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Abstract—The paper presents a theoretical analysis of a convective f luid f low with a concurrent gas f low
accompanied by evaporation at the interface. The analysis of two-layer f lows is based on a mathematical
model taking into account evaporation at a thermocapillary boundary and effects of thermal diffusion and
diffusion heat conduction in the gas–vapor layer. New exact solutions describing steady two-layer f lows in a
channel with the interface remaining undeformed and examples of velocity and temperature profiles for the
HFE-7100 (liquid)–nitrogen (gas) system are presented. The influence of longitudinal temperature gradients
along the channel boundaries, the gas f low rate, and the height of the f luid layer on the f low regime and evap-
oration rate is studied. A comparison of the calculated data with experimental results is performed.
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INTRODUCTION
Convective f luid f lows accompanied by evapora-

tion or condensation at the interface often arise under
the action of concurrent gas flows and are being actively
studied experimentally and theoretically [1–6]. After
the creation of a new experimental setup [7], evapora-
tive convection can be studied in still and moving lay-
ers under the action of dry and moist gas f lows, which
is the most important motivation for the development
of the theory of convection in regions with interfaces,
since it enables one to validate mathematical models
and compare them with experimental data.

Mathematical models of convective motions with
allowance for heat and mass transfer and with formu-
lation of boundary conditions at the interface were
developed in [3, 4, 8–11]. Of special interest are solu-
tions of a specific type, describing two-layer or multi-
layer f luid f lows in infinite channels with interfaces
[12–17]. Constructing the exact solutions becomes
especially important for the study of problems with
allowance for heat and mass transfer at the interface,
because they enable one to verify mathematical mod-
els, to study the influence of various physical factors
on the f low regime and evaporation rate, and make
prediction concerning the experiments, including
those currently prepared at the International Space
Station [3, 6, 18].

One of the first examples of exact solutions
describing two-layer f lows with allowance for the mass
transfer was in [19] for the case of a liquid–liquid
interface. In [14, 15], exact solutions were constructed

for the problem of two-layer f low of a liquid and an
isothermal gas in the complete formulation. The evap-
oration in [14, 15] is not taken into account explicitly
but simulated by the condition for the temperature at
the interface. Exact solutions describing two-layer
flows with evaporation with allowance for the Dufour
effect in the gas phase [20] were constructed in [21] for
the case of a given gas f low rate and, in [18], under the
conditions of closed f lows in both phases. The solu-
tions constructed in [13–15, 18, 19, 21] can be called a
generalization of the well-known solution [22] for
convection in an infinite layer with a nondeformable
free boundary under the action of a transverse gravity
field and a longitudinal temperature gradient.

The aim of this paper is an analytical study of
steady f luid f lows under the action of a concurrent gas
flow with allowance for evaporation at the thermocap-
illary interface and, in addition, a comparison of the
results with experimental data. The mathematical
modeling of two-layer f lows is performed with the
help of exact solutions of the Navier–Stokes equations
in the Oberbeck–Boussinesq approximation [23, 24].
In the upper layer, which is a gas–vapor mixture, the
diffusion of vapor and effects of thermal diffusion and
diffusive thermal conduction (the Soret and Dufour
effects) are taken into account [20, 23, 25] (see also
[26–29]). In these solutions, the longitudinal compo-
nents of the f luid and gas velocity are nonzero and
depend only on the transverse coordinate. The func-
tions of temperature in the upper and lower layers, the
vapor concentration in the gas, and the pressure
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depend on both coordinates, linearly on the longitudi-
nal coordinate.

In this work, we have exact solutions of the initial
system of differential equations and propose not only
a physical interpretation of these solutions but also
compare the results of simulation of convective f lows
with evaporation based on these solutions with exper-
imental data. Specific features of two-layered f lows of
a liquid (HFE-7100) and gas (nitrogen) and the evap-
oration rate of the liquid at the interface are studied.
The influence of the variation in the gas f low rate, lon-
gitudinal temperature gradients, and the Soret effect
on the velocity and temperature profiles and the mass
of the liquid evaporating from the interface is shown.
The comparisons of theoretical and experimental data
reflecting the dependence of the evaporation rate from
the free boundary on the gas f low rate and the thick-
ness of the liquid layer are presented.

