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Abstract—An analytical solution is obtained for the Boltzmann kinetic equation for ions in the plasma of its
gas with allowance for the processes of resonant charge exchange and elastic ion scattering on the atom. The
cross section of differential elastic scattering was assumed to be isotropic in the system of the mass center, and
the resonant charge exchange process is independent of the elastic scattering. It is shown that the ion velocity
distribution function is determined by two parameters and differs significantly from the Maxwellian one. The
allowance for elastic scattering with these assumptions leads to a change in the ion angular distribution and
also to a decrease in the average ion energy due to the transfer of part of the ion energy to atoms upon elastic
collisions. The calculated values of the drift velocity, the average energy, and the coefficient of transverse dif-
fusion of He+ ions in He, Ar+ ions in Ar are compared with the known experimental data and the results of
Monte Carlo calculations; they show good agreement.
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INTRODUCTION
The study of the ion distribution function (IDF)

over velocity is of interest in the study of plasmachem-
ical reactions involving ions, the determination of the
mobility ions in a plasma object, the heating of the neu-
tral plasma component, and other cases. The technical
applications include modern plasma nanotechnologies,
fine-ion cleaning of product surfaces, the technology of
selective etching, and the creation of specific reliefs on
the surface by ion beam bombardment [1].

The ion drift in direct-current gas discharge plasma
has been theoretically studied by a number of authors
[2–15], but they are most fully represented in [5–8,
14, 15]. In all of these works, when the IDF was calcu-
lated, only the resonant charge exchange was taken
into account.

A series of papers considered various aspects of the
ion drift in low-pressure capacitive discharge plasma
[16–18], ionization in the near-cathode layer of a glow
discharge in argon [19], the distribution function of
molecular nitrogen ions in a direct-current glow dis-
charge, and the microwave discharge on a mixture of
nitrogen with hydrogen [20].

In [21–23], a probe method was developed to mea-
sure the electron distribution function in anisotropic
plasma with a f lat probe, which was modified and suc-
cessfully applied for IDF measurement in a strong

field in Hg vapors [14] and in an arbitrary field for He+

and Ar+ ions [24]. It was shown that, in the plasma of
inert gases and Hg vapors at low pressures, when there
are no processes for the formation of molecular ions
with the participation of atomic ions, the IDF for its
ions in a wide range of the parameter E/P (where E is
the electric field strength and P is the pressure) varia-
tion is determined exclusively by resonant charge
exchange. The parameters of ion drift (mobility, drift
velocity) can be calculated with high accuracy, and
elastic collisions can be disregarded.

At the same time, it is known [25, 26] that the elas-
tic scattering cross section of the ion on its own atom
at the energies of the relative motion on the order of
thermal values for a series of elements is comparable
with the cross sections of the resonant charge
exchange, and one could expect that elastic scattering
will have a certain effect on IDF, even in its gas. In
particular, elastic collisions can lead to IDF isotro-
pization. The ion diffusion coefficient across the elec-
tric field and the ion mobility were measured experi-
mentally [27–29]. It is well known that, according to
these measurements, one can estimate the average
energy in the drift direction [30]. In [30–33], the
effect of elastic scattering on such characteristics of the
IDF as the drift velocity along the field and the mobil-
ity, the diffusion coefficients, the average energy along
and across the field, etc., was studied by the IDF
162



EFFECT OF ELASTIC COLLISIONS ON THE ION DISTRIBUTION FUNCTION 163
decomposition method over time. It was shown that
the average ion energy in the plane orthogonal to the
direction of the electric field differs significantly from
that calculated from the gas temperature and increases
with an increase in the parameter E/N, where N is the
concentration of neutral atoms). At the same time,
with only the process of resonance charge exchange
taken into account and without the resulting heating of
the gas, the average ion energy in the plane orthogonal
to the electric field at any value of the parameter E/N
is close to the corresponding value calculated from the
gas temperature. It should also be borne in mind that
the coefficient of the proportionality between the ratio
of the diffusion coefficient to the mobility and the
average energy in the direction of drift depends on the
form of IDF [30–33], which is determined by the
parameter E/N; at large values, it differs drastically
from the Maxwellian parameter [14].

