
27

ISSN 0018-151X, High Temperature, 2017, Vol. 55, No. 1, pp. 27–39. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © A.M. Bishaev, V.A. Rykov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 1, pp. 31–43.

Construction of a System of Kinetic Equations for a Nonideal Gas
A. M. Bishaeva, * and V. A. Rykovb, **

aMoscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
bDorodnitsyn Computing Centre, Russian Academy of Sciences, Moscow, Russia

*e-mail: bishaev@bk.ru
**e-mail: varlav@land.ru
Received December 5, 2014

Abstract―For molecules interacting among each other with the potential having both repulsive and attractive
components, a system of kinetic equations is derived using the Bogolyubov method, which takes into account
the effect of forming bound states by molecules. This system implies all conservation laws and their corollaries
that are invariant under the Galilean transformation. With consideration of the relaxation problem for the
given system of kinetic equations, the Н-theorem can be obtained. It is noted that the equation of state, which
is derived in this case, coincides in form with the van der Waals equation of state.
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INTRODUCTION
It is known that N.N. Bogolyubov, by using asymp-

totic methods, derived the Boltzmann equation from
the BBGKY system (the derivation can be found in [1]).
In this method, the Boltzmann equation is obtained as
an equation for determining a single-particle distribu-
tion function in the λ-scale, which is the zeroth-order
term in the expansion of the BBGKY system with
respect to the small parameter  Here  is the

typical density of gas molecules,  is the free

path of molecules in the gas, and  cm is the
size of a molecule (or atom). Usually as this quantity,
the size is taken at which the intermolecular interac-
tion potential is different from zero.

When a derivation of the Boltzmann equation is
regarded, the potential with which molecules interact
with each other is always assumed to be specified.
Moreover, it is suggested that the gas molecules inter-
act as point centers of repulsion. In reality, as is
known, the potential of molecular interaction has both
repulsive and attractive components; therefore, the
Boltzmann equation is valid for an ideal rarefied gas
[2], i.e., for a gas in which the averaged potential
energy of attraction of molecules can be neglected in
comparison with their mean kinetic energy. A gas in
which this suggestion is not satisfied will be called a
nonideal gas everywhere in this work.

There are many works in which attempts are made
to take into account the corrections on the order of ε
in the Boltzmann equation. The equations derived by
this procedure are treated as kinetic equations for a
dense gas. Already in [1], a procedure for taking into
consideration the effect of shading of molecules is pro-

posed. A consecutive asymptotic procedure to account
for terms on the order of  is related to consideration
of simultaneous collisions of three or more molecules,
which leads to the appearance of divergent integrals in
the procedure mentioned. In [3], this problem is
solved using the principle of attenuation of correla-
tions in the expression for multiparticle distribution
functions. In [3], it is also noted that, in cases of allow-
ance for corrections on the order of , the nonadditiv-
ity of the potential of interaction between molecules
should be taken into consideration in the Liouville
equation. The kinetic equation obtained in this case (it
is given in [3]) is interpreted as the kinetic equation for
a nonideal gas.

It should be noted that the introduced parameter ε
is less than unity for almost all media (it is noted in [3]
and earlier in [4]). For instance, for iron (Fe) whose
density ρ = 7.8 g/cm3, , which is more than
ten times smaller than unity; for water,  From
this it can be concluded that a trend connected with
the allowance for only effects of gas consolidation, will
hardly lead to creation of kinetic equations describing
the behavior of real media.

There are several works in which attempts are made
to take into account the gas nonideality in the Boltz-
mann equation (the attractive component in the
potential of molecule interaction). In [3], a fairly com-
prehensive overview of these works is given. One such
trend is connected with the fact that the repulsive
forces manifest themselves at short distances, whereas
at greater distances, molecules attract each other. In
[3], a method is proposed for building kinetic equa-
tions with allowance for far-ranging attractive forces
based on the BBGKY chain. In [4], with construction
of a kinetic equation, the potential of interaction
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between molecules has been divided into two parts,
one of which describes only repulsion, while another
sets forth only attraction. Obtained in this way, kinetic
equations are sufficiently complex for analytical or
numerical study. Therefore, no significant results have
been achieved in this direction. Most likely, a reason
also is here that the lengths cannot be segregated at the
micro level, at which only forces of attraction would be
significant separately from forces of repulsion. In the
kinetic theory, microscopic interaction potentials are
used, the forces of repulsion and attraction of which
are noticeable only at distances on the order of the
molecule size.