1. FORMULATION OF THE PROBLEM
OF A TWO-LAYER FLOW WITH ALLOWANCE 

FOR EVAPORATION. CONSTRUCTING 
THE EXACT SOLUTION

Let two immiscible, viscous, and incompressible
fluids (a liquid and a gas–vapor mixture) fill infinite
layers of thickness l and h, respectively. The reference
frame is chosen so that the gravitational vector g is
directed against the axis Oy ( ) (see Fig. 1).
The upper and channel lower walls, y = h and y = –l,
comprise solid impermeable boundaries, and their
interface y = 0 remains undeformed. The system of the
Navier–Stokes equations in the Oberbeck–Boussin-
esq approximation is used to simulate the f luid f lows
in the lower and upper layers in the steady state. The
concentration of vapor, which is considered a passive
admixture, i.e., not affecting the properties of the gas,
is described by the diffusion equation. Taking into
account the Soret and Dufour effects in the gas layer,
the mathematical model comprises the system of dif-
ferential equations

(1)

(0, )g= −g

2 2

2 2
'1 ,pu u u uu

x y x x y
⎛ ⎞∂∂ ∂ ∂ ∂+ υ = − + ν +⎜ ⎟∂ ∂ ρ ∂ ∂ ∂⎝ ⎠

(2)

(3)

(4)

(5)

with the boundary conditions formulated below. The
terms γC and δΔC in Eqs. (2) and (4) and Eq. (5) are
used for the simulation of the f low in the upper layer.
Here u and υ are the projections of the velocity vector
on the axes of the Cartesian frame of reference, p' is
the modified pressure or deviation from the hydro-
static pressure ( , , p is pres-
sure), T is temperature, C is the vapor concentration,
ρ is the density (relative density), ν is the kinematic
viscosity, χ is the thermal diffusivity, D is the diffusion
coefficient of vapor in the gas, β is the thermal expan-
sion coefficient, γ is the concentration density coeffi-
cient, δ is a coefficient characterizing the Dufour
effect, and α is a coefficient characterizing the Soret
effect in the gas–vapor layer.

Suppose that the solution  of
Eqs. (1)–(5) has the special form [19, 22]

(6)

If the functions or coefficients are marked with a
lower or upper index i (i = 1, 2), then, for i = 1, they
characterize the fluid in the bottom layer and, for i = 2,
the f luid (gas–vapor mixture) in the upper layer. Note
that the system of equations (1)–(5), describing the
convective motions of fluids, is rather complex not only
because of its nonlinearity and high order but also
because it does not belong to any classical type (see, e.g.,
[30]). Constructing the exact solutions in form (6) makes
it possible to reduce the problem to solving equations
of lower dimension and study flows caused by the
combined effect of a longitudinal temperature gradi-
ent and transversely directed gravity force. A system-
atic analysis of the exact solutions of convection equa-
tions, including the determination of the type of solu-
tion, refers to problems solved using methods of group
analysis of differential equations [31, 32]. The group
nature of the Birikh solution [22] and possible gener-
alizations of this solution to the three-dimensional
case are discussed in [33], and the solutions of the
Oberbeck–Boussinesq equations, in which the tem-
perature function linearly depends on the longitudinal
coordinate, were first in [34].
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Fig. 1. Geometry of the f low region.
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The solution of the system of equations (1)–(5) of
form (6) can be represented as

(7)

(8)

(9)

(10)

The coefficients  (i = 1, 2; j =
2, 7; m = 1, 8) are expressed via the physical parame-

ters of the problem: , and the

coefficients  (i, j = 1, 2) in the longitudinal

temperature and concentration gradients are expressed
as follows:
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(11)

Here,  is the Kronecker delta and B1 and В2 are

determined from the following relations:
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(12)

In formulas (11) and (12), the coefficients are cal-

culated under the condition  (see (5)),
which follows from the continuity of temperature at

the interface y = 0. The coefficients  (i = 1, 2; j = 1, 8)

are constants of integration and will be found from the
boundary conditions (see Sections 1.1 and 1.2).

