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Abstract—Evolution of the 11-year cycle of solar activity in time can be divided into two different phases. In
the first phase the activity increases rather rapidly, and in the second one it decreases more slowly. An addi-
tional property of the second phase is that the shape of the curve describing it is practically independent on
the power of the cycle. We present an approximation of the 11-yr cycle shape that takes into account these
features of the cycle and described by a system of simple differential equations.
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Fig. 1. The smoothed activity index for cycles 1–22. Time
t = 0 for each cycle corresponds to its minimum. Shifts Δti
are chosen to minimize the RMS differences between sec-
ond halves of the descending branches of individual cycles.
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1. INTRODUCTION

The search for empirical relations describing the
11-yr cycle of solar activity started as early as in the
19th century, and over the past 150 yr numerous
attempts have been made to approximate the cycle
shape (see, e.g., Vitinskii et al., 1986; Hathaway et al.,
1994; Du, 2011; Li et al., 2017 and references within).
As a rule, such attempts are of a formal mathematical
character: functions with a minimum number of
parameters are sought that describe the behavior of a
sunspot index.

Any realistic approximation has to take into
account that the shape of 11-yr cycle is asymmetric. In
the ascending (“explosive”) phase of the cycle solar
activity rapidly increases to a maximum, and in the
descending phase (as seen below, it can be also called
“the diffusive phase”) its gradually decreases. Then
the next 11-yr cycle begins, and with increase of the
number of sunspot of the new cycle, that of the previ-
ous one gradually tends to zero.

As many authors have shown (e.g. Eigenson et al.,
1948; Gnevyshev and Gnevysheva, 1949; Ivanov and
Miletsky, 2014; Cameron and Schüssler, 2016), the
curve describing the sunspot index on the descending
phase of the 11-yr cycle has an almost universal shape
that weakly depends on the power of the cycle. This
universality is illustrated in Fig. 1, where each of the
curves corresponds to a certain cycle and shifted by
time Δti relative to the minimum of the cycle. (Hereaf-
ter we will use the monthly averages of the recalibrated
sunspot number SN (Clette et al., 2014) for 1749–2021
smoothed by a Gaussian filter with σ = 12 months).
Ivanov and Miletsky (2014) and Ivanov, (2018)
demonstrated that the shifts Δti can be chosen in such
83
a way that the descending parts of the curves almost
merge into one.

Cameron and Schüssler (2016) showed that such
behavior can be described by a simple model. The
model is based on assumption that no new magnetic
fields are generated on the descending phase of the
cycle, while the old ones dissipate via diffusion
towards the solar equator and mutual annihilation.
Thus, the dynamics of the system is simplified and can
be represented by a single first-order nonlinear differ-
ential equation (Cameron and Schüssler, 2016; Iva-
nov, 2018),
4
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(1)

where S(t) is a sunspot index, A and α are parameters
of the system. It is readily follows from the form of the
equation that if S0(t) is its solution then S0(t – t0) for
arbitrary t0 is also its solution. Therefore, (1) defines a
family of curves of the same shape shifted along the
time axis, which is consistent with behavior of the
observed index.

Equation (1), which describes the evolution of the
sunspot index in the descending phase of the cycle, is
based on a simple model of magnetic fields diffusion.
Developing this approach, it is interesting to find an
approximation of the shape of the entire 11-yr cycle
that reproduce its specific behavior in the two phases
and is described by differential equations, which can
be interpreted, at least in part, from a physical point of
view. In this paper, we propose a way to implement
this approach.

2. MODEL DESCRIPTION 
OF THE SOLAR CYCLE SHAPE

We start from a simplest lumped-parameter model
that can be obtained by averaging of αω-dynamo
equations over the zone of magnetic field generation
(see, e.g. Priest, 1985):

(2)

where Bϕ(t) and Bp(t) are the averaged strengths of the
toroidal and poloidal magnetic fields (in arbitrary
units), , α, τd и L are characteristic values of the dif-
ferential rotation (or the difference of angular veloci-
ties of the Sun at low and high latitudes, that is the
same by order of magnitude), alpha-effect, ohmic dif-
fusion time and radial size of the generation zone cor-
respondingly. We also set initial conditions at the
moment of the start of the cycle t = 0 as

(2a)

The solutions of linear system (2) are the equations
of damped oscillations of the field components with

the period 

To describe both phases of the cycle one can insert
into Eq. (2) functions hi(t) that will suppress certain
terms of equations at a proper time. Introducing a new
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To describe the two regimes of the system it is suf-
fices to set hω ≈ 1 and hτϕ ≈ 0 in the ascending phase
and hω ≈ 0 and hτϕ ≈ 1 in the descending one. To do
this, we define “the supression function”

 (where we will assume that n is

integer) and set hω(t) = 1 – hτϕ(t) = h(t; c, n), where
parameters c and n will be found below. In the general
case function hα и hτp can also be introduced, but here
we will assume that they are equal to unit.