A significant contribution to the understanding of
problems associated with creating the kinetic theory of
a nonideal gas was made by Yu.L. Klimontovich. He
introduced [5] one more parameter of length charac-
terizing the medium:  It is interpreted as the
distance between molecules. Then, it follows from the

above that  while the reciprocal of the Knud-

sen number, which stands in front of the collision inte-
gral in the Boltzmann equation, is  This
implies that the collision integral is a nonanalytic
function of multiparticle distribution function; there-
fore, its expansion in integer powers of ε does not pro-
vide the correct allowance for effects associated with
an increase in the medium density. In [5], Yu.L.
Klimontovich has also indicated that the kinetic
description of a nonideal gas requires using a two-par-
ticle distribution function, which, generally speaking,
is understandable because the average potential energy
of molecules will be expressed through the two-parti-
cle distribution function. In [6], he constructed an
equation for the two-particle distribution function
describing a nonideal gas. This has not made a notice-
able resonance. Apparently, it occurred due to the fact
that it was impossible to pass from this equation to the
ideal gas.

An absolutely different approach to the problem
was proposed by A.A. Vlasov [7]. He introduced the
notion of the potential of the self-consistent field and
constructed a kinetic equation for evolution of the dis-
tribution function located in this field. In [3], the
information about the area of applicability of the
approach of A.A. Vlasov is given, and it is also indicated
that, at the present time, the representations of the col-
lision integral as the sum of the Boltzmann integral,
Vlasov’s approach, and some other terms are used.

The most striking effect of the action of the forces
of attraction between molecules is the formation of
bound states by the molecules, the kinetic energy of
which does not allow the action of forces of attraction
to be overcome. If what is written in [3] is true, then
the problem of taking into consideration the bound
states is far from being solved, while the kinetic equa-
tions available, which take the indicated effect into
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account, are too complicated for analytical and
numerical studies.

In this work, a model is proposed that takes into
account the nonideality of a rarefied gas caused
namely by creation of bound states.

MODIFICATION OF THE BOLTZMANN 
EQUATION FOR TAKING THE GAS 

NONIDEALITY INTO ACCOUNT

Consider the derivation of the Boltzmann equation
from the BBGKY hierarchy following the ideas avail-
able in [1, 2]. The first two equations of the above hier-
archy have the following form:

(1)

(2)

Here,  and  are
the single-particle and two-particle distribution func-
tions, respectively, normalized to unity; 
is the intermolecular interaction potential;  =

 Entering the right-hand side of (2), the quan-
tity  is expressed through the three-particle distribu-
tion function   The quantity
N, appearing in the right-hand side of (1), arises
during the corresponding integration of the Liouville
equation over the phase space of the system of N mol-
ecules [2] and presents a number of particles in the sys-
tem. While writing his equation, Boltzmann believed
that the number of molecules in the system was so
great that in the physically small volume ,
the true number of molecules can be assumed equal to
their average number; i.e., he neglected the f luctua-
tion of particles [8]. In [7], the issues connected with
the indicated difference are considered more thor-
oughly. From the above in this work, it is believed that

 ≈  where L is the characteristic size of
the motion.

A specific feature of the BBGKY hierarchy is that it
contains an infinite number of equations coupled to
each other. Derivation of the Boltzmann equation is
based on the fact that there are two scales of length:

 cm is the distance at which the intermolecu-

lar interaction potential reveals its action;  is

the free path which, for the Boltzmann’s gas, is a value

on the order of unity. Since  then the appli-

cation of asymptotic methods makes it possible to
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break off the above-mentioned infinite chain of equa-
tions at the first step.