1.1. Boundary Conditions in the Problem 
of a Two-Layer Flow with Allowance for Evaporation

Suppose that, on the lower (y = –l) and upper (y = h)
solid impermeable channel walls (see Fig. 1), we have
the no-slip boundary conditions (see also (6)):

(13)

and the temperature linearly depends on the longitu-
dinal coordinate:

(14)

Let us consider two types of boundary conditions
for the vapor concentration at the upper solid bound-
ary y = h. In the first case, we assume the so-called
total absorption of vapor,

(15)

In the second case, we impose the absence of a
vapor f lux,

(16)

Let the gas f low in the upper layer be defined by the
relationship

(17)

At the thermocapillary interface, y = 0, we impose
the conditions of continuity of the velocity and tem-
perature:

(18)

At the thermocapillary interface, we also have the
kinematic and dynamic conditions [23]. The first of

them is satisfied automatically ( ;

see the form of exact solution (6)), and the dynamic
conditions at the boundary y = 0 can be written as fol-
lows:
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Here,  is the temperature coefficient of the sur-
face tension, . We assume a linear dependence of the
surface tension on temperature: σ = σ0 + σT(T – T0),

, and . The balance of the heat f lux
is written with allowance for the diffusion mass f lux of
evaporating liquid at the interface (see [21, 23]):

(20)

Here, λ is the heat of evaporation, M is the mass
rate (M = const) of evaporating liquid per unit area per
unit time, and κ1 and κ2 are the thermal conductivities.

The mass balance equation with allowance for thermal
diffusion at the interface has the following form [19,
21, 23]):

(21)

The concentration of saturated vapor at the inter-
face will be determined by the relationship
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 and the Mendeleev–
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is an initial state, ) [35]. Equation (22) was

under the condition that the parameter  for mod-
erate variations in temperature is small [18, 21, 36].

Here, T0 is an initial temperature,  is the concentra-

tion of saturated vapor at T2 = T0 (T0 is 20°C, as in [19,

21]),  μ is the molar mass of the

evaporating liquid, R is the universal gas constant, and

 is the characteristic temperature drop. It should be
noted that Eqs. (1)–(5) and boundary conditions (13)–
(22) admit a replacement of the unknown functions Ti by

(Ti – T0); then, we can assume the condition
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as the condition used in [19] (see also [21]). If the
algorithm for calculating the integration constants will
be implemented with condition (23), then the problem
will reduce to finding the temperature function of the
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Note that the exact equation for the mass balance
of vapor [10] requires that the coefficient D in Eq. (21)
be divided by (1 – C) (see also [37, 38]). The condi-

tions of smallness of the parameter ( ) make it
possible to calculate the mass evaporation rate M
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reduced diffusion coefficient and is the diffusion coef-
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1.2. Determining the Unknown Coefficient in the Case
of Boundary Conditions (15) for Vapor Concentration 

at the Upper Boundary
Suppose that the concentration C at the upper

boundary of the channel satisfied condition (15).
Condition (15) of zero vapor concentration can be
explained by the ability of the boundary to instantly
absorb vapor (i.e., the property of complete vapor
absorption [19]). For real physical situations, on con-
densation or freezing out of vapor, the boundary value
of C at the upper solid wall can vary as a function of
temperature.

Taking into account the thermodiffusion effect in
the gas–vapor layer, from condition (15),

(24)

Taking into account the form of solution (6) and
the condition (18) of continuity of temperature at the

interface, we find that the coefficients  are

the same: (which is taken into account in (11): A =
const). Conditions (18) of the continuity of the veloc-
ity and temperature at the boundary y = 0 imply the
equalities
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concentration gradient is determined from the expres-

sion  (see (24) and (26)). Due to the linear
temperature distribution (14) over the longitudinal coor-
dinate at the solid boundaries, we have the equalities
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(35)

For known values of , , the

integration constants , and  are determined

from (25) and (32). For determining , we have rela-

tionship (33), and the integration constant  can be

found with the help of condition (26) if  is known.