Therefore, we have defined a set of solutions of
Eqs. (3) with initial conditions (2a) and six free
parameters n, τd, c, β, T and Bp0. It is easily seen that
after substitution bp = β Bp (3) is transformed to a form
that does not contain β. Thus, for solutions of (3) the
following scaling relation is valid:

for any k. Therefore, we can set β to unit without loss
of generality, arriving at five independent parameters
n, τd, c, T and Bp0.

We must also choose a relation that binds the toroi-
dal field to the observed sunspot index. The absolute
value function is not good for our purpose, since we
would like to obtain smooth solutions. Hence we
assume that the observed sunspot index is propor-
tional to the squared magnetic field (Bϕ)2. Since we
do not have fixed the magnetic field units yet, here
we can set the proportionality factor equal to one,
so SN = (Bϕ)2.

We also imply that parameters n, and τd, character-
ize the system as a whole and do not change from cycle
to cycle. Therefore, the ith cycle is described by two
individual parameters Bp0,i and Ti.

In Figure 2 phase diagrams and families of modeled
curves are shown that describe shapes of the cycles for
various sets of parameters. Plots (a) and (c) show that in
the descending phase (i.e. for d(Bϕ)2/dt < 0) the phase
curves “clump together”, and, as expected, the dynam-
ics of the system simplifies. The same can be seen in
plots (b) and (d), where curves that describe the 11-yr
cycle in the descending phase, with a certain selection
of shifts Δti, almost coincide, i.e. have shapes that do
depends upon parameters of individual cycles (com-
pare with Fig. 1 for the observed index).

To estimate quality of our approximation we intro-
duce (Δi)2—the mean squared difference between the
observed index in the ith cycle and our model. To get
rid of the cycles overlapping effect, we will use a
slightly modified observed index, subtracting from it
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Fig. 2. The sets of curves described by Eqs. (3) and (2a). (а) The phase diagram for variables (Bϕ)2 и d(Bϕ)2/dt and parameters
n = 4, c = 0.5 yr–1, τd = 11 yr, T = 11 yr and Bp0,i = 100, 110, …, 150; (b) The corresponding shapes of cycles for shifts Δti = 0,
0.75, …, 4.5 yr; (c) The phase diagram for the same n, c, τd and Ti = 10, 11, …, 15 yr, Bp0,i = 100; (d) the corresponding shapes of
cycles for shifts Δti = 0, (1/3)2, …,(5/3)2 yr.
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Fig. 3. Taking into account the overlapping effect of two
successive cycles. The thin line corresponds to the asymp-
totics Sa(t) of the descending branch of the first cycle
described by Eq. (1). The thick dashed line is the sunspot
index without subtraction of Sa(t), the thick solid line—
after such subtraction for the second cycle.

Years

SN
the parts that correspond to residual activity of
descending branches of cycles (Fig. 3).

The problem of finding of parameters of the system
can be divided into two steps. Firstly, one looks for
parameters n, τd, c that minimize the sum of (Δi)2 over
all cycles. Secondly, one looks for Bp0,i и Ti that mini-
mize (Δi)2 for the ith cycle. The results of minimization
(for solar cycles 2–24) are n = 4, τd = 5.4 yr, c =
0.13 yr–1 and parameters for individual cycles are listed
in Table 1. The observed index SN is compared with
the model one in Fig. 4.

3. DISCUSSION AND CONCLUSION

It is illustrative to compare quality of our parame-
terization of the cycle with another two-parameter one
that is commonly used for description of 11-yr cycles.
As an example, we choose the parameterization by the
Pearson type III distribution  (Vitinskii et al.,
1986). The RMS differences Δstd,i for it are also listed
in Table 1. Numbers of cycles for which Δi > Δstd,i is
marked by asterisk. One can see that in most cases our

−3 btAt e
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Fig. 4. The observed index SN (thin dotted line) and its approximation by our model (thick gray line). The digits above the cycles
correspond to their numbers.
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SN
parameterization describe the shape of the cycle better
than the common one (for 18 cycles out of 23), espe-
cially in the epoch of Greenwich observations that
starts from cycle 11 (for 13 cycles out of 14).