The right-hand side of (1) (a would-be collision

integral), due to the fact that  

(Σ is the velocity space), can be written as

The analysis of Eq. (2) is conveniently performed

in the variables   

and . Then

In the new variables, Eqs. (1) and (2) will have the
following form:

(3)

We will suggest that, in the two-particle function,
relative motion occurs on the scale d and in the time

 while the motion of the center of mass takes
place on the scale λ and in the time  Then, accord-
ing to a formalism of the asymptotic procedure described

in [9],  =   where

  are the dimensionless variables,

  is the typical value of temperature (on

the order of the critical one). Substituting the expres-
sion for  written above into the second equation of
(3), we derive

(4)
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potential,  =  and  is the dimensionless

value of the two-particle distribution function. If the
 expansions in the scales d and λ are introduced as

 +  and  + , then in
the first approximation for the two-particle function
from (4), we have

(5)

(6)

As has been already noted, the integrand on the
right-hand side of (1) is nonzero inside the sphere of
the radius on the order of d, whose center is placed at
the center of mass of a molecule having velocity ξ;
therefore, J will depend upon the two-particle distri-
bution function in the scale d and upon the variables

 Changing in the integration to the variables
 , we derive that 

 Introduce the  expansion

in the d scale, setting  =  +  Then  +

 =  (here  ). From the

relation obtained, it can be seen that, in the zeroth
approximation, the single-particle distribution func-
tion does not change in the scale d (homogeneity prin-
ciple [2]).

We make a change to dimensionless variables in (1)

as follows:    and 

If for  in the λ scale, we write  =  + ,
then, omitting the index λ in the dimensionless vari-
ables, for the zeroth-order term of the asymptotic
expansion of the single-particle distribution function

, we derive
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The right-hand side of (7) depends on the time t in

the λ scale. Since  =  from (5) it follows that

 =  Then for , we will have the fol-

lowing equation:

As has already been noted above, in deriving the
Boltzmann equation, the intermolecular interaction
potential is suggested to be repulsive in the form

  In this case, projections of phase

trajectories of the motion of colliding molecules
(characteristics (5)) onto the D space are open and
penetrate this space. Thus,  is represented by a con-
tinuous function in D together with its derivatives,
while D is represented by a simply connected domain;
therefore, with each fixed , the Gaussian theorem
and the equation

(8)

are applicable. Here,  is the surface that bounds
the domain D with a diameter of η(ε)/ε and n is the
external normal to the surface defined above.

In the domain D, as in [2], we introduce a coordi-
nate system linking its origin to a molecule moving at
the velocity ξ, while the  axis will be directed opposite
to the velocity g. Consider trajectory (5), having with

,  (here ) and impact
parameters  As , we will take the surface cre-
ated by rotation of these trajectory around the z axis
and bound by the planes 
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the conservation laws  =  and  +

 where  =  while r is the
magnitude of the radius-vector of a trajectory point.
At the side part of ,  and  =

 Therefore, we have for (8)
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) holds, the passage to the limit with 
and a coupling procedure can be implemented in the
last expression. For this purpose, according to [9], the
condition  has to be imposed on the

function  introduced previously and defining the
scale on which the intermolecular potential acts, and
the intermediate variable  should be intro-
duced. Following [9], we have  –

   – 
 and  – 

  +   

From here, considering that ,
 =  are the

velocities of molecules before the collision and after
 =  while

 we derive the equation for

 in the form

(9)

In (9), from integration with respect to g, we
returned again to the integration with respect to ξ1. If
in (9) we return to the dimensional variables and from
the function  we pass to the usually used function

  =  then (9) will change to the well-
known Boltzmann equation.

( , )z= ωg g

' singb rμ ω 1C 2

2
gμ

2( ) ,U r C= '( )b ± η ε sin ,r ω

Sη ε ( ) 0⋅ =g n ( ( , ) )η ε ω ng

( ( , ) ) 0.− −η ε ω ≤ng

)

η ε

+∞ π

Ω Ω

⋅ σ = η ε ω ⋅

× − −η ε ω +
+ −η ε ω − − η ε ω

+ + η ε ω θ
= η ε

∫ ∫∫ ∫ ∫ ∫g g n

x w g x r w

g x w g

x r w g g

r

�

/

2

0 0

2

2

( ) ( ( , ) )

( ( , , (1 2) ( , ), ,
(1 2) ( , )) ( , , (1 2) ( , ),

, (1 2) ( , )) ,
( ( ),0,0).