If all the integration constants are known, the mass
rate M of the liquid evaporating from the interface is
determined from, e.g., the second relationship (29).

If we neglect the Soret effect in the upper layer of
the system, then mass balance condition (21) and
boundary condition (15) for the vapor concentration
will necessitate setting to zero the coefficient deter-
mining the temperature gradient along the interface:
A = 0. Thus, the simulation of two-layer steady-state
flows reduces to f luid f lows with a liquid–liquid inter-
face y = 0. In this case, the vapor concentration in the
gas layer will be independent of the longitudinal coor-
dinate, since b1 = 0 and b2 = 0 (see the first relation-

ships in (24) and (26)). From the condition of heat
transfer at the interface (see the first equality in (30)),
it follows that we must impose longitudinal tempera-
ture gradients at the upper and lower hard walls of the
channel, satisfying the relationship

(36)

In this case, we have  and 

(see (27) for A = 0). As a result, the unknown integra-

tion constants  and  will be determined
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from the systems of linear algebraic equations (34) and
(35) in which we must take into account the aforemen-
tioned values of the temperature and concentration

gradients (А, , b1, b2), the dependence of А2 of

form (36), and the value α = 0.

1.3. Determining the Unknown Coefficient in the Case 
of Boundary Conditions (16) for the Vapor 

Concentration at the Upper Boundary

Suppose that the Soret effect is taken into account
in the formulation of problem (1)–(22). If, at the
upper wall of the channel, we impose condition (16) of
zero vapor f lux (see, e.g., [17, 37, 38] and also [21]),
then we will have the equalities

b2 = 0, ϕ'(h) = 0, (37)

which follow from this condition (here, the prime
denotes the derivative with respect to y). Conditions
(18) of the continuity of the velocity and temperature
at the thermocapillary boundary y = 0 require that
equality (25) be satisfied. From conditions (14) of the
linear temperature distribution at the solid boundaries
y = –l and y = h, we have equalities similar to (27) and
(28). Mass balance condition (21) leads to relation-
ships (29), the first of which, with allowance for (37),
implies that

 = 0. (38)

Heat transfer condition (20) at the interface y = 0
imply Eqs. (30). From the first equation in (30), the
equality

 = 0, (39)

since we have (38) and the first of conditions (37).
From (27), (38), and (39), it follows that the longitu-
dinal temperature gradients at the solid and free
boundaries are the same:

(40)

The equation for the saturated vapor concentration
in form (22) implies relationship (26). Dynamical
conditions (19) lead to equalities (32), relating the

constants of integration  and  as well as  and .

Taking into account the reasoning above, we have a
system of equations for determining the unknown

constants  from no-slip conditions (13)

and expression (17), determining the gas f low in the
upper layer of the channel. Taking into account for-
mulas (25) and (32), we also have
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With the  found, we determine

 from (25) and (32). With (37)–(39), the

second relationship (37) determines the constant of
integration

The constants  are found from the system

of equations (28):

For calculating E1 and B1, see (12). Note that the

second relationships in (30) and (29) were used for the

equation determining the integration constant :

but  is found using the second formula in (26). The
mass rate M of liquid evaporating from the interface
can be found, e.g., with the help of the second equa-
tion in (29).

If the Soret effect is not taken into account in the
simulation, the condition of zero vapor f lux (16) leads
to equalities (37), and the conditions providing the
thermal regime at the channel boundaries (see (27)
and the first relation in (30)) imply the dependence of
the longitudinal gradient А2 on A and А1:

(41)

Note that two of the three longitudinal temperature
gradients at the channel boundaries can be considered

specified (  and  calculated according to (27)).
Equation (22) dictates the fulfillment of relationship
(26) and determines the coefficient b1, and dynamic

conditions (19) and continuity conditions (18) require
the fulfillment of equalities (32) and (25) and deter-

mine the relationships between , , ,
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and . With the above reasoning, the system of equa-

tions for the unknown  follows from con-

ditions (13) and (17). With the known ,

the integration constant  is determined from the sec-
ond condition in (37). Then, from the second relation
(29) written at α = 0, we immediately find the mass
rate M of the liquid evaporating from the interface.

