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Abstract⎯Allowance for nonlinearity leads to the appearance of the longitudinal electric current directed
along a wave vector. This longitudinal current is orthogonal to the known transverse classical current at linear
analysis. The kinetic Vlasov equation for collisional Maxwellian plasma is used upon the determination of the
longitudinal electric current. The Bhatnagar–Gross–Krook collision integral is applied. The electron distri-
bution function is taken from the Vlasov equation in the approximation quadratic over an electromagnetic
field. The formula for the calculation of the electric current is derived. When the collision frequency tends to
zero, all results for collisional plasma transfer into a corresponding known formula for collisionless plasma.
The case of small wave numbers is considered. The value of the longitudinal current when the collision fre-
quency tends to zero also transfers into the known expression for the current in collisionless plasma. The
dependence of the dimensionless current on the wave number, frequency of electromagnetic field oscilla-
tions, and the collision frequency of electrons with plasma particles is studied.

DOI: 10.1134/S0018151X1705011X

INTRODUCTION
In this work, we derive formulas for the calculation

of the electric current in Maxwellian collisional plasma.
The Vlasov equation with the Bhatnagar–Gross–
Krook (BGK) collision integral is applied [1–4].
Quantities proportional to the square of the external
electric field strength are taken into account when
solving the kinetic Vlasov equation describing the
plasma behavior, and quadratic expansions of the dis-
tribution function and collision integral are used.

It occurred at such a nonlinear approach that the
electric current has two nonzero components. One
component is directed along the electric field strength
and is proportional to it. It is exactly the same as in the
linear analysis and is described by the known expres-
sion for the transverse electric current.

The second nonzero component of the electric
current has the second order of smallness with respect
to the electric field strength and is directed along the
wave vector perpendicularly to the electric field. This
is the “longitudinal” current orthogonal to the first
component. The generation of the longitudinal cur-
rent by the transverse electromagnetic field in plasma
is revealed by the nonlinear analysis of the interaction
between the electromagnetic field and plasma.

The analytical solution of the Vlasov equation with
the BGK collision integral is found in [4] for the prob-
lem of plasma oscillations. Nonlinear effects in plasma
have been studied for a long time [5–15] (see also

review [16]). We note that nonlinear effects mani-
fested in the generation of the second harmonic were
studied in [17]. In [6] the linear current was considered,
in particular, in connection with probabilities of decay
processes. The existence of the nonlinear current along
the wave vector was noted in [7] (formula (2.9) in [7]).
The generation of the longitudinal current by the
transverse electromagnetic field in classical and quan-
tum Fermi–Dirac plasma was studied in [18], and that
in collisionless Maxwellian plasma was studied in [19].

In this work, we derived formulas for the calculation
of the longitudinal current generated by the transverse
electromagnetic field in Maxwellian collisional plasma.

SOLUTION OF THE VLASOV EQUATION

We show that, in Maxwellian plasma described by
the Vlasov equation, the longitudinal current is gener-
ated by the transverse electric field, and we calculate
its density. The existence of this current was indicated
more than half a century ago [7].

Further we consider the case of weakly ionized
plasma. It is possible to ignore electron-electron colli-
sions [20–22]. The way in which to account for elec-
tron-electron collisions on the plasma kinetics was
considered in [23, 24]. The Vlasov equation describing
the behavior of collisional plasma with the BGK colli-
sion integral has the form
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Here, f is the electron distribution function of
plasma, E, H are components of the electromagnetic
field, c is the velocity of light, p = mv is the momentum
of electrons, v is their velocity, ν is the effective colli-
sion frequency of electrons with plasma particles, and

 = feq(r, v) (eq—equilibrium) is the locally equilib-
rium Maxwellian distribution function:

where  is the energy of electrons,  is the

Boltzmann constant, P = p/pT = v/  is the dimension-
less momentum (velocity) of electrons, pT = m   is
the thermal velocity of electrons, and 

 is the thermal energy of electrons, T
is the plasma temperature. The equilibrium distribution
function is normalized to the numerical density:

We consider that there is an electromagnetic field
in plasma, which is a traveling harmonic wave: E =
E0  H = H0  The electric and magnetic
fields can be expressed in terms of the vector potential
A by the following equalities:

For certainty, we consider that the wave vector is
directed along the x axis, and, the electric field, along
the y axis, i.e., k = k(1, 0, 0), E = Ey(x, t)(0, 1, 0). Con-
sequently,

and also  =  = 0, since 

We consider the linearization of the locally equilib-
rium distribution function
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Equation (1) can be rewritten in the form

(2)

and the value δN/N is found from the law of conserva-
tion of the number of particles

From this conservation law, we find

and we find

Equation (2) can be transformed now to the inte-
gral equation

(3)

We search for solution to (3) in the form

(4)
where

We shall operate by the method of successive
approximations considering the value of the electric
field strength as a small parameter. It is possible to
rewrite Eq. (3) using (4) in the form
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(7)

From Eq. (6), we find

(8)

where

We introduce dimensionless parameters

Here, q is the dimensionless wave number, kT =
m  is the thermal wave number, and  is the
dimensionless frequency of the electromagnetic field
oscillations.