S

F d d

F t
F t

bdbd d

g n

2 1 1( , , , , )F t x xξ ξ ( , , )F t x ξ
1 1( , , )F t x ξ 0ε →

0
lim ( )
ε→

η ε ε = ∞

( ),η ε

η λ= ηr r

2
const
0

lim ( ( ,
r

F t
η=

ε→

,x w

η ε ω(1 2) ( , ),g ,η+ ηx r + (1 2)w g( , ))η ε ω ( , , )F t x ξ
1 1( , , )) 0F t =x ξ 2

const
0

lim (
r

F
η=

ε→

( , ,(1 2)t x w ( , ),−η ε ωg

,x η+ ηr (1 2)w ( , ))−η ε ωg ( ,F t− , ) ( ,F tx �ξ 1 1, ) 0.=x �ξ

'( )b b±η ε →
−w g(1 2) ( , )+∞ ω +w, (1 2)ξ 1( , )+∞ ω =g ξ

−w g(1 2) ( , )−∞ ω +w g
�, (1 2)ξ 1( , ) ,−∞ ω = �ξ

( )
lim

η ε ε→∞
( ( , ) ,gη ε θ ⋅ =g n)

F

+∞ π

Ω

∂ ∂+ ξ =
∂ ∂

× − θ

∫ ∫ ∫ x

x x x

�

�

0 0

1 1 1

1 ( ( , , )
Kn

( , , ) ( , , ) ( , , )) .

i
i

F F g F t
t x

F t F t F t bdbd d

ξ

ξ ξ ξ ξ

F
( ,f f t= , )x ξ ,FN

Fig. 1. To derivation of the Boltzmann equation.

Y

X

Sη/εr
ω

ω

B

B

Z

g(η/ε, ω)

g(–η/ε, ω)



HIGH TEMPERATURE  Vol. 55  No. 1  2017

CONSTRUCTION OF A SYSTEM OF KINETIC EQUATIONS 31

If, instead of the free path λ, the length scale

 is introduced, then  where

 The last remark shows that the collision
integral for Boltzmann’s gas is a quantity on the order
of  and should be taken into consideration since the
expansion is performed in integer powers of ε.

As is evident, the Boltzmann equation is repre-
sented as an equation, which is satisfied by the func-
tion (f) of the zeroth order in the asymptotic expan-
sion in ε; therefore, the recent attempts to “improve”
the Boltzmann equation lie beyond the formalism of
asymptotic methods.

In the above derivation of the Boltzmann equation,
it is important that the coordinate space D can be pre-
sented to be woven of characteristics (5), which in the
case of the exponential repulsive potential are open.
However, for potentials that describe both attraction
and repulsion, it is not so.

If, e.g., the Lennard–Jones potential  =

 is taken, then particles for which

 +  cannot go off to infinity and will

form closed trajectories. The presence of closed paths
of the molecules in the case of real interaction poten-
tials is known in the literature as creation of bound
states. In the opinion of the authors of this work, the
formation of bound states is the main effect that dis-
tinguishes an ideal gas from a nonideal one at the
kinetic level. The next part will be dedicated to deriva-
tion of the Boltzmann-type equation taking into
account the effect of forming bound states.

We suggest that the potential of interaction of mol-
ecules with each other is as follows:

(10)

Interaction potential (10) is a particular case of the
Sutherland intermolecular potential

According to (10), at distances smaller than d, mol-
ecules interact as solid spheres, and at larger distances,
they are attracted as Maxwellian molecules. It should
be noted that Eq. (10) is used rather frequently in var-
ious works.
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acteristics (5), then on the surface γ, the equation of

which is  –   will be discontinuous

because, for the distribution function  in the domain
where trajectories are closed, the hypothesis of molec-
ular chaos does not take place and the formal applica-
tion of the Gauss theorem, which was used in deriving
the Boltzmann equation, becomes unlawful.

Figure 2 depicts a projection of the dimensionless
phase space onto the plane  where  
The domain where  is inaccessible to mole-
cules; therefore, with ,  Domain I

shown in Fig. 2, where  corresponds to the pro-

jection of the phase space domain of bound states 
The function  in this domain will be denoted by 
The trajectories of molecules in domains II and III are
not closed; therefore, we will keep in them the old des-
ignation  for the two-particle function.