Constants  are found from a system of linear

algebraic equations following from conditions (28) for
the temperature at the solid boundaries of the channel.

Thus, we can be determine all unknown integration

constants  (i = 1, 2; j = 1, …, 7), construct the exact

solutions ( ) satisfying Eqs. (1)–(5) and
boundary conditions (13)–(22), and find the mass
evaporation rate M.

2. RESULTS OF ANALYTICAL CALCULATIONS 
AND COMPARISON WITH EXPERIMENTS

Let us consider an HFE-7100–nitrogen liquid–gas
system. The fluid for the study was HFE-7100 due to
its physicochemical properties. HFE-7100 belongs to
the class of hydroesters and has the following proper-
ties: volatile (boiling point of –61°C); low surface ten-
sion (13.6 mN/m); dielectric; a low global warming
potential; zero ozone depletion potential; compatible
with most metals, plastics, elastomers, etc. This liquid
is used in various industries as a coolant in thermosta-
bilization and cooling systems. HFE-7100 is accepted
as a working f luid for a number of space experiments
[39, 40] under zero gravity conditions aboard the
International Space Station, because it meets the nec-
essary properties and is nonflammable, nontoxic, and
safe. The properties and detailed description of the
liquid are presented in the manufacturer’s website [41]
and in [6, 42]. The upper layer of the channel is filled
with nitrogen. The main physical parameters of the
system are as follows (see [6, 20, 25, 42, 43]):

 kg/m3 and  kg/m3 are the den-

sity of liquid and gas;  m2/s and

 m2/s are the kinematic viscosities;

 m2/s and  m2/s are the

thermal diffusivities;  W/(m K) and

 W/(m K) are the thermal conductivities;

 K–1 and  K–1 are the
coefficients of thermal expansion of the liquid and gas;

 is the concentration density coefficient (see

[19], but for the gasoline–air pair);  (K–1);

 (see (22)), if , is the temperature coef-

ficient of surface tension;  (N/(m K)) is
the temperature coefficient of surface tension; and

 (m2/s) is the vapor diffusion coefficient
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in the upper layer. The Dufour and Soret coefficients

are set to δ = 10–3 and α = 5 × 10–3 and – 5 × 10–4 (in

the case of normal thermal diffusion, possible values

of these coefficients can be found in [23]; see also ref-

erences therein).

Experimental measurements were carried out at a

test bench for the study of convection caused by intensive

evaporation of liquid in a horizontal cell of limited size

under the action of a gas flow [5, 6]. Between the cell with

a liquid (length of 40 mm and width of 40 mm) and a gas

channel (width of 100 mm and height of 5 mm), a sep-

aration plate with a thickness of 200 μm was installed.

This plate has a square cut (10 × 10 mm) at the center,

where the liquid and gas come into contact. The f low

rate of the liquid (HFE-7100) varied from 40 to

350 μL/min, which corresponds to a mass evaporation

rate of 0.014 to 0.11 kg/m2 s. The gas f low rate (nitro-

gen, 99.8%) varied from 0.1 to 5 L/min. The Reynolds

number varied in the range 40–200, which corre-

sponds to a mean gas velocity of 0.014 to 0.24 m/s. The

temperature of the liquid and gas varied from 20 to

40°C and higher, and the thickness of the liquid layer
varied from 1.5 to 8 mm.