When ion beams are used in the technologies of
selective etching and the creation of reliefs on the sur-
face due to ion beam bombardment, IDF over veloci-
ties in the plane orthogonal to the direction of the
pulling field is of importance, since it determines the
spatial resolution of the given technology.

Thus, the goal of this paper is to solve the relevant
problem of estimating the effect of elastic collisions of
ions with atoms on the form of IDF in gas-discharge
plasma in strong and moderate fields.

THEORETICAL STUDY. BASIC RELATIONS
Let us consider the steady-state ion velocity distri-

bution under the following conditions:
• the velocity distribution of gas atoms is Maxwellian;
• the motion of ions occurs in their gas with a low

ionization degree;
• the dominant processes forming IDF over velo-

cities are resonant charge exchange and elastic scatter-
ing of ions on atoms;

• there are no spatial gradients of the plasma
parameters.

The last condition is necessary, since otherwise the
coordinates will depend on the IDF.

In steady-state plasma under these assumptions,
the Boltzmann equation has the form [3]

(1)

where e and m are the charge and mass of the ion; E is
the electric field strength; fi is the IDF over velocities;
Si is the collision integral, which can divided into two
terms Sci and Sei, the first of which corresponds to the
charge exchange and the second term is the elastic
scattering of the ion on its atom. We consider first the
quantity Sci. Considering that the ion arising as a result
of the charge exchange has the velocity of the atom, we
define the collision integral as follows [14, 15]:

∇ =( ) ,i i
e f S
m
E

v

HIGH TEMPERATURE  Vol. 56  No. 2  2018
where  is the velocity of the ion,  is the velocity of
the atom;  is the Maxwellian velocity distribu-
tion of atoms (normalized to unity),  is the absolute
value of the relative velocity of the ion and atom before
collision, σc is the cross section of the resonant charge
exchange; IDF is normalized to the concentration. It
is known that the resonant charge exchange cross sec-
tion σc in the energy range of up to several electron
volts weakly depends on the relative energy of the ion
and atom. In addition, it was shown in [14, 15] how
one can obtain the solution of the Boltzmann equation
by taking into account such a dependence on IDF with
the constant σc. Therefore, we first solve the posed prob-
lem for the constant section and then formulate the rules
for taking into account the dependence of σc on the
energy of the relative motion of the colliding particles.

It was shown in [15, 34] that the expression for
 has the form

(2)

Here,   

is the relative velocity of the ion and atom averaged over
the distribution function of atoms; k, Ta are the Boltz-
mann constant and temperature of atoms, respectively.
We note that, in limiting cases  for
the absolute value of the relative velocity of the ion and
atom from (2), we have  and

, respectively. The first of these rela-
tions corresponds to the case of the strong field, when
the ion velocity before the collision is much higher
than the atom thermal velocity; the second is close to
the inverse case of the weak field, when the relative
velocity of the atom and ion is determined by the aver-
age atom thermal velocity.

The following relation holds for  with an
accuracy on the order of 10% [15]

(3)

In (3),  is the square of the average ion velocity,
which depends on the desired distribution function; ni
is the ion concentration. We note that the following
condition holds for 
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We now consider the collision integral Sei corre-
sponding to the elastic scattering of the ion on its
atom. It is known that this process is described well by
the scattering indicatrix isotropic in the coordinate
system of the center of mass in the energy range of up
to several tens of electron volts [26, 35, 36]. Collisions
with the deviation of the ion by small angles due to the
interaction of the ion charge with the induced electric
moment of the atom occurring at large impact parame-
ters weakly affect the IDF, since they occur with a small
change in the velocity [37], so we will disregard them. In
addition, polarization capture can occur at low ion
energies [38]. At the same time, the corresponding dif-
ferential cross section is apparently also close to the iso-
tropic one in the system of the center of mass.