As previously, we will fix the coordinate space D to
the molecule moving at the velocity ξ, while the z axis
will be directed opposite to  then 
The phase space in Fig. 2 is divided into three domains
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depicted in Fig. 1, i.e., Sη/ε, can be taken as , while
 is the sphere of unit radius; for , we have  =

 +   ×

 where  is the sphere of the radius 

Summing the above expressions, we derive

  +  ×

 =  , which is the

usual Boltzmann integral of collisions. Since the sur-
face  is everywhere crossed by the molecules, whose
trajectories come to infinity and go off from there,
then the integral written above can be reduced to the
form obtained earlier. It is clear that

 +  ×

 = 0, since the molecules do not penetrate into

the domain where 

On the sphere of the radius , the func-

tion  has a discontinuity: with , the function
 enters the domain of bound states; therefore,

 =  ×

 From here, the procedure of deriving the
Boltzmann equation in the case of allowance for
bound states leads to the following equation:

(11)

where 

 If in (11),  then the usual Boltz-
mann equation is obtained, which is natural since

 is the condition of gas ideality.

The problem being solved above is an attempt to
take bound states into account in the Boltzmann
equation. In [3], it is noted that, apart from the bound
states with  bound states with  may form.
In [3], it is also noted that these states are metastable,
since they disappear over time. The Boltzmann equa-
tion itself is derived on the time scale ; therefore,

 =  This fact is

substantiation of disregarding the metastable bound
states in the above analysis. These states already will
not be present on the time scale . The bound states
with  remain, since they can be destroyed only

S∞

1S IIIΓ IIIJ

2g
d

≤ χ∫ g ( )
rdS

⎛ ⋅⎜
⎝ ∫∫� g n

⎞σ⎟
⎠

2F d
2g

d
≤ χ∫ g ( ( )

S∞

⋅∫∫� g n

)2 ,F dσ
drS

1 2(2 ) .dr g
χ=

2g
d

≥ χ∫ g ( ( )
S∞

⋅∫∫� g n )2F dσ
2g

d
≤ χ∫ g ( ( )

S∞

⋅∫∫� g n

)2F dσ d∫ g ( ( )
S∞

⋅∫∫� g n )2 BF d Jσ =

S∞

2g
d

≥ χ∫ g (
1

( )
S

⋅∫∫� g n )2F dσ
2g

d
≤ χ∫ g (

1

( )
S

⋅∫∫� g n

)2F dσ

0 1.r≤ ≤
1 2(2 )r

g
χ=

2F ( ) 0≤gn

2F

(( )...
rdS

d⋅ σ∫∫� g n
2
2

χ 2

0 0
cos

π π
ω∫ ∫ 2( )dF F−

sin .d dω ω θ

del
1 ( ),

Kn
i

Bi
F F J J
t x

∂ ∂+ ξ = −
∂ ∂

del
2
2

J χ=
2g

d
≤ χ∫ g

2

0 0
cos

π π
ω∫ ∫ 2( )dF F−

sin .d dω ω θ 0,χ →

0

0

1U
kT

χ = !

0,E ≤ 0E >

tλ

2 1 1( , , , , )F t x xξ ξ 2lim
dt

F
→+∞

1 1( , , , , ).dt x xξ ξ

tλ
0E ≤

by collisions between three or more particles, which
are not taken into account in the given approximation.

Coming from infinity to the boundary of the
domain of bound states, the function  is constant
along characteristics (5) and has the form  =

 =  since on the surface γ,  –

 From here it follows that to the boundary of

the domain of bound states, the function  comes
with  because with  (at infinity), only
particles with  have zero energy. Suggesting that,
in domain III, the hypothesis of molecular chaos takes
place, we obtain that in the expression for ,  =

 =  =  Then
with allowance for creation of bound states, the equa-
tion for the dimensionless single-particle distribution

function will have the following form:  +  =

If in (11) a change is made to the dimensional vari-
ables and to the distribution functions usually used,
then the following equation will be derived:

(12)

It can also be noted that there is no difference in the
form between the collision integral obtained and the
collision integral of various modifications of the
Boltzmann equation given in [3].