2.1. The Influence of the Soret Effect on the Flow 
Structure and Temperature and Vapor Concentration 

Distributions in the System

Figures 2a and 3b show velocity (Figs. 2a, 3a), tem-
perature (Figs. 2b, 3b), and concentration (Fig. 3c)
profiles without and with taking into account the ther-
modiffusion effect in the gas–vapor layer for different
gas f low rates in the upper layer, calculated by analyt-
ical formulas. The calculations were performed for the
vapor absorption condition problem (15) at the upper
solid wall of the channel, the longitudinal temperature
gradient A1 = –30 K/m specified at the bottom wall;

the height of the gas layer, h; and liquid layer, l, of

0.5 × 10–2 m. In both cases, both with and without the
Soret effect, an increase in the gas f low entails an
increase in the f luid f low intensity (Figs. 2a, 3a). The
velocity profiles have a similar character (see Figs. 2a, 3a),
but there are some qualitative and quantitative differ-
ences. In particular, if the thermodiffusion effect is
disregarded (Fig. 2a), the velocity U at the interface

y = 0 takes the value of –0.48 × 10–2 m/s at a gas f low

Q of 1.8 × 10–5 kg/(m s). At Q = 9.6 × 10–5 kg/(m s),

this quantity reaches a value of –5.5 × 10–4 m/s. Thus,
at the given gas f low rates, in the liquid layer, a f low in
the direction opposite to the gas f low is observed. With

an increase in gas f low rate, at Q = 1.8 × 10–4 kg/(m s),

the velocity U at the interface is 4.04 × 10–2 m/s. If the
Soret effect is taken into account and the thermal dif-

fusion coefficient is α = –5 × 10–3, the velocity U for

the same gas f low rates (1.8 × 10–5, 9.6 × 10–5, and

1.8 × 10–4 kg/(m s)) reaches the values of 0.68 × 10–3,

0.5 × 10–2, and 0.95 × 10–2 m/s, respectively. Thus, in
the case when the effect of thermal diffusion is taken
into account, there is no reverse f low and a stratifica-
tion of the f low takes place (see Fig. 3a). The tempera-
ture distribution with a variation in Q qualitatively

Fig. 2. Velocity (a) and (b) temperature profiles in an
HFE-7100–nitrogen system at h = 0.5 × 10–2 m, l = 0.5 ×
10–2 m, A1 = –30 K/m, and different gas f low rates in
the upper layer without taking into account the Soret
effect: Q = (1) 1.8 × 10–5, (2) 9.6 × 10–5, and (3) 1.8 ×
10–4 kg/(m s); A = 0 K/m; and A2 = 82.5 K/m.
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changes (Fig. 2b, 3b). In the upper layer, the nonlin-
earity of the temperature distribution is rather weak
both with and without taking into account the Soret
effect. In the liquid (the lower layer in Figs. 2b, 3b),
the nonlinearity is stronger when the effect of thermo-
diffusion is taken into account (Fig. 3b) than when it is
disregarded. With an increase in the gas f low rate, the
vapor concentration at the boundary y = 0 increases
(Fig. 3c). This effect can be caused by the intensifica-
tion of convective heat transfer between warmer gas
and the cold interface. It should be noted that, at any
gas f low rate, the temperature at the interface is sig-
nificantly lower than the temperature imposed at the
solid channel walls. A qualitatively similar effect is
observed in the experiments [5, 6].

2.2. The Influence of the Thickness of the Liquid Layer 
on the Flow Structure, Temperature Distribution, 

and Vapor Concentration in the System

The thickness of the liquid layer, l, has a strong
effect on the velocity profiles, the temperature distri-
bution, and the vapor concentration. For example, if the

Soret effect is taken into account, for l = 0.5 × 10–2 m, the
reverse currents in the lower layer are observed (Fig. 3a),

while, for l = 0.15 × 10–2 m, the f luid motion is unidi-
rectional and the f luid moves only in the direction of
the gas f low (Fig. 4a). Significant qualitative and
quantitative differences in the temperature profiles are
observed for different values of the liquid layer thick-
ness l. For small thicknesses l (see Fig. 4b), the nonlin-
earity in the temperature distribution is rather weak
and the temperature distribution in the system is close
to linear. With increasing thickness l of the lower layer,
the nonlinearity of the temperature profile becomes
more pronounced (Fig. 3b); the variation in the gas
flow rate in this case has a significantly stronger effect
on the temperature profiles, the interface y = 0 is heated
more intensively but remains colder than in the two-layer
system with a smaller thickness l (see Figs. 3b, 4b). The
analysis of the vapor concentration distribution in the

