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Abstract—We analyze modern methods for calculating heat and hydrodynamic f low parameters in a bound-
ary layer during the laminar–turbulent transition. The main approaches for describing the phenomenon of
laminar–turbulent transition are examined. Each approach is analyzed. The manner in which different fac-
tors influence the laminar–turbulent transition is studied. An engineering model of the laminar–turbulent
transition in a high-velocity f low is presented.
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INTRODUCTION
The problem of hypersonic velocity is becoming

increasingly important due to active development of
the aviation and space industries. Engineers and sci-
entists are making attempts to create a vehicle that
operates at Mach numbers M > 6 at high altitudes with
the required strength parameters. Flights with hyper-
sonic velocities in dense atmospheric layers cause new
problems, which must be solved. The shape of the
vehicle should be characterized by a low drag coeffi-

cient with the necessary lift force, while the heat pro-
tection of the structure should absorb heat loads
caused by high enthalpy of the incoming f low and by
extreme heat f luxes. In many cases the extreme heat
and mechanical loads that occur in structural elements
of a high-velocity vehicle are caused by phenomena
that occur in a boundary layer and in particular, by
transition from laminar f low conditions into turbulent
ones.

Main parameters defining vehicle performance
such as frictional drag, heat f luxes at the surface of the
vehicle, and lift force depend on the boundary-layer
parameters.

The heat f luxes that act on the structural elements
of the vehicle are most important at supersonic and
hypersonic velocities (for example, for reusable space-
craft). The structure should be protected against high
heat f luxes. Numerous experiments have shown that
in a turbulent boundary layer the heat f luxes are higher
by dozens of times than in a laminar layer. That is the
reason that during the design of modern high-velocity
vehicles it is very important to properly predict the
place of the laminar–turbulent transition and to deter-
mine whether it is possible to affect it.

Proper prediction of the laminar–turbulent transi-
tion is also very important for investigating f lows in
channels. The problem has been studied properly for
simple f low geometries (pipes with a simple cross sec-
tion without turbulence stimulators and artificial
roughness); while f lows in channels with artificial
roughness need further investigation [1].

The results of investigations (performed in Russia
and abroad) on boundary-layer stability under differ-
ent conditions are presented in this paper. Special
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attention is paid to the changes in f low conditions in
the boundary layer, to the main factors that cause such
changes, and to methods for predicting such phenomena.

This review contains data on both high-velocity
and low-velocity f lows, since the majority of methods
for investigating the laminar–turbulent transition were
developed initially for low-velocity f lows (for an
incompressible approximation).

1. THE MECHANISMS FOR TRANSITION 
TO TURBULENCE

The phenomenon of the laminar–turbulent transi-
tion has not been studied up to present. It is known
that the main feature of turbulent f low is irregular
pulsed variations in instantaneous parameters (such as
velocity, temperature, and pressure).

A flow does not change from laminar to turbulent
instantly. Separate ordered vortex structures occur in a
flow, which disintegrate to smaller vortexes; finally,
the layered ordered f luid f low is destroyed.

Figure 1 illustrates the modern conception of the
laminar–turbulent transition (hereinafter the LT tran-
sition) in a medium with small initial disturbances at
relatively low velocities of the incoming f low [2] (Re is
the Reynolds number).

The first stage, stage I, of the examined process is
called receptivity [3]. Disturbances in the incoming
flow such as vortexes and sonic waves act on the
boundary layer in the form of stable or unstable f luc-
tuations. The form and intensity of these disturbances
determine the initial conditions of the disturbances in
the boundary layer (amplitude, frequency, and phase),
which can cause the failure of the laminar boundary
layer (due to the intensification process). The recep-
tivity examines the initiation of instability waves, not
their development.

In the receptivity area external disturbances are
transformed into instability waves of the boundary
layer.

The first mode of instability is waves in the form of
viscous instability, which cause low-frequency vortex
disturbances. For the case of a low-velocity f low the
first mode is presented by Tollmien-Schlichting
waves, which are most unstable in the form of 2D dis-
turbances. For high velocities (for supersonic f lows)
3D inclined waves of the first mode are the most
unstable.

Disturbances of the second mode (the Mack
mode) are intrinsic to compressible high-velocity
(M > 3) boundary layers. Such instabilities cause high-
frequency acoustic (not viscous) disturbances, which
rise faster than T–S waves. The second mode is the
dominant mechanism of the high-velocity f low transi-
tion if there are no strong transverse f lows, Görtler
vortexes, and bypass transition. In this case the spe-
cific conditions for dominating second-mode distur-
bances are determined by the f low conditions (in par-
ticular, by heat conditions at the wall). As an example,
for a heat-insulating f lat plate the second-mode dis-
turbances are dominant at M > 4 according to the lin-
ear theory of stability [4].

The transverse f low becomes unstable if there is
bending in the velocity profile. One example of such a
flow is the 3D boundary layer at a sweptback wing.
The nonlinear interactions are intrinsic to transverse
disturbances. According to the theory, the traveling
waves of a transverse f low increase faster than any
other waves, but in practice transverse standing waves
are studied since they are efficiently generated by
roughness at a f low-around surface [5].

Görtler instability consists of longitudinal counter-
rotating vortexes, which are common for Prandtl-
Meyer f low in a boundary layer. They can occur both
naturally, when the streamlines are curved, and artifi-
cially, after obstacles that are placed in the f low. The
main instability that causes longitudinal counter-
rotating vortexes is centrifugal instability, when the
centrifugal force is higher than the radial pressure gra-
dient [6].

Several different instabilities can occur simultane-
ously or separately. Which instability occurs depends
on several factors, such as the incoming f low velocity,
wall curvature, roughness, and irregularity. If oscilla-
tions in a boundary layer are small, the disintegration
follows path A (Fig. 2) and the process of growth of
disturbances can be described by the linear theory of
stability. Such growth is not intensive; it occurs far
from the initial segment and variations in the pressure
gradient, temperature gradient and injection into the
boundary layer from the surface can influence it.