The squares of the best-fit parameters Bp0 are
highly correlated with the cycle amplitudes, with the
only exception of cycle 7 (Fig. 5). Slightly lower cor-
relation is observed between cycle lengths from mini-
mum to minimum Tmm and parameters T, again with
the exception of cycles 6 and 7 (Fig. 6). Probably, the
problem with cycles 6 and 7 is related to the general
fact that pre-Greenwich cycles have more shape
anomalies then later ones, because of greater errors in
the reconstructed part of the series (Ivanov, 2020).
GEOMAGNETISM AND AERONOMY  Vol. 62  No. 7 

Table 1. Parameters of individual solar cycles. SN,max are am
lengths (from minimum to minimum), T and Bp0 are the best
differences between the observed index and its approximation
cycle numbers for which Δ > Δstd are marked by asterisks

Cycle 
no.

SN,max Tmm, yr T, yr Bp0 Δ Δstd

1 117 10.6

2 161 9.2 20.8 19.6 4.93 6.84

3* 214 8.8 18.0 20.1 8.06 5.55

4* 211 14.2 25.2 24.4 13.49 7.81

5 75 12.3 26.7 14.7 5.56 7.15

6 69 12.2 44.2 17.7 7.52 8.47

7 110 10.6 55.5 28.6 9.73 11.67

8* 204 10.0 20.2 21.4 7.20 3.99

9 189 12.2 29.7 24.4 6.86 8.74

10* 168 11.0 25.1 21.4 7.76 4.73

11 193 11.3 20.2 20.9 3.71 8.74

12 105 10.8 24.7 16.8 5.80 8.26
Therefore, we have built a parameterization of the
11-yr cycle shape that, being of approximately the
same accuracy as other two-parameter ones, has some
advantages over them. First, it naturally reproduces
the division of the cycle onto “explosive” and “diffu-
sive” phases, as well as the universal shape of the latter.
Secondly, it is represented by a system of differential
equations that is derived from a simple αω-dynamo
model, which structure can be interpreted from phys-
ical point of view.

Dynamics of the magnetic fields Bϕ and Bp in the
proposed model are described by differential equa-
tions. However, it is not the case for the suppression
function hω and hτϕ, which modulate correspondingly
 2022

plitudes of cycles (for the smoothed index), Tmm are their
-fit parameters of the approximation, Δ and Δstd are the RMS
 by our model and by the standard one correspondingly. The

Cycle 
no.

SN,max Tmm, yr T, yr Bp0 Δ Δstd

13 131 12.3 24.2 18.3 3.76 5.45

14 97 11.3 26.3 16.9 5.69 7.58

15 140 10.5 25.1 18.3 10.24 12.36

16 118 10.0 21.8 17.1 3.37 6.66

17 174 10.6 25.2 21.3 6.97 9.26

18 198 10.0 21.4 21.7 2.59 8.55

19 257 10.7 20.8 23.9 7.76 13.46

20* 149 11.4 25.7 20.9 5.09 3.16

21 210 10.2 22.2 22.5 7.15 13.14

22 198 10.1 20.8 21.0 6.08 11.44

23 166 12.3 24.4 20.8 5.10 9.21

24 97 10.8 23.9 15.4 7.00 8.97
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Fig. 5. Relation between amplitudes of cycles SN,max and
the best-fit parameters (Bp0)2. The empty circle corre-
sponds to cycle 7. The linear correlation coefficient for all
point r = 0.55, without cycle 7 r = 0.89.
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Fig. 6. Relation between the cycle lengths Tmm and the
best-fit parameters T. The empty circles corresponds to
cycles 6 and 7. The linear correlation coefficient for all
point r = 0.27, without cycles 6 and 7 r = 0.67.
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the processes of generation and decay of the toroidal
field. They are not dynamic variables, but are given as
explicit functions of time, and rather arbitrary ones. It
can be regarded as a weak point of the model. One of
the possible directions for its development is inclusion
of a dynamic description for the suppression functions
h, but it will require a clearer understanding of their
physical background.
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