Then, since the atom moves before the collision
with the arbitrary velocity va, the probability density

 of the fact that an ion having velocity 
will acquire velocity vi as a result of collision with the
atom can be written in the following form [34]:

where 
For Sei, we have

(4)

Integrating (4) over va with account for the weak
dependence of the section  on the velocity in
comparison with the Maxwellian function [34], we
obtain

where 

Thus, equation (1) can be written in the form

(5)
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where    

θ is the angle between the ion velocity and the vector
of the axial electric field. It was shown in [14, 15] that,
at the approximation of the charge exchange cross sec-
tion by formula [38]

where Ec is the energy of the relative motion of the ion
and atom, the allowance for the weak dependence of
the charge-exchange crossection on the relative veloc-
ity of the ion and atom with a sufficient degree of accu-
racy is reduced to the replacement of the parameter α0

by , where

and the velocity  corresponds to the relative energy
of the ion and atom of 1 eV.

In the collision integral, the ionization and elec-
tron-ion recombination processes are disregarded,
because their characteristic time under these assump-
tions is large in comparison with the time of the reso-
nant charge exchange.

The elucidation of the effect of elastic collisions on
IDF is mainly interesting in medium and strong fields,
since this is the situation that is implemented in differ-
ent plasma technologies. With small fields, the allow-
ance for elastic collisions apparently leads to IDF
isotropization and a decrease in the average energy,
i.e., the IDF becomes closer to the Maxwellian func-
tions with the atom temperatures. Analysis of the sec-
ond term on the right-hand side of Eq. (5) leads to the
conclusion that the main contribution in these condi-
tions is made by ions, the velocity of which signifi-
cantly exceeds the average atom velocity. In [15, 24],
the IDFs measured by a f lat one-sided probe and
those calculated without consideration of elastic col-
lisions were compared at moderate fields (E/P <
20 V/cm Torr.) It turned out that the calculated and
measured IDFs coincide within the measurement error
limits estimated by the authors of approximately 10%.
The weak effect of elastic collisions on the IDF type at
the motion of the ion in its gas is also confirmed by the
data of [26, 37]. In this case it is possible to find a solu-
tion to Eq. (5) (normalized to unity) by the method of
successive approximations

As  we take the IDF satisfying the equation
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(6)

and the function  at  is found as the solution of
the following differential equation:

(7)

As can be seen from the following, the first appro-
ximation of the above method describes fairly well the
exact solution that is in agreement with that noted ear-
lier about the weak effect of elastic collisions on the
IDF type in the consideration situation.

The solution of Eq. (6) F0i is taken in the form
obtained for the IDF in the case of resonant charge
exchange [15] but it takes into account that, on the
left-hand side of this equation, the second term, in
addition to the resonance charge-exchange cross sec-
tion, also contains the elastic scattering cross section
(see Appendix 1). The solutions of Eqs. (6) and (7) are
also given in Appendix 1.

Since, from the point of view of the effect of elastic
collisions, we are interested in large values of the
parameter E/P, we consider this situation separately.
The condition  is then fulfilled, and 
is determined by relations [14]

(8)

where  is the constant factor and  is the aver-

age ion velocity,  

   

In addition, in the strong-field approximation, the
expression for functions  is [34]
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ϕ is the difference of azimuthal angles of vectors 
and μ, η are cosines of polar angles of velocities ,
respectively.

One can then obtain the solutions of Eqs. (6) and
(7) in a simpler form (see Appendix 1).

In the conclusion of this part of the paper, we
obtain formulas for calculation of the ion diffusion
coefficient in the plane orthogonal to the electric field
in the plasma Dtr. This value is largely determined by
the elastic collisions of ions with atoms, and there are
presently extensive arrays of experimental data,
including those in inert gases [27–29]. Under condi-
tions in which the ion collision frequency does not
depend on its velocity or in which the IDF is the Max-
wellian, the Einstein relation  where Ttr
is the ion temperature in the plane XY and К is the
mobility of ions, holds. In the general case, the
inequality  occurs [32, 33].