The second stage, stage II, of the process is the lin-
ear growth of eigenmodes of instability waves in the
boundary layer, which can occur in the form of eigen-

Fig. 1. A picture of the instabilities and turbulence devel-
opment in a boundary layer.
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solutions of homogenous linearized equations for dis-
turbances.

If the amplitude of the oscillations increase, 3D
and nonlinear interactions in the form of secondary
instabilities occur in the boundary layer. At this stage
the waves propagate with the same phase velocity,
which makes it possible to transfer energy from pri-
mary (basic) waves to secondary waves; as a result, the
secondary waves grow rapidly.

In area III the mechanisms of secondary instability
generate oblique waves by means of nonlinear interac-
tions. In the area of tertiary instability IV layers con-
nected with instantaneous bending in the velocity pro-
file generate high-frequency f luctuations (oscilla-
tions, peaks, and striped structures) and turbulent
spots. Turbulent spots are accumulated and associ-
ated; as a result a turbulent area forms (area V).

The amplitude of the initial disturbances increases
from left to right. The primary disturbances can be too
small for measurement and it is possible to estimate
them only indirectly according to the parameters of
the incipient instability.

Since it is possible to calculate the boundary layer
behavior in the case of linear instability, very often it is
thought that the process follows path A and only linear
growth is examined. Such an assumption is true for the
flows with small disturbances of the free f low and with
extensive segments of linear growth with respect to
nonlinear growth.

At times, the f low disturbances are so large that the
turbulent mode occurs significantly earlier, skipping
the stage of linear growth via the so-called bypass
mechanism [7]. This corresponds to path E. It has
been historically established that only two scenarios
for transiting to turbulence: А and Е are investigated.
We have begun to better understand which path the
process of laminar–turbulent transition follows only
recently as a result of a large volume of scientific work.

The stage of unsteady growth occurs if the instabil-
ity waves interact with each other.

Scientific investigations in this field have shown
that at the respective initial conditions unsteady
growth can cause high amplitudes of disturbances.
Such initial conditions depend on the receptivity of
the boundary layer. Depending on the amplitude the
unsteady growth, it can cause the modulation of 2D
waves (path В), disturb the initial state up to secondary
(nonlinear) instabilities (С) and/or transition accord-
ing to the bypass mechanism (D).

2. APPROACHES FOR DETERMINING
THE BOUNDARY-LAYER STABILITY

Here, we investigate the main approaches for
determining the conditions of the laminar–turbulent
transition. For simplification we examine the f low of
an incompressible f luid. High-velocity f lows are
examined in part 3.

2.1. Stability-Theory Methods

For generating the laws of instability spreading in a
boundary layer all physical values that characterize the
flow conditions are presented in the form of two com-
ponents: averaged and pulse components:

(1)

If we substitute values of the form (1) into Navier–
Stokes equations we can obtain the precise equations
for f luctuations. For an incompressible f luid these
equations can be written as follows

(2)

(3)

For small disturbances the right part of Eq. 3 can be
accepted as equal to zero. In this case Eqs. (2), (3) are
linear.

These equations are solved in the wave form (in the
form of normal modes). For the parallel f low
( ) the solution is as follows:

(4)

where  is the vector of the variables that

describe the flow and 
is the vector of functions that describe the shape of the
profile (amplitude) along the axis normal to the f low-
around plane (axis y); α and β are the wave numbers;

( ) ( ), ' , .q q t q t= +x x

' 0,∇ =u

( )
( ) ( )

2' 1 ' '
Re

' ' ' '.
t

p

∂ − ∇ + ⋅ ∇
∂

+ ⋅ ∇ + ∇ = ⋅ ∇

u u u u

u u u u

[ ],0, Tu w=u

( ) ( )[ ]ˆ' exp ,y i x z t= α + β − ωq q

[ ]' ', ', ', ' Tu w p=q v

( ) ( ) ( ) ( ) ( )[ ]ˆ ˆ ˆ ˆˆ, , , Ty u y y w y p y=q v

Fig. 2. A mechanism for transition to turbulence.
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ω is the frequency (in general case α, β, and ω are
complex numbers).

From (4), it is seen that the disturbances grow
infinitely, if , , or 

If there is a pronounced direction of f low (i.e., if
the mean velocity of the f low is sufficiently high), all
disturbances drift downstream and two types of f low
instability occur.

If (in spite of the fact that disturbances drift down-
stream) at any fixed point in space for the smallest ini-
tial disturbances their amplitude rises infinitely with
time, absolute instability occurs.

If the disturbances drift downstream so fast that at
a fixed point in space for  the intensity of the
disturbances goes to zero then convective instability
occurs.

If we substitute (4) in the linearized set of equa-
tions (2), (3), we obtain the equation of the linear sta-
bility theory (LST)

(5)
The differential operator L includes derivatives

only with respect to the y coordinate. If we apply dif-
ferent transformations to operator L, it becomes pos-
sible to obtain different forms of this set of equations,
for example, a set of equations that consist of the Orr–
Sommerfeld and Squire [8] equations (equations for
the velocity disturbance and vorticity, respectively) or
the Orr–Sommerfeld equation separately.

Usually LST equations are solved by determining
the  or  relationships (Fig. 3). The curve
separating the crosshatched region is called the neutral
curve. In this curve  or . The
crosshatched region is an area of instability and all of
the other region is an area of stability (all disturbances
in it die).

In the case of convective instability the distur-
bances increase only if the x coordinate increases
downstream. In this case it is reasonable to formulate

( )Im 0α < ( )Im 0β < ( )Im 0.ω >

t → ∞

ˆ 0.L =q

(Re)ω (Re)α

( )Im 0α = ( )Im 0ω =

the problem as follows: it is necessary to determine the
relationship between  (and/or ) and the
disturbance frequency and the Reynolds number. For

 unstable f low occurs, while for 
the f low is stable. The boundary of the two areas is
determined by the neutral curve, whose equation is as
follows

Generalizing, it is possible to say that there are
three main approaches to examining f low instability: a
temporal theory that examines disturbances that
increase with time (  and  are real and  is complex);
a spatial theory that examines the growth of distur-
bances in space (  and  are complex and  is real),
and a spatial and temporal theory ( ,  and  are
complex numbers).

