be (29)

(29)

where

ANALYSIS OF RESULTS
With expression (29), some results were obtained at

very small time values, which have the same order of
magnitude as the relaxation time. Figures 3 and 4 show
the results for  The input data took

the following values:  W/m2, 

  J/(m3 K),  W/(m K);
 W/(m K), the initial temperature of the

solid is zero.
Figure 3 demonstrates the dependences of tem-

peratures on  for three values of time. By virtue of the
high values of the heat f lux rates  applied at the
point   the temperature at this point and in
some its vicinity increases quickly and exceeds 1000 K
already at  therefore, the phase transforma-
tions with formation of a crater can occur at 

 Along the variable  the temperature sharply
decreases and becomes close to zero already at 
For the greater values of time  the temperature
profiles have the same behavior.

When  the temperature dependence con-
verges to the ordinate axis (the temperature axis);
therefore, a question arises as to whether the derivative

 is zero, i.e., if the temperature profiles are

rounded or sharpened at the maximum point 
 Differentiating expression (29) with

respect to the variable  we obtain the function equal
to zero at  This means that the tangents to the
curves   at the point  T =

 are horizontal and, hence, the derivative  at

this point is continuous,  =  There-
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fore, the graphs of temperatures at the point 
T =  are rounded.

Figure 4 shows the dependences of temperatures on
 On the line  the temperature profiles 

nearly coincide with the ordinate axis (the tempera-
ture axis); however, at  the temperature profiles
approach angularly the temperature axis, since the

derivative  At  

CONCLUSIONS
A new analytical solution to the problem of heat

transfer in the orthotropic half-space under the action
of a point source of thermal energy was obtained. This
solution makes it possible to determine accurately the
temperature field in the vicinity of the initial time
moment, where, as a rule, the solutions have consider-
able errors. Since those are fast processes that were
considered, the test results are obtained for the time
moments proportional to the relaxation time

 and they showed that the tem-
perature at the point of a lumped source of heat can
quickly reach the temperature of phase transforma-
tions (for example, the sublimation temperature) with
the formation of a crater.
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