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Abstract—The results of numerical simulation of transonic cross f low of a perfect gas around a circular cylin-
der at high Reynolds numbers are used to solve the thermal problem. The temperature distributions along the
central line and the influence of Reynolds and Mach numbers on them are presented. The temperature fields
and the transition of the near-wake solution to the far-wake solution are studied.
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INTRODUCTION
The computational aerodynamics methods are

widely applied to obtain the comprehensive informa-
tion about the f low of a viscous perfect gas around
bodies of various configuration. In particular, the
results of parametric calculations of transonic cross
flow of a viscous perfect gas around a circular cylinder
at high Reynolds numbers were presented and dis-
cussed in [1–9]. The main attention in these studies
was paid to the dynamic problem, and only occasion-
ally were some questions of the thermal problem con-
sidered.

During transonic f low around a blunt body with a
heat-insulated surface, the maximum temperature in
the f low field changes in a relatively narrow range. For
example, the stagnation temperature of the incoming
flow is determined by the formula To = To/T∞ = 1 +

0.5(γ – 1)  where γ is the adiabatic index and To
and T∞ are, respectively, the stagnation and static tem-
peratures of the incoming f low. In the range of Mach
numbers under consideration, M∞ = 0.8–1.3, and the
stagnation temperature changes only slightly (To =
1.13–1.34).

Nevertheless, the velocity and temperature fields
interact intensively, which may induce interesting
phenomena. For example, a significant thermal-
energy redistribution in the near wake behind a circu-
lar cylinder was found experimentally in [10], due to
which vortices in the Karman vortex trail have a
“cold” nucleus and “hot” external layers (Eckert–
Weise effect). This effect at transonic velocities was
studied in [11].

Although the temperature in the f low field changes
only slightly, it affects, due to compressibility of the
moving medium, the distribution of the gas-dynamic
variables (especially in the near wake and near-wall
boundary layers because of high temperature gradi-

ents). This factor can change the f low-field structure.
Therefore, the solution of the thermal problem and
the influence of the gasdynamic similarity parameters
on it are of scientific and practical interest.

In this paper, we report the results of studying the
thermal-problem solution for a circular cylinder in a
transonic perfect-gas f low at high Reynolds numbers.

1. STATEMENT OF THE PROBLEM 
AND NUMERICAL SIMULATION

The statement of the problem and numerical simu-
lation, based on the Navier–Stokes equations (lami-
nar f low) and the Reynolds equations (laminar-turbu-
lent f low), of the transonic cross f low of a perfect gas
around a circular cylinder were described in detail in
[5, 6]; therefore, only brief comments on these ques-
tions are given below.

To integrate numerically the determining system of
equations, we pass to the dimensionless variables
according to the formulas

x* = xR, y* = yR, z* = zR, u* = uV∞,  

w* = wV∞, p* = pρ∞ t* = tR/V∞;

the other gasdynamic variables correspond to their
values in the incoming f low. Here, asterisks indicate
the current dimensional quantities.

It was assumed in the numerical simulation that the
perfect gas obeys the Clapeyron state equation and has
a constant specific heat with adiabatic index γ = 1.4,
Prandtl number Pr = 0.7, and a dynamic viscosity
coefficient, which depends on the temperature
according to the power law, μ ~ Tω (ω = 0.76).

When carrying out the main series of calculations,
the gas-dynamic similarity parameters (Reynolds and
Mach numbers) were varied in the following ranges:
103 ≤ Re ≤ 106 (laminar f low) or 106 ≤ Re ≤ 107 (turbu-
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lent f low) and 0.8 ≤ М∞ ≤ 1.3; the f lown cylinder sur-
face was assumed to be heat-insulated ([∂T/∂n]w = 0,
absolutely heat-insulating wall). To analyze the influ-
ence of the temperature factor, we performed special
calculations for the transonic f low around a circular
cylinder with the isothermal surface in a limited range
of variation in the gasdynamic similarity parameters
Re = 105 and 106 and М∞ = 0.8–1.3 for two tempera-
ture factor values (Tw0 = 0.5 and 1.5, absolutely heat-
conducting wall). For the specified motion conditions
(М∞, Re), there are three problems with different tem-
perature conditions at the f lown surface.