It is necessary to point out that in the general case
the hypothesis on small disturbances is not correct.

In this case it may be impossible to solve equations (2),
(3) since it requires large computational power (per se,
the solution of equations (2), (3) is equivalent to direct
numerical solution of the Navier–Stokes equations).

However, there is an intermediate solution: on the
one hand it is not very sensitive to computation power,
while on the other hand it is free of many disadvan-
tages that are intrinsic to the linear theory.

This approach is called parabolized stability equa-
tions (PSE). The set of PSE equations makes it possi-
ble to calculate the behavior of disturbances both for
parallel f lows and for systems with complicated geo-
metric configurations (for example, to calculate the
flow around blades in impeller machines).

We do not present a statement of the method here,
since there are many variants of its formulation. The
parabolized equations of stability were examined in
detail in [8].

LST and PSE describe the behavior of instability
waves in a f low, but they do not determine the transi-
tion point.

At present, the semi-empirical eN-method is used
for determining when laminar f low transforms into
turbulent f low.

It is accepted that transition to turbulence occurs
when the amplitude of the instability wave increases by
eN times with respect to the initial amplitude at the
neutral point (the first point, where ).

It is possible to show that for the boundary layer at
a f lat plate

where 

( )Im α ( )Im β
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Fig. 3. The general form of a neutral curve.
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According to the empirical data the turbulence
occurs at N = 7–9 [8].

This method has a disadvantage: it cannot be
applied for all of the examined mechanisms of
destruction of a laminar f low. In particular, it is
impossible to predict laminar–turbulent transition via
the bypass mechanism with its use.

Intensification conditions or conditions for the
decrease of spontaneous small-amplitude instability
waves are examined using the methods of the stability
theory described above. The process of amplitude
growth of spontaneous instability waves is a natural
mechanism for the laminar–turbulent transition. As
mentioned above, it occurs only if the level of exter-
nal-flow turbulence is low.

In practice, the level of turbulence of the external flow
is large and the stability theory approaches described
above cannot be used directly. Mathematically, this is due
to the fact that in the stability theory the growth of the dis-
turbances is examined in an asymptotic approximation
passing from the problem of initial and boundary condi-
tions to the problem of searching for eigenvalues [9, 10].

We examine the f low in terms of the stability the-
ory; we do not examine the dynamics of the system, we
estimate the ability of the system to continue the
infinite growth of disturbances.

However, in the general case such a problem defi-
nition is not very correct mathematically when we
speak about a system described by Navier–Stokes
equations (due to the properties of the operators of this
system). This can occur as follows: a certain external
disturbance that should decrease to zero as 
(according to asymptotic analysis of the system) in
reality increases greatly at a specific moment of time
causing a transition to turbulence.

In other words, there are cases where a f low in
which external disturbances should die out with time
(according to stability theory) can transit to turbulence
due to unsteady growth of a certain disturbance.

In the general case, the concept of unsteady growth
means local development of a disturbance in contrast
to the stability theory, where the possibility of distur-
bance development separating cases of its exponential
growth or decrease within a certain range is examined.

 For mathematical illustration let us write set (5) in the
form of the Orr–Sommerfeld and Squire equations

(6)

where  is the vorticity of the velocity disturbance,

 is the Orr–Sommerfeld operator,

 is the Squire operator, 

t → ∞

ˆ0
0,ˆ

uL
C S

⎡ ⎤⎡ ⎤ =⎢ ⎥⎢ ⎥ Ω⎣ ⎦ ⎣ ⎦

Ω̂
2

2
d uL S i
dy

= Δ − α

Re
S i i u Δ= − ω + α − duC i

dy
= β

is the conjugation operator, and 

is the Laplace operator.
For  the equations of set (6) are independent.

Their eigenmodes are Orr–Sommerfeld modes (for
2D definition of Tollmien–Schlichting waves) and
Squire modes. Orr–Sommerfeld modes are solutions
of Orr–Sommerfeld equations (equations for velocity
disturbance) and of Squire equations (equations for
vorticity disturbance), while Squire modes are solu-
tions of Squire equations for  or 

In all cases where  operator , i.e., the
operator of the Navier–Stokes set of equations is not
conjugated. This means that Orr–Sommerfeld modes
and Squire modes can interact with each other under
conditions of a non-flat f low. It is possible to show
that for the case where Orr–Sommerfeld modes and
Squire modes decrease individually, their unstationary
interaction can cause significant growth of distur-
bance amplitude and it can cause the laminar–turbu-
lent transition.

Usually, the concept of an intensification factor (a
growth factor) is used for analyzing unsteady growth

(7)

where E is the energy norm, which is determined dif-
ferently for different f low types; the 0 index is the ini-
tial value.

As an example, for an incompressible f low this
norm is an integral with respect to the kinetic energy of
the disturbance

To analyze unsteady growth one determines the so-
called optimal disturbances for which the intensification
factor (7) is maximal. This makes it possible to determine
the upper boundary of the intensification of disturbances
in a flow and to understand which type of disturbance is
the most likely to grow in a specific type of flow.

Very often unsteady growth is connected with a
laminar–turbulent transition caused by surface rough-
ness. However, there is no unified theory of the lami-
nar–turbulent transition caused by roughness or by its
separate elements.

2.2. Engineering Methods
The methods described above, in which equations

for instability waves are used, are in good agreement
with the experimental data; however, it is difficult to
use them for solving engineering problems for different
reasons.

First, it is necessary to be well trained in mathe-
matics to use the methods of stability theory correctly.

( )
2

2 2
2

d
dy

Δ = − α + β

0β =

ˆ 0u = 0.β =
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0

,EG
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=

( )2 2 2
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∞

= + +∫ v



114

HIGH TEMPERATURE  Vol. 56  No. 1  2018

BYKOV et al.

Second, it is difficult to use these methods for
flows with complicated geometric configurations.

Third, due to the characteristics of the described
methods, it is very problematic to use them in modern
CFD software.