To find the diffusion coefficient Dtr, one can apply
the described method (e.g., in [39, 40]). We consider
the situation in which there is a small ion concentra-
tion gradient in steady-state plasma. We represent the
IDF in the form of the expansion

where  is a scalar and  at j > 0 are vectors.
The function  is normalized to unity, and 
has the dimension s3/m2. Substituting this expansion
into the Boltzmann equation, we obtain the equations
for the first two coefficients  and  [40]:

(10)

where  is the operator of the collision integral and

The diffusion coefficient Dor is expressed by the
relation [39]
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As the solution of the first of Eqs. (10), we can take
the function fni(v). The solution of the second equation
(10) for the most interesting case of the strong field is
given Appendix 2. If we disregard the elastic scattering
of ions on atoms, then, in the limiting case of the
strong field (at ), the following relation is
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Fig. 1. Dependence of the ratio of total cross sections σel
and of resonance charge exchange σex for Ar+ in Ar with
the use of data on the elastic scattering cross-section from
[26], and the resonance charge exchange cross-section
from [43] (1) and [26] (2).

1

0.001 0.01 0.1 1 10
Erel, eV

1
2

σel/σex

Fig. 2. Comparison of the experimental data on the drift
velocity of Ar+ in Ar with calculations by the elaborated
theory: (1) calculations of the authors; (2, 5) experiment
[44, 46], respectively; (3, 4) experiment on the determina-
tion of mobility [38, 45].
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Fig. 3. Comparison of the experimental data on the drift
velocity of He+ in He with calculations by to the elaborated
theory: (1, 5) experiment [44, 47]; (2) calculations by the
authors; (3, 4) calculation and measurement of the mobil-
ity [48], respectively.
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obtained from formulas (10) and (11) with allowance
for formula (14) from Appendix 2

which coincides with the result given in [40] for the
case of the resonant charge exchange of an ion on its
own atom.

Thus, a solution of the equation for IDF in its gas
that takes into account elastic scattering ions on atoms
is obtained, as are the relations for calculation of the
quantities characterizing the motion of the ion in its
gas with allowance for elastic collisions.

DISCUSSION OF RESULTS
AND COMPARISON WITH DATA

OF OTHER AUTHORS
We note that the obtained formulas for IDF at

 coincide identically with the correspond-
ing expressions [14, 15], where only the resonance
charge exchange process was taken into account. Cal-
culations according to the obtained formulas were car-
ried out for Ar+ in Ar and He+ in He, since namely for
these ions it was possible to find reliable data on the
elastic scattering cross sections of ions on their atoms
[25, 26, 41]. Data on the resonance charge exchange
cross sections of Ar+ in Ar were taken from [26, 42,
43], and those for He+ in He are from [42, 43]. Note
that the sections from the last two works differ slightly
for Ar+ in Ar and for He+ in He, while the cross section
of resonant charge exchange given in [26] for Ar+ in Ar
is noticeably lower. This leads to a significant differ-
ence in the dependences of the ratio of the elastic scat-
tering cross section of the ion on the atom to the reso-
nant charge exchange cross section on the relative
energy of ion and atom for Ar+ in Ar calculated from
data [42, 43] and [26], particularly in the low-energy
region (Fig. 1). As seen below, the ion energy distribu-
tion function values calculated from these sections dif-
fer markedly.

To verify the obtained formulas, the following cal-
culated motion characteristics were compared with
experimental data and the results of numerical simula-
tion: plasma ions, the drift velocity; the average
energy; and the ratio of the diffusion coefficient in the
plane orthogonal to the electric field vector to the ion
mobility. Figures 2 and 3 show such a comparison for
the drift velocity of Ar+ in Ar and for He+ in He in a
wide range of parameter E/N values with data from
[44–46] and [44, 38, 46, 47], respectively. It can be
seen that the experimental and calculated values of the
drift velocity are in good agreement. Figures 4 and 5
show the comparison of the calculated dependence of
the average ion energy on the parameter E/N for Ar+

in Ar and for He+ in He, respectively, with the results
of the numerical Monte Carlo simulation [47, 26].
Analytical and numerical computations coincide sat-