The calculation data was obtained on an orthogo-
nal nonuniform grid with 201 × 401 nodes, and the
sizes of the calculation domain were 50 cylinder diam-
eters in the horizontal direction (upstream and down-
stream) and 100 diameters in the vertical direction
(upwards and downwards from the cylinder). To
resolve the boundary layers near the solid surface, we
selected three regions with thicknesses of 1/Re,
2/Re1/2, and 1.5/Re1/5 containing, respectively, 6, 20,
and 25% of the total number of nodes after crowding
in the transverse direction. It should be noted that the
blocking coefficient for the aforementioned calcula-
tion conditions is k = 2R/200R = 0.01, which is smaller
than the limiting value (klim ≈ 0.05 [12]); therefore, it
does not affect the numerical-simulation results.

The governing equations were numerically inte-
grated in the time interval  =  with
a constant step  and the fields of the gas-

0 t≤ * 200t V R∞ ≤
Δ 0.01,t =

dynamic variables were recorded with a period
 According to the numerical experiments,

when obtaining the stationary solution, the establish-
ment of the general and “fine” f low-field structures
takes the times t ≤ 100 and t ≤ 150, respectively. Thus,
the chosen time interval is quite sufficient for the
problem solution to achieve the quasi-periodic f low
mode.

2. TEMPERATURE DISTRIBUTION 
ALONG THE CENTRAL LINE

The flow-field properties are determined by ana-
lyzing the fields of gasdynamic variables, which are
subdivided into elementary (pressure, density, tem-
perature, and velocity vector components) and com-
plex (vorticity, heat f lux, etc.). The problem under
study includes a quite large number of the fields of gas-
dynamic variables. In [1–9], attention was paid pri-
marily to the solution of the dynamic problem (in par-
ticular, the vorticity behavior in the near and far
wakes). The solution of the thermal problem,
described by the energy equation, will be analyzed
below. The numerical solution is referred to as the
main basic solution in the f light regime (M∞ = 0.8,
Re = 103) and the basic solution in the regimes with
M∞ = 0.8 and Re ≠ 103.

The quality of the numerical simulation is often
estimated from the distributions of gasdynamic vari-
ables along the abscissa axis before the cylinder. The
plotted distributions of the pressure coefficient, tem-
perature, Mach number, and longitudinal and normal
velocity-vector components exhibit a monotonic
behavior and an asymptotic achievement of a specified
value at x → –∞. Each distribution barely depends on
the Re number and flow regime and can be considered
as a universal dependence. For example, Fig. 1a shows
the temperature distributions for the basic solutions
(M∞ = 0.8; laminar and turbulent f low regimes).

This behavior of the gasdynamic variables on the
abscissa axis also indicates the stationarity of the f low
in this region: nonstationary processes occurring in
the stern region and midsection of the cylinder cannot
pass to the f low region in the vicinity of the front crit-
ical point. While moving away from it, nonstationarity
effects become more intense and, upon reaching the
midsection, manifest themselves to the full extent.

There are the near- and far-wake regions down-
stream behind the cylinder (in the vicinity of the f lown
body and at the output boundary of the calculation
region, respectively). The solution of the problem for
these regions determines the character of f low in the
near and far wakes. To establish the f low character, we
consider the temperature distribution in the basic
solutions along the abscissa axis behind the body
around which the f low moves (Fig. 1b).

According to the reported data, the f low is nonsta-
tionary in the near wake and the temperature f luctua-

δ 0.1.t =

Fig. 1. Temperature distribution T = T/T∞ along the
abscissa axis (a) before and (b) behind the heat-insulated
cylinder for different Reynolds numbers at M∞ = 0.8 and
t = 200 (turbulent f low): (1) Re = 103, (2) 106, (3) 105 and
(4) 107; (1, 2) laminar regime, (3, 4) turbulent regime.
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tions have rather high amplitude (the time-averaged
temperature is below unity).

It can also be seen in Fig. 1b that the viscous-gas
temperature in the near wake reaches the far-wake
mode with a relatively high speed: at x ≈ 15 it possesses
close-to-constant values, and at x > 15 the “fine” far-
wake structure is established. It is a “three-layer sand-
wich” (Eckert–Weise effect), containing a “cold”
nucleus (central part) and “hot” peripheral regions.
Achievement of the far-wake solution will be discussed
below in Section 5.

The wake behind the f lown body is generally
divided into three regions: near wake, transition region
(wake “neck”), and far wake. Since each region is
smoothly transformed into another, their boundaries
are relative and depend on the chosen basic material.
A two-region wake model with the near wake at ≈ x ≤ 18
and far wake at x ≥ 18 is well-substantiated for the con-
sidered temperature distributions of the basic solu-
tions. This model is in good agreement with the two-
region model for an incompressible liquid, which can
be obtained by replacing the constant “18” with the
constant “20” (see, for example, [13]).