From the practical point of view, approaches for
determining the stability of laminar f low based on
numerical simulation, such as direct numerical simu-
lation, Langtry–Menter methods, and - transi-
tion models, are more suitable.

Reynolds averaged Navier-Stokes equations (for
compressible f lows—Favre averaged) play the central
role in the modern methods for calculating turbulent
flows.

These equations are the basis of modern applied
software such as Ansys CFX, Ansys Fluent, Star-CD,
FlowVision, and LOGOS.

If the turbulent f luctuations go to zero, these equa-
tions transform into ordinary Navier–Stokes equa-
tions. 

For such transformation it is convenient to intro-
duce the intermittency factor [11] between the laminar
flow model ( ) and the model of turbulent f low
( )

where ,  are the times within which the f low at a
given point is in the laminar and turbulent states,
respectively.

By using the intermittency factor and the Boussin-
esq hypothesis for turbulent stresses, it is possible to
determine the mean viscosity coefficient  at a given
flow point

(8)

where the index  indicates the turbulent flow, while 
is related to non-turbulent disturbances (transitive).

Alternately, it may be possible to impose a respec-
tive restriction to the turbulence source in the trans-
port equation for the kinetic energy of the turbulence
(which effects the viscosity coefficient).

The main disadvantage of this approach is that it is
impossible to derive the respective equation for  with
the appropriate physical strictness.

It is only possible to assume that such an equation
should have the standard form of the transport equa-
tion with a special source component:

where  is the Prandtl–Schmidt number for the
intermittency factor.

Lk k−

q q→
'q q q= +

,t

L t

τγ =
τ + τ

Lτ tτ

effμ

( )eff 1 ,nt Tμ = μ + − γ μ + γμ

T nt
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( ) ( ) F ,T
j

j j j

u
t x x x γ

γ

⎡⎛ ⎞ ⎤μ ∂γ∂ ∂ ∂ργ + ρ γ = μ + +⎜ ⎟⎢ ⎥∂ ∂ ∂ σ ∂⎣⎝ ⎠ ⎦

γσ

The boundary conditions recommended by Men-

ter are as follows: on the wall  (  is the normal

to the wall surface); at the input 
The input condition is chosen mainly according to

numerical stability [12]. Its physical sense can be given
by examining the bypass mechanism for transition to
turbulence when the disturbances in the boundary
layer are introduced from the external f low.

Let us point out that the intermittency factor is the
“indicator” of f low conditions (it is equal to zero in
laminar f low and to unity in turbulent f low); it does
not regulate the turbulence level in the f low. As an
example, if we use the value of the kinetic energy of the
turbulence  as a boundary condition, the turbu-
lence level in the external f low also goes to zero in spite
of the set value 

The form of the source component  depends on
the model version (Menter et al. suggested several
modifications (see, for example, [13, 14]). This practi-
cally determines the model behavior.

It is evident that it is most convenient to determine
the source type by using the generalized experimental
data on the laminar–turbulent transition as a function
of local variables. Jointly with the chosen form of
transport equation for , it removes the necessity to
determine the concrete type of instability that causes
transition.

The main problem is as follows: the majority of the
experimental data on the laminar–turbulent transition
are obtained in the form of relationships for integral
quantities, in particular, for the Reynolds number

, under which transition to turbulent f low occurs
and which depends on the turbulence level in the
external f low Tu, pressure gradient parameter, etc.:

where  is the thickness of the impulse loss in the
boundary layer at which the f low mode changes (it is
the integral performance of the boundary layer and
cannot be determined at a point), Tu =

Menter and Langtry suggested a method for solving
this problem.

Instead of the integral Reynolds number  it is
suggested to use the so-called vortex Reynolds number

, which is calculated using only the local parame-
ters of the f low:

Here,  is the distance from the wall,  is
the invariant of the strain rate tensor

0
n
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 (in several works
 the invariant of the vorticity tensor

 is used).

The number  has a maximum that is propor-
tional to  approximately in the middle of the lam-
inar boundary layer.

In [15] it was shown that for a laminar boundary
layer without a pressure gradient

It was also proven that for calculating the laminar–
turbulent transition this relationship can be used with-
out alteration, as well as for the cases of more compli-
cated f lows.

Here,  is replaced by the local . Moreover,
 is a function of the integral parameters of the

external f low (such as ).
Here, it is necessary to introduce the local analog

of . For this purpose in [12, 14, 15] a certain mod-
ified local Reynolds number  for which the trans-
port equation is derived artificially was introduced:

According to [16], the empirical relationship
between  and the integral critical Reynolds num-
ber is obtained via numerical experiments:

where 

According to [16] the model is not suitable for
highly compressible f lows.

The Menter–Langtry approach described above
can be characterized as a pure phenomenological
approach based on experimental data.

Another approach, which is an attempt to examine
processes that occur in the laminar–turbulent transi-
tion in terms of the transport of disturbance energy,
was described in [17].
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The main idea is to present the energy of f luctua-
tion  in the f low by two components

where  is the kinetic energy non-turbulent f luctua-
tions (“laminar” energy) and  is the kinetic energy
of the turbulence.

It is clear that non-turbulent f luctuations are of a
large scale while the turbulent ones are of a small scale.
The transport factor for non-turbulent fluctuations is the
molecular viscosity, while for turbulent fluctuations it is
the molecular and turbulent viscosities.

The model consists of three equations: for , ,
and the vortex dissipation rate ω.

This model is in good agreement with the experi-
mental results. The issue of whether it is possible to cal-
culate the supersonic flows was not examined in [17].

3. THE LAMINAR–TURBULENT TRANSITION 
AT HIGH VELOCITIES

Flows at high velocities are characterized by some
peculiarities that complicate the picture of the lami-
nar–turbulent transition.

1. At velocities with M > 0.3 the compressibility is
important. In particular, it becomes more difficult to
generate the equations of the stability theory (see, for
example, [18]).

2. During the transonic transition and during a fur-
ther velocity increase, the wave structure of the f low
changes greatly; the character of the laminar–turbu-
lent transition also changes, respectively.