[ ]ε λ= λ + ε ≈
π π
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Fig. 4. Dependence of the average energy of the Ar+ ion in
Ar on parameter E/N at Ta = 300 K; (1) calculation by ana-
lytical formulas with allowance for elastic collisions [26],
(2) disregarding elastic collisions [43], (3) Monte Carlo
calculation by the authors with allowance for elastic colli-
sions, (4) calculation according to [26].
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Fig. 5. Calculations of dependence with allowance for elas-
tic collisions of the average energy of the He+ ion in He on
parameter E/N at Ta = 300 K: (1) Monte Carlo method
according to data [26], (2) according to the elaborated the-
ory with cross sections from [41, 43], (3) Monte Carlo cal-
culation by the authors.
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Fig. 6. Dependence of the ratio  for Ar+ in Ar on
the parameter E/N at Ta = 294 K: (1) Monte Carlo calcu-
lation according to data [26]; (2) calculation according to
the given theory with cross sections from [26]; (3, 4) exper-
iments [28, 48], respectively.
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Fig. 7. Dependence of the ratio  for He+ in He on
the parameter E/N at Ta = 294 K: (1) experiment [29];
(2) Monte Carlo calculation according to [26]; 3—calculation
according to the elaborated theory with cross sections from
[41, 43]; (4) with the elastic scattering cross section reduced by
1.5 times; (5) calculation by the method of momenta [49].
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isfactorily. The average energy of the Ar+ ion calcu-
lated in this work is somewhat lower (by 10–15%) than
that obtained by numerical simulation [26], although
the course of curves coincides. Analogous features of
the difference of the average He+ ion energy are also
seen in Fig. 5, where calculations by analytical formu-
las are compared with numerical data [47]. The differ-
ence from the case of Ar+ is that the same sections of
resonant charge exchange and elastic scattering for
argon were used in the numerical and analytical calcu-
lations [26], but the author [47] took sections from his
own calculations for helium. In this work, the reso-
nance charge exchange cross sections are taken from
[43], and those for elastic scattering are from an exper-
imental work [41]. This may have led to differences in
the calculations of the average He+ ion energy.

Figures 6 and 7 show a comparison of the quantity
 with experimental data [28, 29, 48], numericaltreD K
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Monte Carlo calculations [47, 26] and momenta
method [49] for cases Ar+ in Ar and for He+ in He. As
already noted, the most interesting is the effect of elas-
tic collisions on IDF at large fields, and the formula
(14) was applied in calculations in this work (see
Appendix 2), which, in the considered cases, Ar+ in Ar
and for He+ in He, holds at –300 Td. It is
seen from the data in Fig. 6 that the authors’ calcula-
tions correlate well with the Monte Carlo calculations
[26] and experimental data [48]. At the same time,
both curves in the region of large values of the param-
eter E/N lie above the experimental points [28]. In the
authors’ opinion, this may indicate a certain inade-
quacy of the used expression for the energy depen-
dence of the relative motion of the elastic scattering
cross section of the Ar+ ion on the Ar atom taken in
both calculations from [26]. As for the data in Fig. 7,
the authors unfortunately did not find Monte Carlo

200E N >
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Fig. 8. Ion energy distribution function for Ar+ in Ar and
He+ in He for different gas temperatures and values of
parameter E/P calculated without elastic collisions of ions
with atoms (1–4) and with allowance for them (5–8): cross
sections of resonant charge exchange from [42], cross sec-
tion of the elastic scattering for Ar+ from [26], for He+ from

[41]; (1, 5) He, Ta = 600 K,  = 200  Torr; (2, 6) Ar, 300,

100; (3, 7) He, 600, 400; (4, 8) Ar, 300, 200.
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Fig. 9. IDF of Ar+ ions in Ar over the motion directions at

the ion energy ε = 0.03 eV, E/P = 200  Torr, Ta = 300 K

calculated without elastic collisions of ions with atoms (1)
and with allowance for them (2).
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calculations of the quantity  for He+ in He at
E/N > 300 Td. However, it can be seen that numerical
and analytical calculations yield an underestimated
result as compared with experiments.