Let us consider the influence of the Mach number
on the temperature distribution along the central line
by the example of the main basic solution (Fig. 2). A
change in the number M∞ modifies the temperature
distribution behind and before the body. The depen-
dences obtained before the cylinder have a smooth
form, which indicates that the f low at the windward
cylinder side is stationary with a maximum tempera-
ture at the front critical point.

Behind the cylinder around which the f low moves,
the increase in the Mach number causes a deformation
of the temperature distribution, resulting in two
groups of curves with different forms corresponding to
different regimes of f low around the cylinder. The first
group consists of the temperature distributions for the
numbers M∞ = 0.8 and 0.9, corresponding to the first
(subsonic) regime of f low around the cylinder. For all
the other numbers M∞ (when the second (supersonic)
flow regime is implemented), the corresponding
dependences comprise the second group of tempera-
ture distributions with a form similar to that for solu-
tion of the stationary problem.

The calculations showed that a change in the Mach
number at a fixed number Re affects significantly the
temperature distribution along the central line in the
case of adiabatic f low around the circular cylinder. At
the same time, one often deals with nonadiabatic f low
in practice (for example, f low around thermal ele-
ments in heat-exchangers); the most widespread case
is an isothermal surface around which the f low moves.
Special calculations were performed to determine the
influence of the isothermal surface on the temperature
field; the calculated temperature data used in the com-
parative analysis are shown in Fig. 3.

Fig. 2. Temperature distribution T = T/T∞ along the
abscissa axis (a) before and (b) behind the heat-insulated
cylinder for different Mach numbers at Re = 103 and t =
200: (1) M∞ = 0.8, (2) 0.9, (3) 0.95, (4) 1.00, (5) 1.05,
(6) 1.10, and (7) 1.30.
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Fig. 3. Temperature distribution T = T/T∞ along the cen-
tral line behind the circular cylinders with different ther-
mal conditions at the f lown surface for different Mach
numbers at Re = 105 (laminar f low): (a) Two = 0.5,
(b) ∂T/∂n = 0, and (c) Two = 1.5; the designations of the
curves are the same as in Fig. 2.
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The temperature distributions in the wake are con-
sistent with the two-region model, and the calculation
results show that the largest temperature differences
are observed in the near wake; the calculated depen-
dences for the far wake are located compactly, in a nar-
row band.

As was noted above, the temperature distributions
for the heat-insulated cylinder are divided into two
groups (according to the shape of the curves), corre-
sponding to different cylinder-flow regimes. In this
specific case, the second group is subdivided into two
subgroups of curves with similar shapes but different
degrees of instability in the portion behind the maxi-
mum temperature. In both cases, the transition to the
isothermal cylinder leads to a denser position of the
curves; the densest pack of the curves is obtained for
the superheated surface.

3. TEMPERATURE FIELDS

The temperature distributions along the central
line indicate the complex character of the temperature
field and the dependence of its structure on the gov-
erning parameters of the problem.

As an example, we consider the influence of the
Mach number on the temperature field around the cir-
cular cylinder with an isothermal (Two = 0.5, moderate
heat transfer) surface at the fixed number Re = 105

(Fig. 4).
At M∞ = 0.8 (as one would expect), we have non-

stationary f low around the cylinder (near wake) and
the nonstationary f low in the far wake (Fig. 4a). The
temperature field clearly shows the f low regions with
different temperature conditions; the supersonic
region formed in the near wake is an interesting
mosaic pattern. When passing to the numbers M∞ ≥
0.9, the second (supersonic) f low regime is imple-
mented and the temperature-field pattern changes.
For M∞ = 0.9, a supersonic region of perturbed flow
with the base –1 ≤ x ≤ 10 is formed near the cylinder
(Fig. 4b). Behind it, there is a region of uniform sub-
sonic stationary f low (on the whole, the pattern
resembles the scheme of f low around a thin profile
within the linear theory). Stagnation of the supersonic
flow occurs through a complex system of compression
shocks and compression and expansion waves; the
final shock wave begins at the central line in the cross
section x ≈ 10 and degenerates into the Mach line as it
moves away from the central line. The temperature-

field structure can be established only partially from
the direct images; additional useful information about
the near-wake structure can be obtained from the
inverted images. In this context, we should note that
the main purpose of this study is an analysis of the
temperature behavior in the wake behind the circular
cylinder in the transonic f low; therefore, specific fea-
tures of the f low in the external field are not consid-
ered in detail and are mentioned only in passing.