3. If the f low velocity increases, its energy also
increases and it can affect the molecular structure and
thermodynamic properties of the f low. Here, in the
vicinity of boundary layer for certain Mach numbers of
the external f low it is impossible to consider the gas as
the ideal one. Moreover, under certain conditions it is
impossible to characterize the gas by sole temperature.

As a result of all of these issues the problem of
determining gas f low stability at high velocities
becomes more complicated.

TOTk

TOT ,L Tk k k= +

Lk
Tk

Lk Tk

( ) ( )BP NAT

,

T

T
k T T

T T

j k j

D k
P R R k D

Dt
k

x x

ρ = ρ + + − ω −

⎡ ⎤⎛ ⎞ρα ∂∂+ μ +⎢ ⎥⎜ ⎟θ σ θ⎝ ⎠⎣ ⎦

( ) ( )BP NAT ,
L

L L
k L

j j

D k kP R R D
Dt x x

⎡ ⎤ρ ∂∂= ρ − − − + μ⎢ ⎥θ ∂⎣ ⎦

( ) ( )1 BP NAT

2 2
2 3

1

.

T

R
k

T W T

T T
T W

j j

D CC P R R
Dt k f k

kC C J f
x xd

ω
ω

ω ω ω
ω

ρω ⎛ ⎞ρω ρω= + − +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ρ ρα ∂ω− ρω + α + μ +⎢ ⎥⎜ ⎟∂
∂

σ ∂⎝ ⎠⎣ ⎦



116

HIGH TEMPERATURE  Vol. 56  No. 1  2018

BYKOV et al.

At the present time only the theoretical approaches
for solving the problem have been developed. These
are based on stability theory and on the model of
chemically nonequilibrium high-enthalpy f low. Uni-
versal applied methods have not been developed as yet
in this field.

The main peculiarity of high-velocity f lows with
respect to incompressible f lows in terms of their stabil-
ity is a collection of persisting instability modes; these
were classified for the first time by Mack [4].

Let us note that in the incompressible f luid exam-
ined above, the natural mechanism of laminar–turbu-
lent transition is determined by Tollmien-Schlichting
waves of a viscous nature.

In the case of compressible f luid f low with a suffi-
ciently high velocity (M > 3) nonviscous disturbances
(Mack modes) of an acoustic nature begin to develop
in the f low.

Based on the example of an equation for nonvis-
cous pressure disturbances, Mack showed that the
occurrence of acoustic disturbances that did not die
out in a f low is determined by the velocity of the dis-
turbance phase with respect to the f low velocity and
the sound velocity of the external f low.

According to this, the respective Mach number can
be written as follows

where the index e is the external boundary of the
boundary layer.

If , an area is formed in the f low where the
mean velocity of the f low with respect to the phase
velocity of of disturbances is higher than the sound
velocity. The line (surface) that limits this area is called
the sonic line. If this line (surface) exists, acoustic waves
reflect from it and become trapped inside (Fig. 4). Here,

 is the velocity profile,  is the phase velocity of distur-
bances, and  is the profile of the pressure disturbances.
Such trapped acoustic waves form Mack modes.

The amplitude of Mack modes increases more rap-
idly than the disturbance amplitude of the first mode.
Due to this, the Mack modes are prevalent in the

M ,e r

e

u c
a
−=�
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u rc
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mechanism of the natural laminar–turbulent transi-
tion in the high-velocity f low for 

The behavior of Mack modes has been examined in
detail by solving stability-theory equations written for
compressible f low (in the linear and parabolic defini-
tions) and experimentally. As an example, it has been
found that the Mack modes are stabilized by the body
front edge bluntness [20], and destabilized by wall
cooling [21].

The problem of the variation of the chemical and
thermal properties of a gas at hypersonic velocities
(first of all due to reactions of dissociation and recom-
bination) requires detailed investigation.

It is known that in a hypersonic f low intensive
physical and chemical processes are connected with
the excitation of a molecule’s internal degrees of free-
dom, dissociation, chemical reactions between gas
components, and the ionization of an atom.

Here, the set of equations for gas f low in the case of
hypersonic f low should be combined with equations
that describe these physical and chemical processes.
Let us present the set of gas dynamic equations for a
hypersonic air f low.

⎯The equation of continuity

where  is the gas mixture density and  is the velocity
component in the th direction.

⎯The momentum equation

where  is the pressure and  is the tensor of viscous
tensions.

⎯The equation of the total energy

Here,  is the total energy per mass unit;  specific
(per mass unit) enthalpy; s is the bottom index that
show the membership to component s;  is the den-
sity;  is the diffusion velocity in the th direction;

 is the density of heat f lux of vibrational energy in
the th direction;  is the density of the heat f lux of
the tranlsational and rotational energy in the th direc-
tion; and  is the losses via radiation W/(m3).
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Fig. 4. Acoustic waves in a boundary layer [19].
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⎯The equation of the vibrational energy of the mth
vibration mode

where  is the specific (per volume unit) vibrational
energy of the mth vibration mode;  is the density
of the heat flux of the vibrational energy of the mth vibra-
tion mode in the th direction;  is the source of vibra-
tional energy caused by the V–T, V–V energy transition,
the generation rate of the vibrational energy due to chem-
ical reactions, as well as by the vibrational energy loss due
to spontaneous deactivation of radiation; and  is the
number of modes of the vibrational energy.

Here,  is the diffusion velocity of the compo-
nent to which the mth vibration mode is related.

A detailed discussion of the problem of how to calcu-
late the radiation parameters was presented in [22, 23].

⎯The equation of mass conservation for a chemi-
cal component s

where  is the mass fraction,  is the gener-
ation rate for s due to chemical reactions, and NC is the
number of components in the gas mixture.

The following assumptions are used in this set:
(1) the rotational energy modes are in equilibrium

with the translational ones and they are determined by
one translational-rotational temperature ;

(2) the energy for exciting the electron states of a
molecule is negligibly small with respect to other
energy modes;

(3) it is accepted that the heat losses for radiation in
the energy equations are caused mainly by deactiva-
tion of the vibrational modes;

(4) electron-to-ion energy transitions are not taken
into account.