SYSTEM OF KINETIC EQUATIONS
FOR A NONIDEAL GAS

As is evident, the expression for  depends on the
two-particle distribution function  In the previous
paragraph, the suggestion is made that, in domains II
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bound states, the hypothesis of molecular chaos takes
place; therefore, it is natural that  =  =
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sions); therefore,  is suggested to take a quasi-
canonical form, i.e.,

(13)

The functions  =  and ϕ = 
appearing in (13), are functions in the λ scale. Since

 =  then  =  and ϕ =
 can be considered to be dependent on x.

The task now is to derive the equations that deter-
mine the evolution of the functions  and ϕ. For this
purpose, we introduce the following functions:

(14)

where  is the phase space domain of bound states
(domain I in Fig. 2); s  is the number of mole-
cules in the bound state, the coordinates and velocities
of which are located in the corresponding element of
the phase space, while  is their energy.

We derive specific expressions for the functions s
and h (14). If during the integration with respect to g
and r, we change to spherical variables, making in this
case the substitution  (t is the dimensionless
variable of integration), then we will obtain
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where  =  +  –  +
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It is easy to see that the radius of convergence of the
series is infinity. On performing a similar procedure
for h, we obtain
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clear that  will be a source term in the equation
which determines the evolution of the function s.
Therefore, the following equation is offered for this

function:  =  where  +  + 

is the transport operator.
On averaging over the domain of bound states, we

will derive equations for the averaged functions in the
λ scale (the ideology developed in [10] is used).

We will set the scale value of  to be 

while a typical value of s, according to (15), will be

defined as  =  The equation for s in the

dimensionless form is represented as  = 

(here  is written in dimensionless form). It is worth
noting that the concept of the free path of a molecule
has a clear physical meaning when molecules interact
as solid spheres. In the cases of other interaction
potentials (especially those having a domain of attrac-
tion), the quantity  interpreted as the distance
between molecules, is more natural [5]. If it is taken as

the main scale value, then  =  Then for

the function s, we will have  =  or

 =  In the dimensionless form, the right-

hand side of the equation for f looks like  +
 and if the estimates obtained above are used,

then its order will be  +  This implies that
 when  or  From the

estimates obtained, the conclusion can be drawn that,
if  then the gas can be considered as ideal
and, for its description, the Boltzmann equation can
be utilized. Otherwise, the nonideality should be taken
into account in the appropriate kinetic equation.

The transport operator introduced above com-
prises an unknown quantity   which will be

defined as 

where V is the volume occupied by the gas. The latter
means that while constructing a transport operator, we
use the ideology of [7].

Consider in detail the expression derived. We
assume that  =  is the density of molecules
in the unbound state. The intermolecular potential is
noticeably different from zero, if  therefore, we
will change to the new variables of integration:
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 Taking into account that  =
 +  we obtain

(17)

In (17),  where  is the
domain enclosed between the sphere  =  (e is
the normal to the sphere) and the piecewise smooth
surface  This surface is the union of a finite num-
ber of smooth surfaces. For the external surface ,

we have  ≈  –  This implies that

 ≤  in the context of the given
approximation. Then we obtain

(18)

Force term (17) in the equation for the function
s, as compared with other terms, has the order of

 =  and, as the above analysis has shown,
should be taken into account in this approach. More-
over, the allowance for the impact of the bound parti-
cles on each other will be natural, i.e., the definition of

 as  –

  With respect to

the first summand, the second summand has the order
of  and should be taken into consideration when
the nonideality is accounted for. The second sum-
mand allows for the same simplification as the first
one; therefore, we have for  the following expression:

where  is the total gas density and

 is the density of particles in the bound
state.

As a source term in the equation for h, we take the
work that is done by intermolecular forces to transfer

 to  through the curve γ (see Fig. 2). Select, as

shown in Fig. 2, the domain   ≤  –

 The power of intermolecular forces in
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We suggest that on the curve γ the derivative 

has discontinuities of the first kind; i.e., it is limited.

Then  is zero, while  =  ×

 The last formula has
been obtained taking into account that one external nor-
mal  is directed towards domain I and, for it,

 while another is directed towards domain II
and  in this case.