At the unit Mach number, the pattern changes
again (Fig. 4c): the base of the perturbed f low region
narrows (1 ≤ x ≤ 5), and the regions of variable (5 ≤ x ≤ 38)
and constant (38 ≤ x ≤ 50) temperature successively
occur downstream. During this transition, the gas-
dynamic variables behave as follows: the pressure
coefficient and the normal velocity-vector component
gradually tend to zero, the longitudinal velocity com-
ponent decreases from 0.9 to 0.8, and the temperature
increases to about 1.05. This transition indicates the
process of transformation of the supersonic f low into
the subsonic one through the compression wave
(according to the presented image, the transition f low
is isoentropic). The pattern somewhat changes again
at the number M∞ = 1.1 (Fig. 4d): the perturbed-flow
region is followed by one region of constant tempera-
ture (5 ≤ x ≤ 50). These results are in agreement with
the behavior of the gas-dynamic variables at the cen-
tral wake line.

4. TEMPERATURE OSCILLATIONS 
AT THE CENTRAL WAKE LINE

The behavior of the dynamic-problem solution
near the transition from the near wake to the far wake
was considered in [7]. The temperature behavior in the
aforementioned wake region will be analyzed below as
applied to the main basic solution (M∞ = 0.8, Re = 103).

Let us begin with a brief description of the evolu-
tionary dependences for fixed points on the central
wake line. Although they are not given here, their
qualitative estimation clarifies specific features of the
amplitude–frequency characteristic (AFC).

At the point x = 10, the dependence of the evolu-
tion is regular with pronounced periodicity and
describes the process of transition to a new value of the
oscillation axis (≈0.974). It exhibits irregular behavior
at the point x = 20 and oscillates in a complex way around
the constant value of ≈1.057. At the point x = 30, the
dependence of the evolution oscillates regularly
around the constant of ≈1.074. At the two subsequent

Fig. 4. Patterns of the temperature fields T = T/T∞ near the isothermal (Two = 0.5) cylinder at Re = 105 and t = 200: (a) M∞ =
0.8, (b) 0.9, (c) 1, and (d) 1.1.
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points, the oscillations occur in the output region of
the calculation domain around the constants of 1.078
and 1.068. Note that the output f low regime is
retained during the last 100 units of dimensionless
time for all five fixed points.

Now let us investigate the AFC of the oscillating
temperature at fixed points of the wake. Having
applied the Fourier analysis to the corresponding evo-
lutionary dependence, we obtain the AFC for a fixed
point under consideration at the central wake line
(Fig. 5); the processed calculation results are printed
out as plots and tables. The program formally pro-
cesses all the points with a local temperature maxi-
mum; however, they have close values and are deter-
mined with a low accuracy in the region of high-fre-
quency oscillations. At the point x = 10, the AFC is a
discrete spectrum with three dominant frequencies
(Fig. 5a); its intensity decreases with an increase in
frequency: (ShT, A/2) = (2F, A/2) ≈ (0.390625,
0.002098), (0.742187, 0.0009651), and (1.132817,
0.0003885). In other words, there are three levels of
Strouhal numbers at the f low-field point x = 10.

The oscillating-temperature AFC is a continuous
narrow-band spectrum at the point x = 20 (Fig. 5b)
and indicates the existence of two dominant frequen-
cies (two-level solution) with roughly identical intensities
(ShT, A/2) = (2F, A/2) ≈ (0.390625, 0.0006832) and
(0.117187, 0.0006529). For the three subsequent points,
the AFCs coincide (Figs. 5c–5e) and correspond to one
dominant frequency (ShT, A/2) = (2F, A/2) ≈ (0.15625,
0.0021) (single-level solution).

Figure 6 shows the distribution of the Strouhal
number along the central wake line, as well as the dis-
tribution of the averaged temperature, which changes
slightly along the central wake line tending to an
asymptotic value from above. This fact does not con-
tradict the known calculation results and indicates the
reliability of the information obtained from the
numerical simulation.