The gas mixture pressure p is described by Dalton’s
law and is equal to the sum of the partial pressures for
the components ps

where RU is the universal gas constant and Ms is the
molecular mass.

The total energy E consists of the translational, rota-
tional, vibrational, kinetic energy, and energy of chemical
components

( ) ( ), , , , , , , ,

1,2,..., ,

m m j m j m m j m
j

M

E E u q E V S
t x

m N

∂ ∂+ + + =
∂ ∂

=

v v v v v

,mEv

, ,m jqv

j ,mSv

MN

,m jV

( ) ( ), ,

1,2,..., 1,

s s j s s j s
j

C

C C u C V w
t x

s N

∂ ∂ρ + ρ + ρ =
∂ ∂

= −

�

  s sC = ρ ρ sw�

trT T=

tr

1 1

,
Nc Nc

U
s s

ss s

Rp p T
M

= =

= = ρ∑ ∑

0
tr, tr ,

1 1

1 ,
2

MNc N

s V s m i i s s

s m s

E C T E u u h
= =

ρ = ρ + + ρ + ρ∑ ∑ ∑v

where  is the heat of formation for s and  is the
specific (per mass unit) translational-rotational heat
capacity at a constant volume.

The vibrational energy is intrinsic only for two-
atom and multi-atom molecules; it is equal to zero for
atoms.

Here, in contrast to the f low with lower velocities,
the hypersonic f low is described by a larger number of
parameters. For an incompressible f low we have four
main parameters (the components of the velocity vec-
tor and pressure); for a compressible f low at M < 6 we
have five parameters (the components of the velocity
vector, temperature, and pressure/density) and for a
hypersonic f low we have more than eight depending
on the chemical composition of the media (the com-
ponents of the velocity vector, total energy, vibrational
energy, and the concentrations of the components).

Therefore, the set of equations of the stability the-
ory that are derived with the use of decomposition (1)
becomes more complicated: equations for disturbances,
the vibration temperature, and the densities of the com-
ponents are added. As a result, the number of parameters
that influence the flow stability and the position of the
laminar–turbulent transition becomes larger.

In a linear approximation the set of stability equa-
tions for a f lat layer can be written as follows [24]:

Here  =  

 is the vector of the unknown values
(form functions); m is the number of molecular vibra-
tional modes; and A, B, C are complex matrixes with a
dimensionality minimum of NC + m + 5 (if the mixture
can be characterized only by the vibration temperature).

The set of equations is solved jointly with the equa-
tions for the averaged values. Methods for solving
equations for averaged characteristics at high velocities
were discussed in detail in [25, 26] (for structured
meshes) and in [27] (for unstructured ones).

The described approach makes it possible to inves-
tigate hypersonic laminar f low stability with respect to
the receptivity to unstable waves and to different fac-
tors that influence the laminar–turbulent transition.

In particular, by using the stability-theory equa-
tions using the definition described above it is possible
to explain the effect of f low stabilization in case of car-
bon-dioxide gas injection into the boundary layer.

4. FACTORS THAT INFLUENCE 
THE LAMINAR–TURBULENT TRANSITION

Since the experimentsof Reynolds on the stability
of a laminar f low in a circular pipe, a large amount of
experimental and theoretical experience has been
accumulated in analyzing different factors that influ-
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ence the laminar–turbulent transition. Incompress-
ible and compressible f lows; subsonic, supersonic,
and hypersonic boundary layers; and flows around
bodies with different shapes have been studied.

Factors that influence the prevailing (having the
largest amplification rate) mechanism of stability loss
and laminar boundary layer destruction can be sepa-
rated into external and internal ones. The external fac-
tors are as follows: pressure gradients, acoustic wave
impacts, and parameters of the incoming f low such as
its velocity and turbulence intensity (i.e., external fac-
tors). The internal factors are as follows: surface
roughness and porosity, heat-mass exchange with the
surface, and several other factors.

Here, we examine the most important factors that
influence the laminar–turbulent transition in a
boundary layer.

4.1. Acoustic Impacts

When we investigate low-turbulent f lows at ground
conditions (in a wind tunnel) typical for the f light
conditions of a high-velocity vehicle, the main exter-
nal impact that causes disturbances in a laminar
boundary layer are acoustic waves that occur in the
incoming f low. When an acoustic wave arrives at a
plate, disturbances are generated in the boundary
layer. The largest impact causes a wave that moves to
the front edge, which can be due to the small thickness
of the boundary layer in this area [28, 29]. When the
incoming acoustic wave interacts with a separated
wave, three types of disturbances occur in the bound-
ary layer: vortex, acoustic, and entropy waves. It is
necessary to note that in the incoming f low two waves
occur simultaneously: slow and fast waves with phase
velocities of  and , respectively. One
wave spreads along the f low, the second wave spreads
in the opposite direction, but since the flow is super-
sonic, both waves move in the flow direction. In this case
the coefficient of receptivity to the slow acoustic wave is
higher than to the fast one [28]. Waves reflected from the
boundary layer edge and wall interact each other and may
(if the phase velocities are synchronized) resonate with
stable wave modes that exist in the flow; as a result, the
vibration amplitude of the latter increase and instability
waves of the first or second mode occur [30, 31].

It has been found that boundary-layer receptivity to
an acoustic wave depends on the incident angle to the
wall. It has been shown that there is a relationship
between the receptivity factor and the incident angle of
the wave (Fig. 5). The intensification coefficient  is
the ratio between the maximal amplitude of the pressure
disturbance and the pressure in the incoming flow.

Boundary-layer behavior near a cone surface
caused by an acoustic wave is similar to the boundary
layer behavior at a f lat plate. Acoustic waves influence
stability and transport disturbances most efficiently if
they are incident to the cone vertex.

4.2. Pressure Gradient

The effect of a pressure gradient has been studied
properly for the case of the instability of the first
mode. Experiments are in good agreement with theo-
retical predictions, where a positive gradient causes a
destabilizing effect and a negative gradient causes a
stabilizing one. A detailed review of experimental
investigations related to this phenomenon was pre-
sented in [33].