Let us now turn to the IDF calculations. They show
that the ion energy distribuiton function upon inclu-
sion with consideration of elastic collisions becomes
less high-energy (Fig. 8), although the differences
between both IDFs are small. Thus, at the same nor-
malization of both functions (without elastic collisions
and with allowance for with them) in the low-energy
region, the IDF becomes higher, and it becomes lower
in the high-energy region. These features are true at
any value of the parameter ε0, since the IDF is Max-
wellian with the atom temperature in the absence of
the field, and the presence of the electric field only
increases the average ion energy, such that it always
exceeds the atom temperature. Thus, the energy f lux
upon elastic collisions of the ion with the atom is
directed toward the atoms: the atoms are heated, and
the ions are cooled. In addition, it can be noted that
the IDF difference calculated with allowance for elas-
tic collisions and without them increases with a
decrease in ion energy. This is obviously related to the
fact that the cross section of elastic collisions falls rel-
atively rapidly upon an increase in the relative energy
of the colliding particles. However, at a decrease in the
electric field, this difference will also decrease starting
with some value, since the IDF is close to Maxwellian
in the absence of the field, regardless of the allowance
for the elastic collisions.

Let us consider how the IDF changes along the
motion directions at  (this, as already men-
tioned, is the most interesting situation, which corre-
sponds to moderate and strong fields). It is seen from
the data in Fig. 9, which shows calculations for Ar+ in Ar
at E/P = 200 V/cm Torr for the ion energy ε = 0.03 eV,
that the IDF at low energies becomes more elongated
upon the inclusion of elastic collisions, and it is less
elongated in the direction of the field at high energies
(much higher than the average atomic thermal
energy). Moreover, it follows from the same data that
at the deviations low energies are maximal at ion
motion along the field. With an increase of the angle
between the vector of the electric field and the ion
velocity, the IDF difference rapidly falls; at an angle
on the order of 35°–40°, it is almost invisible. Let us
consider the physical origin of this IDF behavior.

In the absence of elastic collisions in strong and
moderate fields, the IDF is strongly elongated at high
energies (on the order of several electron volts) and
weakly anisotropic at energies in the region of the IDF
maximum [14, 15, 24] (i.e., at the thermal energies of
the atoms). The latter is due to the fact that this group
is formed by ions that were just born as a result of res-
onance charge exchange and did not have time to
accelerate in the electric field. With allowance for elas-
tic collisions, the angular distribution of ions at low

treD K

0 1ε <
energies is formed first by the creation of slow ions at
charge exchange (which has a weak anisotropy) and,
second, due to the energy relaxation of ions at elastic
collisions. Since the losses of the energy are significant
in collisions with their own atoms (the mass ratio is
equal to unity), ions quickly relax over the energy
(upon a shock close to the central one, the ion loses
almost all energy and becomes thermal). As a result,
HIGH TEMPERATURE  Vol. 56  No. 2  2018



EFFECT OF ELASTIC COLLISIONS ON THE ION DISTRIBUTION FUNCTION 169

Fig. 10. IDF of Ar+ ions in Ar over the motion directions

at ε = 2 eV, E/P = 200  Torr, Ta = 300 K: (1, 2) the same

as in Fig. 9.
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Fig. 11. Comparison of the IDF of Ar+ in Ar calculated
from different cross sections of resonant charge exchange

at E/P = 200  Torr; Ta = 300 K: (1, 2) disregarding elastic

collisions; (3, 4) with allowance for them; cross sections of res-
onant charge exchange from [42] (1), [26] (2, 4) and [43] (3).
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their angular distribution is less elongated than that
before the collision (when they had much higher
energy) but remains more elongated than that of those
of the ions at the low energy. If we consider the angular
distribution of ions at high energies, then this effect of
energy relaxation is less pronounced, since, as can be
seen from data in Fig. 2, the elastic scattering cross
section rapidly (in comparison with the cross section
of the resonance charge exchange) decreases with an
increase in the relative energy of the ion and the atom.
At relatively high energies, the IDF isotropization
effect is dominated by elastic collisions, since the
HIGH TEMPERATURE  Vol. 56  No. 2  2018
arrival of ions with a more anisotropic distribution due
to energy relaxation is inhibited by a rapid decrease in the
cross section of elastic scattering with an increase in ion
energy. This is confirmed by the data in Fig. 10, which
shows the IDF for Ar+ in Ar at E/P = 200 V/cm Torr for
ion energy ε = 2 eV. The same figure shows that, at
large angles (larger than 45°) between the direction of
the electric field and the ion velocity, the IDF calcu-
lated with elastic collisions exceeds the IDF without
them. This is also a consequence of the isotropization
at elastic collisions; however, this excess is insignifi-
cant (the data scale in Fig. 10 is logarithmic). Thus, a
more elongated ion distribution along the direction of
the motion at low energies is formed and less elon-
gated at high ones.