The first-level Strouhal number in the range 20 <
x < 30 is likely to have a discontinuity at the transition
to a smaller value; the first-level distribution ShT =
ShT(x) is a piecewise constant function with values

consistent with the numbers Sh for the gas-dynamic
variables in the near wake (therefore, the temperature
oscillations are generated by the escape of vortices
from the surface around which the f low moves). The
second-level Strouhal numbers have values at the first
two points that are not in agreement with the typical
values for the gas-dynamic variables in the near wake.
The situation for the third-level number Sh is similar.

5. TEMPERATURE MODE OF THE SURFACE 
AROUND WHICH THE FLOW MOVES

The temperature mode of the surface around which
the f low moves is of some practical interest. In the case
of adiabatic f low, the surface temperature is deter-
mined by solving the problem for the Mach and Reyn-
olds numbers specified; for the isothermal cylinder,
we have constant temperature of the surface set in the
boundary conditions. Three problems with the follow-
ing thermal boundary conditions at the cylinder sur-
face were solved for each pair of the Mach and Reyn-
olds numbers: (i) ∂T/∂n = 0 (no heat transfer, adia-
batic wall), (ii) Two = const = 0.5 (moderate heat
transfer, cooled wall), and (iii) Two = const = 1.5
(moderate heat transfer, overheated wall). As was
mentioned above, the selective calculations were per-

Fig. 5. AFC of the temperature T at a fixed point of the f low field near the heat-insulated circular cylinder in the transonic f low
(M∞ = 0.8 and Re = 103, laminar f low): (a) x = 10, (b) 20, (c) 30, (d) 40, and (e) 50.
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formed in a limited range of variation in the governing
similarity parameters.

As an example, Fig. 7 shows the results of calculat-
ing the temperature of the cylinder surface for the
numbers M∞ = 0.8 and Re = 103 and the laminar f low
regime.

The surface of the heat-insulated cylinder has a
variable temperature, referred to as the restoration
temperature Tw(x, t) = TR(x, t); therefore, Fig. 7 shows
the calculated temperature distributions for two basic
flow states: first and second, between which the tem-
perature oscillates. The first (second) basic state cor-
responds to the case where the primary-detachment
point occupies the extreme left position on the upper
(lower) cylinder side. The straight-line dependences
determine the temperature mode of the isothermal-
surface cylinder for two different f low regimes.

It can be seen that the restoration-temperature dis-
tribution over the contour is nonuniform: a high,

almost stationary temperature at the frontal surface
and a low nonstationary temperature in the bottom
region, which changes in a fairly wide range for the
oscillation half-period. The highest nonuniformity in
the temperature distribution is observed at the number
Re = 103. An increase in the Reynolds number some-
what equalizes the temperature; however, the nonuni-
formity remains and approaches (in the region of f low
without separation) the solution within the equations
of the laminar boundary layer.

The maximum temperature at the adiabatic cylin-
der surface is at the front critical point and exceeds the
stagnation temperature of the incoming f low To =
1.128. In addition, the absolute temperature maximum
is observed in the vicinity of the primary-detachment
point while approaching the basic state. This specific
feature is due to the thermal-energy redistribution in
the viscous gas f low, and the directionality of heat
transfer is determined by the thermophysical proper-
ties of the moving medium (in particular, the Prandtl
number, Pr).

Since there is a detachment zone at the bottom of
the heat-insulated cylinder (where the f low velocities
are small and the restoration temperature TR is simul-
taneously the local stagnation temperature To), the
“cold” region is formed in the near wake. This indi-
cates a complex temperature-field structure, although
the temperature in the transonic f low changes in a rel-
atively narrow range.

The temperature profiles in different wake cross
sections x = const are plotted in Fig. 8 to illustrate the
specific features of the temperature-field behavior.
Figure 9 shows the isolines ω* = const (dimensional
vorticity), where cross sections x = const, correspond-
ing to the plotted temperature profiles, are indicated.
These profiles indicate the instantaneous state of the
temperature field, which is determined to a large
extent by the vorticity field, and demonstrate its devel-
opment in the region of transition from the near wake
to the far wake.

Near the cylinder (in particular, in the cross section
x = 1.48), where the nonstationarity is weak and the

Fig. 7. Temperature mode of the f lown surface of the cir-
cular cylinder in the transonic f low: 0+ ≤ θ ≤ 180° for the
upper side and 0– ≥ θ ≥ –180° for the lower side; the solid
and dashed lines indicate the first and second basic state,
respectively; (1) Two = 0.5 (Tw∞ = 0.564, cooled surface)
and (2) Two = 1.5 (Tw∞ = 1.692, overheated surface).
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vorticity field is strongly nonuniform, the temperature
profile in short (i.e., at y ≈ 0) is an odd function, which
is typical of the stationary solution of the problem.
Downstream, the vorticity field becomes more uni-
form and the shape of the temperature profile is sim-
plified (in short, it is either even (x = 2.88, 8.76, 11.68,
and 14.71) or odd (x = 1.48, 5.78, and 18) function).