Figure 6 depicts the relationship between the tran-
sition Reynolds number and pressure gradient at dif-
ferent levels of turbulization of the external f low for

1 1 M ∞− 1 1 M ∞+

SK

Fig. 5. The coefficient of the intensification of different
modes in a high-velocity boundary layer during the impact
of external acoustic vibrations as a function of their inci-
dent angle [32]: 1, I stable mode, 2, II Mack mode, 3, II
stable mode.
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number and the pressure gradient at different turbulization
levels of the external f low Tu [33]: the points are the expe-
rimental data; the lines are the empirical relationships.
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low flow velocities. In this case the pressure gradient
can be written as follows:

The calculations presented in [34] give an interest-
ing picture of how the pressure gradient influences the
stabilization process of instability modes. In [34] the
following parameter characterizing the pressure gradi-
ent in a f low was used (in the authors’ terminology it
is called the gradient parameter):

For moderate Mach numbers (M ~ 2), i.e., in the
area where the first instability mode is dominant, the
effect of a pressure gradient in the boundary layer is
similar to the low-velocity case (a positive pressure
gradient causes a destabilizing effect, while a negative
pressure gradient causes a stabilizing effect).

For high Mach numbers (M ~ 5) and small gradi-
ent parameters ( ) we see a reverse relation-

2
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θ
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.s
e e

dps
u ds

λ = −
ρ

0.015sλ <

ship between the critical Reynolds number and pres-
sure gradient for the first mode disturbance, i.e., the
negative pressure gradient destabilizes the first mode,
while a positive pressure gradient stabilizes it [34]. At

 the reversal of the relationship does not
occur.

The effect of a pressure gradient on the second
mode is classical, i.e., a negative gradient stabilizes the
second mode, while a positive pressure gradient
strongly destabilizes it. The total effect of a pressure
gradient to a high-velocity f low with a tendency to sec-
ond mode domination for a small gradient parameter
is such that for a positive pressure gradient the bound-
ary layer stability is determined only by the second
mode, while for a negative pressure gradient it is deter-
mined by the first one (Figs. 7, 8).

For high Mach numbers of the incoming f low and
gradient parameters  the effect of the first
mode is dominant, the second mode is unstable, and
the resulting effect of the pressure gradient to the f low
is classical since the reversal effect disappears.

Unfortunately we were not able to find data similar to
the results presented in Fig. 6 for a high-velocity flow.

4.3. Mach Number
The Mach number of the incoming flow can influ-

ence the position of the laminar–turbulent transition. If
the Mach number increases the turbulence moves
downflow [35]. 

Figure 8 depicts the respective experimental and
calculated results for f low around a cone.

4.4. Heat Exchange on the Surface 
of a Body with Flow Around It

The effects that occur during heat exchange on a
surface with f low around it are important. In practice
the most interesting situation is the case of f low cool-
ing (Tw/Tr < 1).

Using stability theory it is shown that first-mode
disturbances are stabilized by f low cooling, while sec-
ond-mode disturbances are destabilized. Here, in
flows where the first mode disturbances are determi-
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Fig. 7. Curves of the neutral stability of the first (1) and second (2) modes at M = 5.35 and at different pressure gradients:
(а) ; (b) –0.01, (c) 0.01.
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native in the mechanism of boundary layer destruc-
tion, the f low cooling stabilizes the f low and closes the
laminar–turbulent transition, while in f lows with a
higher velocity, where the second instability mode is
prevalent, f low cooling destabilizing the f low and
accelerates the transition to turbulence.

Figure 9 depicts the neutral curves for the f low in a
2D boundary layer for a f lat plate when the wall is
cooled.

4.5. Gas Injection into the Boundary Layer

Different investigations (see, for example, [21, 37,
38]) have shown that gas injection into a boundary
layer can greatly influence the laminar–turbulence
transition in the boundary layer.

The qualitative character of this effect depends on
the chemical composition of the injected gas and the
injection parameters.

The physical mechanisms of this effect were inves-
tigated numerically using the Navier–Stokes equa-
tions and stability theory.

It is possible to separate the following factors due to
which the gas injection can influence laminar–turbu-
lent transition: growth of the boundary layer thickness
and effects connected with the chemical composition
of the injected gas.

According to the data presented in [39] (without
considering the chemical reactions and molecular
vibrations) gas injection increases the boundary layer
thickness; as a result it increases the wavelength
(decreases amplitude) of the disturbance mode and
deforms the velocity vector of the averaged f low. As a
result it causes area displacement from the wall with large
frictional stresses and the stabilizing effect of viscosity
decreases. Here, in terms of hydrodynamics the gas

injection into boundary layer causes a destabilizing effect
and accelerates the laminar–turbulent transition.

On the other hand, in some cases gas injection can
stabilize the boundary layer. This concerns physical
and chemical processes connected with chemical
reactions and molecular vibrations. Usually these pro-
cesses take place in high-enthalpy f lows.

In particular, it has been found that carbon-dioxide
gas injection into a high-velocity air f low stabilizes the
boundary layer by decreasing the disturbance factor N
and by increasing the transition Reynolds number
[40]. It has also been shown that if other gases are
injected (nitrogen, argon, and air), we do not observe
the same effect [41]. Upon analyzing this phenome-
non it has been found that the effect caused by carbon
dioxide gas is connected with the vibration-relaxation
properties of the CO2 molecule and with the processes
of energy redistribution between the translational and
vibrational molecular modes in the boundary layer.

Qualitatively, the effect of the injection of carbon
dioxide gas depends on the f low rate at which this gas
is injected into the boundary layer; it is characterized
by injection parameter

Since (as mentioned above) gas injection into the
boundary layer destabilizes it, there is a definite bound-
ary value of the  parameter. If , the molec-
ular-relaxation effects of gas injection prevail and injec-
tion of carbon dioxide gas stabilizes the boundary layer;
if , the hydrodynamic effects prevail and gas
injection destabilizes the boundary layer.