We transfer to dimensionless parameters in Eq. (8)
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where

We note that

Consequently,
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Substituting (10) in Eq. (9), we find the equality

It is easy to see that the integral in the right-hand side
of this equality is zero. Consequently, A1 = 0. Then,
according to (10), the function f1 is determined as

(11)

We substitute (11) into (7) and find

where

(12)

We transfer to dimensionless variables in this equa-
tion
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Here,

We substitute A2 into (14) and find f2 in the explicit
form

(15)

Here,

(16)

ELECTRIC CURRENT DENSITY

We find the electric current density

(17)

It is seen from (4) and (17) that the density current
vector has two nonzero components j = (jx, jy, 0). Here,
jx, jy are the density of longitudinal and transverse cur-
rents, respectively,

(18)

(19)

The transverse current is directed along the electric
field, its density  is determined only by the first
approximation of the distribution function, and the
second approximation does not contribute. According
to (19) and (12), we have

This current is proportional to the first power of the
electric field strength.

We find, for the longitudinal current density substi-
tuting (15) into (18),
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In the integral of the second term in square brack-
ets in (20), the internal integral over Py is zero:

In the first integral in square brackets, the internal
integral over Px is calculated in parts:

As a result, Eq. (20) is simplified:

The internal integral over Py is calculated in parts

and we find the expression for the longitudinal current
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We denote

Then, it is possible to present (21) in the following
form:

(22)

We return to the consideration of the quantity γ. We
calculate integrals  and  entering (16). It was
already indicated that the integral from the second
term of  is zero. The second integral, the same as
earlier, is calculated in parts. As a result, we find

The internal integral over the variable Py is also cal-
culated in parts. As a result, we find the integral

which was already calculated. Consequently,
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Now formula (22) can be presented in the form

or expressing in terms of the plasma (Langmuir) fre-
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At  we transfer from this formula to formula
from [18] for the longitudinal current for small wave
numbers in collisionless plasma.

Figures 1 and 2 show the behavior of the real and
imaginary parts of the density of the dimensionless
longitudinal current at Ω = 1, respectively, as a func-
tion of the dimensionless wave number q at different
values of the dimensionless collision frequency. At
small and large values of parameter q, the real part
almost terminates to depend on the frequency. First it

( ) ( )
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σ σ
= − = −
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has a minimum, then a maximum. The imaginary part
of the density current has one maximum, and its fre-
quency dependence disappears at an increase in q.

Figures 3 and 4 show dependences of the real and
imaginary parts of the density of the longitudinal cur-
rent on the dimensionless wave number, q, respec-
tively, at Ω = 1, y = 0.01 and different frequencies of
the electromagnetic field. At large values of the
dimensionless wave number, the frequency depen-
dence disappears.

Figures 5 and 6 show dependences of the real and
imaginary parts of the density of the longitudinal cur-
rent on q at different field frequencies Ω and y = 0.01.
At an increase in the dimensionless wave number, q,
the real parts of the current density almost terminate
to depend on the field frequency. For the imaginary
parts, the dependence on the field frequency disap-
pears at small and large wave numbers.

Fig. 1. Real part of the density of the dimensionless longi-
tudinal current as a function of dimensionless wave num-
ber q at Ω = 1 and three values of the dimensionless colli-
sion frequency: 1—y = 0.001, 2—0.01, 3—0.05.
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Fig. 2. Imaginary part of the density of the dimensionless
longitudinal current as a function of q at Ω =1 and dimen-
sionless collision frequencies: notations as in Fig. 1.
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Fig. 3. Real part of the density of the dimensionless longi-
tudinal current as a function of q at y = 0.01 and three va-
lues of the dimensionless electromagnetic field frequency:
1—Ω = 0.1, 2—0.12, 3—0.15.
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Fig. 4. Imaginary part of the density of the dimensionless
longitudinal current as a function of q at y = 0.01: notations
as in Fig. 3.
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CONCLUSIONS

In the work, the problem of the generation of the
longitudinal electric current by the transverse electro-
magnetic field in Maxwellian collisional plasma was
solved. The expansion of the electron distribution
function over the electric field strength with the accu-
racy to quadratic terms was found from the solution of
the kinetic Vlasov equation with the BGK collision
integral. It was shown that the component of the elec-
tric current in the direction of the electric field (longi-
tudinal current) is proportional to its strength, while
the perpendicular component (transverse current) is
proportional to the square of the field strength. A par-
ticular case of collisionless plasma was considered as
well as the case of small wave numbers. The depen-
dences of the current on the wave number, the electro-
magnetic field frequency, and the collision frequency
of electrons with plasma particles were determined.
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Translated by L. Mosina

Fig. 5. Real part of the density of the dimensionless longi-
tudinal current at y = 0.01: 1—Ω = 1, 2—1.1, 3—1.2.

0

–0.03

–0.06

0.03 1

1.50 q

Re J

2

3

Fig. 6. Imaginary part of the density of the dimensionless
longitudinal current at y = 0.01: notations as in Fig. 5.
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