From the above, we have the following equation for h:

This approach leads to the closed system of kinetic
equations if the equations for s and h are attached to
the Boltzmann equation. This system of equations has
the form
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domain itself. All remaining suppositions were the
same as in deriving the Boltzmann equation.

CONSERVATION LAWS
We introduce the following macroscopic functions:

(20)

 was introduced above, while  = 
is the density of molecules in the bound state. Since,
according to (14), each pair of molecules forming the
bound state is accounted for twice, then  from (20)
will be the number of molecules in the bound state.
Therefore,  is the number density of gas
molecules, while  is the gas density.

Define the vectors: (  + ),

 and  Then
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We integrate the first equation of (19) with respect
to  and the second equation with respect to  and
sum. As a result, we derive a typical equation of con-
servation of the number of particles:
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integrate it with respect to 

 

The last equality is obtained with the substitution
 in the right-hand side of the integral. Taking

also into account that  =  the last equality
can be rewritten in the form

If now we multiply the second equation of (19) by
 then integrate it with respect to , and summa-

, ,f dn fd n sd= =∫ ∫ wξ

( , )f fn n t= x dn ( , )dn t x

dn

f dn n n= +
mnρ =

1
n

=u fd∫ ξ ξ sd∫w w

,= −fc uξ .d = −c w u

f d 0.fd sd fd sd n+ = + − =∫ ∫ ∫ ∫c c w w w uξ ξ ξ

,dξ dw

( ) 0, 1,2,3.i

i

nun i
t x

∂∂ + = =
∂ ∂

jmξ
:dξ

( ) ( )
π π

≤ χ
π π

≤ χ

∂ ξ ∂ ξ ξ
+

∂ ∂

= − χ ξ ω −

× ω ω θ = − χ −

× ω θ ξ ω θ

∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫

1

1

2
2

1 1

2 0 0
2

2
1

2 0 0

1 1

cos ( )

sin ( )

( , ) .

j j i

i

j
d

g

d

g
j

m fd m fd

i x

d m d d f F

d d d f F

R m d d d d

ξ ξ

ξ ξ

ξ ξ

1�ξ ξ
1d dξ ξ ,d dw g

( ) ( )
π π

≤χ

∂ ξ ∂ ξ ξ
+ = − χ

∂ ∂

× − ω θ ω θ

∫ ∫

∫ ∫ ∫ ∫ g w

1

2
1

2

0 0

( ) ( , ) .

j j i

i

j
d

g

m fd m fd
d

i x

f F R mw d d d d

ξ ξ

,jmw dw

rize with the expression presented above, we will
obtain

Define the stress tensor  in the following way:
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servation of momentum is written through the intro-
duced macroparameters in the form
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equations of motion.
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It is easy to see that all similar operations for 
yield zero. We multiply the second equation of (19) by

 and the third equation by  Upon integration

over the velocity space w, we derive the energy conser-
vation law (  = ):

(27)

We introduce the following macroparameters:
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The quantity  defined in (28) is an analog of the
temperature of the nonideal gas, and Q is the heat f lux
vector. With allowance for the quantities introduced
above, the energy conservation law will take the fol-
lowing form:
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modynamics for a nonideal gas that was derived from
the kinetic theory.

The pressure of a nonideal gas introduced above is

 +  from which

(30)

If  is identified with the volume occupied by the

gas, while  is the identification of the poten-

tial energy of interaction of molecules, then (30) is the
equation of state of a nonideal gas [11].

THE UNIFORM RELAXATION PROBLEM
FOR A NONIDEAL GAS

As has already been noted above, with the change
to the thermodynamics from the model considered,
the first law follows. The other requirement imposed
on kinetic models is that they should provide a transi-
tion of the system, described by them and located in
the adiabatic shell, to the state of thermodynamic
equilibrium (the zeroth law of thermodynamics). As is
known, the satisfaction of the above requirements is
verified for the uniform relaxation problem. This
problem for the system of kinetic equations con-
structed above will have the following form:

(31)

We recall that, in our case,  
and  In the second and third equations of
(31),  depends on t and  therefore, they can be
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From which  = 0 and  +  =

 +  If it is suggested that

(32)

then we have  =  Then from (15)
and (16), we obtain

(33)