Figure 10 shows the calculated relationship
between the point of the laminar–turbulent transition
on the cone and the injection parameter.

The effects of argon and nitrogen injection are
practically the same. It is seen that for the carbon
dioxide gas there is an optimal injection parameter at
which the stabilizing effect is maximal.

4.6. Surface State

The surface state greatly influences the boundary-
layer stability.

The experiments and the simulation results show
that both single obstacles and distributed roughness
can cause waves of instability. The main parameters that
influence the wave type and the intensity of its growth are
the ratio between the obstacle height and boundary-layer
thickness and the shape of the obstacle.

As an example, it was found that the largest desta-
bilizing effect is seen if the obstacle height is greater
than half of the boundary-layer thickness.

In general, this problem has been investigated
insufficiently because different roughnesses and
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Fig. 9. The wall cooling effect on the neutral stability curve
at М = 5.8; 2D disturbances,  according to
[36]: 1, Tw/Tr = 0.05, 2, adiabatic wall; 3, 0.25, 4, 0.65.
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mutual positions can influence boundary-layer stabil-
ity in different ways.

In addition to roughness, the problem of the sur-
face porosity effect on the laminar–turbulent transi-
tion has been studied in detail.

In the experiments in [42–44] it was shown that
with respect to a solid impermeable wall a porous
coating greatly decreases the growth of disturbance of
the second mode, while it somewhat destabilizes the
first mode. It has been shown that at hypersonic f light
velocities a porous sound-absorbing coating can
increase the region of laminar f low.

5. AN ENGINEERING MODEL 
OF THE LAMINAR–TURBULENT 

TRANSITION IN A HIGH-VELOCITY FLOW

Approaches based on stability theory and the eN

method have been developed properly for high-veloc-
ity f lows but they are of lesser interest from the practi-
cal point of view.

Among engineering models, it is possible to distin-
guish only [45–50]. However, this field is promising
due to its simplicity of implementation and the wide
application of automated software for computation of
hydrodynamics, in which it is practically impossible to
use stability theory methods in contrast to engineering
methods whose essence is to solve additional semi-
empirical transport equations.

In these works, the intermittency concept is used,
but there is a difference between them: models [45–
49] are differential and model [50] is algebraic and is
based on the Cebici–Smith equations.

If we compare these models, we see that models of
the [45–49] type are universal, while [50] is more simple.

Here, we present a model of the laminar–turbulent
transition, which we developed by generalizing the
approach presented in [45–49]. In general, these
approaches are similar to the Menter–Langtry approach;
we add components that consider the contribution
caused by non-turbulent f luctuations.

Formula (8) is used for the effective viscosity. The
turbulent viscosity is determined by the corresponding
turbulence model; for the non-turbulent viscosity, ,
the following relationship is used:

where  is a constant and  is the kinetic
energy of the turbulence.

The characteristic time  consists of two parts:

where  are the characteristic times of the first
and second mode of the disturbances, respectively.
These are determined as follows:

ntμ

,nt ntC Kμμ = ρ τ

0.09Cμ = K

ntτ

1 2,nt nt ntτ = τ + τ

1 2,nt ntτ τ

Here,  is the effective length scale of the turbu-
lence [48, 49],  is the coefficient of kinetic viscosity,

 is the kinetic energy of the external f low,
and  is the phase velocity for the second mode. This
can be estimated as follows [45, 46]

where  is the external f low velocity.
The following transport equation is used for deter-

mining the intermittency factor [48, 49]

where d is the distance from the wall.
This equation is solved according to the recom-

mendations presented in [45–49] with zero initial and
boundary conditions at the inlet of the computational
domain. 
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The following constants are used [48, 49]:

This is a phenomenological model; it does not con-
sider the concrete mechanisms of the transition. The
generation structure and constants for the model were
obtained in [45–49]. In this paper we generalize and
use the approaches that were developed in [45–49].

To verify the model, the calculation results are
compared with the experimental data presented in
[51], in which the hypersonic laminar–turbulent tran-
sition is examined for the plate under conditions pre-
sented in Table 1.

Some computation results for the Stanton number,
St, are presented in Fig. 11.

It is seen that the model is in good agreement with
the experimental data.

CONCLUSIONS
The laminar–turbulent transition in a boundary

layer is a complicated hydrodynamic phenomenon
that depends on a large number of factors.

A large volume of theoretical and experimental
data on the regularities of this phenomenon has been
accumulated. Factors that impact the laminar–turbu-
lent transition have also been studied. The problem of

Cμ C1 C2 C3 C4 C5 C6 σγ

0.09 0.7 0.35 0.005 8 × 10–5 0.07 1.2 1.0

systematizing and generalizing the accumulated mate-
rial is of interest for further work.

In the present work we perform a brief review of the
existing procedures for predicting the laminar–turbulent
transition and the factors that influence this process.

There are two different approaches for simulating
and analyzing the boundary-layer behavior during a
laminar–turbulent transition.

In the classical approach the boundary layer is
examined as a certain system that transforms external
disturbing signals. The aim of this approach is to
determine the physical mechanisms that are responsi-
ble for the intemittency and transition.

The engineering approach is based on CFD meth-
ods where additional semi-empirical transport equa-
tions are introduced artificially for characteristics that
determine the state of the boundary layer (for exam-
ple, intermittency). The aim of this approach is to
determine the area of the laminar–turbulent transi-
tion using computer aided engineering (computational
fluid dynamics) software without a detailed analysis of
transition mechanisms.

Unfortunately, these approaches are developing
independently. Both approaches have advantages and
disadvantages, which should be overcome.

In this work we presented an engineering model of
the laminar–turbulent transition developed by using
the intermittency concept and time scale values typical
for different disturbance modes.

Finally, when designing modern high-velocity f ly-
ing vehicles it is necessary to make a complex exam-
ination of the phenomenon of the laminar–turbulent
transition by considering different factors that can
influence the f low-around conditions.

This problem can be solved only by using theoreti-
cal and engineering methods with a large volume of
experimental data.
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