gaseous medium has shown that, for l = 0.15 × 10–2 m,
higher concentrations at the boundary y = 0 are

achieved than for l = 0.5 × 10–2 m. In particular, at

Q = 1.8 × 10–5 if the thickness of the liquid layer is l =
0.5 × 10–2 m, the vapor concentration at the boundary

y = 0 reaches 0.14 and, if l = 0.15 × 10–2 m, the vapor

concentration is 0.59. For Q = 9.6 × 10–5 kg/(m s), we

have С|y=0 = 0.33 for l = 0.5 × 10–2 m and, С|y=0 = 0.60,

for l = 0.15 × 10–2 m. At the maximum value of gas

flow rate, Q = 1.8 × 10–4 kg/(m s), for the thickness of

the liquid layer l = 0.5 × 10–2 m, we have С|y=0 = 0.54,

and for l = 0.15 × 10–2 m, the vapor concentration at
the interface is С|y=0 = 0.61. It should also be noted that

variation in the gas f low rate has smaller effect on the
concentration profiles at a smaller layer thickness l =
0.15 × 10–2 m than at a thickness of 0.5 × 10–2 m.

2.3. The Influence of the Gas Flow Rate
on the Evaporation Rate

The comparison of the experimental and analytical
results on the dependence of the amount of evaporated
liquid (or the mass evaporation rate M) on the gas f low
rate Q at the interface has shown that, although these
results have qualitatively the same character (an
increase in M with an increase in Q), they differ quan-
titatively. The experimental dependence of M on Q is
nonlinear (see 1 in Fig. 5a), while analytical calcula-
tions give a linear dependence (3–5 in Fig. 5a). Of
course, the analytical calculations carried out for the
two-dimensional case do not take into account all fac-
tors present in the experiment. To compare the exper-

Fig. 4. (a) Velocity and (b) temperature profiles in an
HFE-7100–nitrogen system at h = 0.5 × 10–2 m, l = 0.15 ×
10–2 m, A1 = –30 K/m, and different gas f low rates in the
upper layer with allowance for the Soret effect: Q = (1) 1.8 ×
10–5, (2) 9.6 × 10–5, and (3) 1.8 × 10–4 kg/(m s); A =
–18.6 K/m; and A2 = 85.66 K/m.
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imental results with the analytical calculations, we use
a linear approximation of the experimental data (2 in
Fig. 5a). From the graphs shown in Fig. 5a and the val-
ues shown in Fig. 5b and in Table 1, it is clear that
there exist the values of the longitudinal temperature
gradient at which the experimental and analytical
results are close both quantitatively (Table 1) and
qualitatively (Fig. 5). Thus, for a longitudinal tem-
perature gradient at the lower solid boundary of A1 =

–55 K/m, the difference between the values of the evap-
oration rate is within a factor of two and the slope of the
line is close to the slope of the trend line (linear approxi-
mation) of the experimental data (see Fig. 5a, 1 and 4).
For the longitudinal temperature gradient at the lower
solid boundary of A1 = –80 K/m, for the maximum

values of the gas flow rate Q in the upper layer (Q = 9.6 ×

10–4 kg/(m s)), the analytical calculations give the
value of the mass evaporation rate M closest to the

experimental value (M = 2.7 × 10–2 kg/(m2 s), A1 =

–80 K/m, A = –20.47 K/m, and A2 = 143.26 K/m).