From (33) it follows that the introduced quantity ϕ
is a constant. If ϕ is assigned a physical meaning, then
it is the energy per molecule in the bound state. Then
the result obtained is explained by the fact that the
motion of molecules in the bound state occurs in the d
scale, and their equilibrium state is achieved for a time
interval that is significantly less than the time scale 
Therefore, their energy per particle is determined only
by the potential of their interaction between each
other, which is an argument in favor of relation (32) (it
is not excluded that formulas (15) and (16) should be
determined by means of quantum mechanics). If in
expressions for  and  (see (15), (16)), only
terms of the first degree in  are left, then from (33), it
can be obtained that  ≈ –10.

As is known, the zeroth law of thermodynamics for
the Boltzmann gas follows from the Н-theorem. Con-
sider the H-theorem for the above constructed model
of a nonideal gas.

Introduce  =  The quantity

 is the H-function of a unit volume

for molecules in the bound state. Taking into account for

 representation (13), we derive that  ×
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We will apply to S the operator  defined in the

second section and obtain  =  +  –
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With allowance for (33) and (34), the expression

for  will take the following form:

On taking into consideration the equation for s, we
derive

(35)

The production of H-function per unit time in a
unit volume for molecules in the bound state is natu-
rally defined as

The H-function of molecules in the unbound state

will be defined as usual:  = 

 In the case of uniform relaxation, when a dis-
tribution function depends only on time, we will have
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This definition of the H-function in the above
expression is connected with the fact that the H-func-
tion has to be defined in the situation when the inter-
action between molecules in the bound and unbound
states takes place. While introducing the H-function
for the mixture of chemically reacting gases [12] and in
the case when a molecule had rotational degrees of
freedom [13], the H-function has to be introduced as
the sum of H-functions of different components with
different weights.

Summing  and  we derive

(36)

In derivation of (36), it is taken into consideration

that  =  =  It is easy to

see that both summands in the right-hand side of (36)
are less than or equal to zero. Then  +

 The last inequality is an analog of the H-

theorem for a nonideal gas.
Since for the kinetic model constructed above the

H-theorem holds, then a solution to problem (31) with
 will go to the state with which  +

 From this, it follows that  =  

The first relation, as is known, is satisfied by

(37)

where  is the density of molecules in the free state,
while T can be treated as their temperature. Since

 then (37) implies

(38)

In the case of the relaxation problem, the conserva-
tion equations have the following form:
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According to the definitions given in (28), from
(39), we have  +   =  where
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thermodynamic temperature of the medium, respec-
tively. Using (37) and (38), we obtain

(40)

From relations (40), we can find 

 and , so that the equilibrium state of
a nonideal gas, as in the case of an ideal gas, is deter-
mined by the values of its density and temperature.

CONCLUSIONS
Consider equation of state (30), derived earlier for

a nonideal gas. From (33) it follows that  =

 =  It can be easily seen that  ∼

, where  is the typical density of the

medium. Believing  we obtain the equation of

state in the form  =  resembling the

form of the van der Waals equation of state. Indeed,
the classical van der Waals equation for a mole of the
gas has the following form:

where  [11]. According to [11], due to the

action of forces of intermolecular repulsion, the gas
molecules cannot move closer than a distance smaller
than d, which is taken as the diameter of a molecule.
Then in the van der Waals equation of state, the quan-
tity  (here ). Since the derived system
of kinetic equations represents a zeroth approximation
in the asymptotic method, which is used in the work,
then b is absent in the equation of state obtained from
this system.

The fundamental difference between the derived
equation of state from the classical van der Waals
equation of state is that, in the equation written above,

 =  (terms on the order of  as
was noted above, are preserved) depends on the tem-
perature, whereas in the van der Waals equation of
state, a is a constant.

In this work, a closed kinetic model is constructed
that describes the behavior of a nonideal gas. The
model includes all conservation laws and their corol-
laries, which are invariant with respect to the Galilean
transformation. The Н-theorem is also present. From
the remark concerning the equation of state, we may
hope that the derived kinetic model of a nonideal gas
will reproduce its properties.
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The model constructed is equivalent to the Boltz-
mann equation itself.
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