It was noted in Section 2, when analyzing the tem-
perature distribution along the central wake line, that
the far-wake structure is a “three-layer sandwich”
(“cold” nucleus and “hot” periphery). The tempera-
ture profiles (Fig. 8) confirm the existence of the
“three-layer sandwich” regions (there are several of
them in the near wake). However, the interaction with
the far-wake vortex structures reduces the intensity
and increases the degree of nonuniformity of the vor-
ticity; thus, it leads to fracturing of the “three-layer
sandwich” while advancing downstream.

The temperature profiles are nonmonotonic and
have several extrema, which allow one to analyze the
development of the wake temperature mode. Figure 10
shows the distribution of the maximum (Tmax) and
minimum (Tmin) temperatures along the central wake
line and the temperature difference Δ = Tmax – Tmin in
the wake cross section. The results for the profile in the
cross section x = 1.48 are omitted here because they
are not consistent with the profile data for the subse-
quent cross sections and determine the initial stage of
near-wake formation. All the other temperature pro-
files correspond to the developed state of the near
wake.

In the developed near wake, the extreme tempera-
tures and their difference change only slightly along
the central line; however, all these distributions indi-
cate a stepwise change in their numerical values in the
interval 9 < x < 11. At the discontinuity, the minimum
temperature slightly decreases, while the maximum
temperature and the temperature difference somewhat
increase. On the whole, this fact means the beginning
of the interaction between the near- and far-wake vor-
tex structures in this interval.

Figure 9 shows the isolines ω = const for the near
wake and vortices of different scales according to the
main basic solution. The multiscale vorticity leads to a
strong nonuniformity of the temperature field in the
wake region. The discussion of the vorticity isoline
pattern is restricted to this brief comment, because this
question was analyzed in detail in [7].

CONCLUSIONS
The thermal problem, described by the energy

equation as applied to the circular cylinder, was dis-
cussed based on the calculation data obtained in a
rather wide range of variation in the governing param-
eters of the problem. The the transonic stream of a vis-
cous perfect gas at high Reynolds numbers f lowed
around the cylinder. The object of study was the tem-
perature fields of the f low and their interaction with a
body moving with a constant velocity.

On the windward side of the cylinder, the f low is
almost stationary in the vicinity of the frontal stagna-
tion point; however, while moving away from this
point, nonstationary phenomena are enhanced, and
they manifest themselves to the full extent beginning
with the midsection (vortices periodically escape from
the heat-insulated cylinder surface). The temperature
distribution along the central line before the body has
a maximum at the frontal stagnation point, decreases
monotonically while moving away from it, and asymp-
totically tends to unity at x → –∞.

The flow is nonstationary on the leeward side of
cylinder; the wake behind the cylinder satisfies the
two-region model with respect to the temperature
behavior: the near wake is at ≈ x ≤ 18 and the far wake
is at ≈x ≥ 18. The onset point of interaction between

Fig. 9. Pattern of the vorticity isolines ω = Lω*/V∞ =
const (ω* is the dimensional vorticity) in the near wake of
the circular heat-insulated cylinder in the transonic f low
with M∞ = 0.8 and Re = 103.
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the near- and far-wake vortex structures is located in
the calculation domain near the cylinder for the values
of similarity parameters considered. Due to this, a
“short” Karman vortex trail is formed behind the cyl-
inder; a “long” Karman vortex trail is implemented at
low Reynolds numbers (Re < 103).

At transonic velocities, the temperature in the per-
turbed-flow field changes in a narrow range; however,
it affects significantly the f low field and the aerody-
namic characteristics of the circular cylinder. For
example, a change in the thermal boundary condition
(replacement of the adiabatic surface with an isother-
mal one) changes the limiting Reynolds number Re*
(a “fine” characteristic), at which the regime of f low
around the cylinder changes.

The frequency characteristics of the oscillating
temperature at the central wake line (the transition
from the near wake to the far wake) were studied. In
particular, it was shown that the average temperature
changes only slightly while advancing downstream and
the Strouhal number is a piecewise constant function.
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