Finally, the data given in Fig. 11 illustrate the effect
of the charge exchange cross section on the IDF type.
Here, we present functions of the Ar+ ions in Ar calcu-
lated with elastic collisions and without them for sec-
tions of resonant charge exchange taken from [26, 42,
43]. It is seen that the IDF, which was calculated with
the crosssection from [26], is higher energy one. This
is obviously connected with the fact that this cross section
is smaller than the analogous ones given in [42, 43]
(which are close), and, hence, the ion energy, which it
receives by accelerating in the electric field, is higher.

CONCLUSIONS

An analytical theory has been developed for calcu-
lation of the total IDF in its own gas with allowance for
processes of resonant charge exchange and elastic col-
lisions of ions with atoms. The theory describes well
the known experimental data on the drift of ions in the
plasma of inert gases. The calculations based on the
obtained formulas at different values of the parameter
E/N of such quantities as the average ion energy and the
ratio of the diffusion coefficient in the plane orthogonal
to the field to the mobility are in agreement with data of
the numerical Monte Carlo simulation.

The energy dependences of the IDF for Ar+ in Ar
and He+ in He were calculated, and a series of features
was revealed. Namely, in comparison with the IDF
without elastic collisions, this function is less high-
energy due to losses of the energy upon the elastic col-
lisions of ions with atoms, although the IDF differ-
ences are small.

An analysis of IDF changes along the directions of
motion at large fields was carried out:

• at low energies comparable with the thermal
energy, the energy distribution becomes less isotropic
due to the fast relaxation of ions from the region,
where the distribution over the directions is strongly
elongated in the direction of the field;

• at high energies, on the contrary, the IDF over
directions with allowance for elastic scattering becomes
less elongated, since the effect of the energy relaxation
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decreases due to the relatively fast decrease in the elastic
scattering cross section with an increase in ion energy.

APPENDIX 1
To solve Eqs. (6) and (7), we use the method proposed

in [15]. Passing to the dimensionless variable ,
with allowance for the dependence of the parameter α0 on
the ion energy (see above), we can obtain

where
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where

In the case of the strong field, when  and
, and relations (8) and (9) are satisfied for
 and , respectively, we have

(12)

APPENDIX 2
As before, we first consider the case of constant

charge-exchange cross sections, and then, to account
for this dependence, we use the rule formulated above.

We write the projection of the second of equations (10)
on the x (or y) axis:

We introduce the dimensionless ion velocity
, multiply the equation by , and integrate

over . Taking into account that, in the strong field
 and after integration over wx the terms in

the collision integral corresponding to the ion arrival
in the phase space element as a result of charge
exchange and elastic scattering vanishes, since the
atom velocity distribution function and the indicatrix
of elastic scattering are even functions of wx, we obtain
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(13)

where  is the ion run length before charge
exchange, the parameter ε0 is determined above,

Equation (13) has the solution satisfying zero con-
ditions at :

(14)

where  We recall that,

during the derivation  one should take the solu-
tion fni as f (0) using formulas (8) and (12) for the case of
the strong field.

The dependence of the cross section of the reso-
nant charge exchange on the energy of the relative
motion of the ion and atom is taken into account by
substituting the parameter ε0 for the function 
and the substitution of the cross section σc for 
under the integral sign in the formula for 

Using the well-known formula for the drift velocity
of ions in thei ownr gas at high fields [38] and the
determination of mobility, one can obtain from (14)
with allowance for the dependence of charge exchange
and elastic scattering cross sections on the relative
velocity of the colliding particles,

where wev is the average dimensionless ion velocity. In
the derivation of this relation, it is also taken into
account that, in the presence of elastic collisions, the
formula for the drift velocity in the strong field is
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transformed corresponding to the increase in the total
collision cross section of the ion with the atom.
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