Table 1 presents the comparison of the evaporation
rate from the interface, in the physical experiments
(the second column) and calculated analytically for
different values of the longitudinal temperature gradi-
ents and gas f low rate in the upper layer (third col-

umn). For Q = 3.6 × 10–4 kg/(m s), the value of M =

1.14 × 10–2 kg/(m2 s) is reached at А1 = –55 K/m

(here, A = –14.07 K/m, A2 = 98.49 K/m). At Q = 1.8 ×

10–4 kg/(m s), the value of M = 1.01 × 10–2 kg/(m2 s) was
at А1 = –15 K/m (A = –3.84 K/m, A2 = 26.86 K/m). At

a gas f low rate of Q = 9.6 × 10–5 kg/(m s), the mass

evaporation rate M = 9.62 × 10–3 kg/(m2 s) is reached
at А1 = –10 K/m (A = –2.56 K/m, A2 = 17.91 K/m)

and, at Q = 1.8 × 10–5 kg/(m s), the value of M = 9.43 ×

10–3 kg/(m2 s) was at А1 = –3 K/m (A = –0.77 K/m,

A2 = 5.37 K/m). It should be noted that, due to inho-

mogeneous evaporation, the values of the longitudinal
temperature gradients on the order of 3–80 K/m, used in
analytical calculations, are quite realistic for the experi-
ment [6]. However, better agreement between the analyt-
ical results and the experimental data (Table 1) can be

achieved at higher values of T0 (see (22); )

and, accordingly, greater values of ϑ+ and ϑ– (see (14);

ϑ+ and ϑ– vary in the range of 40–80°C).

= °0 60 CT

An increase in the transverse temperature drop

(here, |ϑ+ – ϑ–|) leads to an increase in the evaporation

rate M in analytical calculations (Fig. 5b). All calcula-

tions were performed for the experimental values of

the gas f low rate Q (see Table 1, first column).

CONCLUSIONS

The results of mathematical modeling of steady-

state two-layer f lows based on the exact solutions of

the Navier–Stokes equations in the Boussinesq

approximation were presented. The solutions were

constructed with allowance for the evaporation at the

interface and thermodiffusion and diffusion thermal

conductivity in the upper layer of the system. Note

that it is the exact solutions that enable one to analyze

the adequacy of the formulation of a mathematical

model of two-layer f luid f lows with an interface and to

reveal significant factors influencing the f low charac-

teristics. It turned out that taking into account the

Soret effect allows one to consider an interface as a

thermocapillary surface in the case when the upper

wall of the channel can absorb vapor. If, on the upper

solid boundary of the f low region, a condition typical

of vapor absorption is imposed and the Soret effect is

disregarded, then, when simulating two-layer f lows of

form (6), it is necessary to set to zero the longitudinal

temperature gradient A at the interface. When the

thermodiffusion effect is taken into account, the

boundary value of one of the longitudinal temperature

gradients determines the values of the other two

through specific coupling conditions (see (31)). Under

the condition of a zero-vapor f lux at the upper solid

channel wall, the simulation of two-layer f lows is per-

formed at a given longitudinal gradient of tempera-

ture, the same for all channel boundaries, if the Soret

effect is taken into account (see condition (40)). If the

Soret effect is not taken into account in the simulation

in the absence of the vapor f low at the upper bound-

ary, then two of the three longitudinal temperature

gradients at the channel boundaries can be considered

specified (see (41)). Thus, the Soret effect changes the

flow quantitatively and qualitatively, and enables one

to change the mechanism of control of the f low pat-

tern by specifying longitudinal temperature gradients

at the channel boundaries and matching their values.

Examples of velocity, temperature, and concentra-

tion profiles for the HFE-7100–nitrogen liquid–gas

system were presented for different values of gas f low

in the upper layer with and without taking into

account the Soret effect for different thicknesses of the

liquid layer. The analytical and experimental results on

the evaporation mass rate M of liquid on the thermo-

capillary interface as a function of the gas f low rate and

longitudinal temperature gradients were compared.

The qualitative and, in some cases, quantitative agree-

ment between them was revealed.

Table 1

Q, kg/(m s)
M, kg/(m2 s), 

experiment

M, kg/(m2 s),

theory

9.6 × 10–4 2.873 × 10–2 2.7 × 10–2

3.6 × 10–4 2.425 × 10–2 1.14 × 10–2

1.8 × 10–4 2.151 × 10–2 1.01 × 10–2

9.6 × 10–5 1.929 × 10–2 9.62 × 10–3

1.8 × 10–5 1.444 × 10–2 9.43 × 10–3
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