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Abstract—A method for predicting geomagnetic storms based on the neural network digital processing of
joint observations of the URAGAN muon hodoscope and the international system of neutron monitor sta-
tions has been proposed. A time series of Dst indices are used. Formulas for extrapolating model estimates of
Dst indices have been developed. A fully-connected feed-forward neural network has been used. Prediction
decision rule has been implemented. The probability characteristics of geomagnetic storm prediction have
been estimated. An experimental study of the prediction method confirmed its effectiveness. It has been
shown that the observations of the hodoscope–monitor system increased the probability of correctly predict-
ing geomagnetic storms compared to using each of the observations separately.
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1. INTRODUCTION
Geomagnetic disturbances usually occur during

extreme events in the heliosphere, which are the con-
sequence of plasma formations in the form of solar
coronal mass ejections (CMEs). Geomagnetic storms
(GMS’s) are geomagnetic disturbances with an ampli-
tude greater than a given one. GMS prediction is an
urgent scientific problem, which to date has not been
exhaustively solved.

Geomagnetic activity is characterized by various
geomagnetic indices, among which the k-, kp-, and
ap-indices are quite common (Menvielle et al., 2011).
This article is based on Dst indices, which are fre-
quently used in geomagnetism practice (Sugiura and
Kamei, 1991). These indices are measured in nT and
are determined by hourly averaging of the values of the
meridional geomagnetic field components for mag-

netic observatories located at the Earth’s equator. For
quiet states of the magnetosphere, Dst indices are
mainly in the range –50…+20 nT; for GMS, Dst indi-
ces are in the range –150…–50 nT, and, in exceptional
cases, they are outside this range.

This article uses information from the following
sources:

1. Time series of matrix observations from the data-
base (Real-time URAGAN, 2015) of the URAGAN
Muon Hodoscope (MH) constructed at the MEPhI
(Yashin et al., 2015). Here, we consider one possible
simplification of the GMS prediction problem: the
time series of matrix observations of the MH is con-
verted into a scalar time series obtained by averaging
the MH observation matrices. This time series is
formed by the MH-observations proportional to the
intensity of the muon fluxes detected by the URA-
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GAN hodoscope. Matrix time series of MH-observa-
tions for GMS prediction will be the subject of
research in the following publications.

2. Time series of scalar observations of the world-
wide network of neutron monitors (NMs) (NMDB,
2021). The functions of the isotropic components of
the NM observations derived from the global survey
method are used here (Abunina et al., 2018). This time
series is formed by the values of NM observations pro-
portional to the intensity of neutron f luxes detected by
neutron monitors.

3. Time series of scalar Dst indices at the website of
the World Data Center of Geomagnetism (WDCG),
Kyoto (World Data Center, 2021).

GMS predictions are determined by the type of
used information sources, hardware, mathematical
methods, and variants of the implemented applied
problems. There are a number of services of different
departmental and state affiliation that publish infor-
mation on GMS predictions.

For the Russian Federation, the IZMIRAN’s
Space Weather Prediction Center (Gaidash et al.,
2016; Prediction Center, 2016; Gaidash et al., 2017)
should be noted, which offers more than 20 types of
products related to space weather and GMS prediction
to consumers, including a 3-day forecast of 3-hour k-
and kp-indices, an 8-day geomagnetic forecast based
on average daily ap-indices and probabilities of the
highest kp-indices per day, geomagnetic activity fore-
casts based on ap-indices for 55 days, etc.

The activity of the Laboratory of X-ray Astronomy
of the Physical Institute in solving the problem of
GMS prediction using solar radiography technologies
should be noted. The website (Laboratory of X-ray,
2017) provides calculations of kp-indices for 3- and
27-day prediction intervals, which are carried out tak-
ing into account estimates of solar wind parameters.

It is necessary to mention the Space Weather Pre-
diction Center of the National Oceanic and Atmo-
spheric Administration (NOAA, United States)
(NOAA/NWS, 2021), which deals with variants of
GMS predictions. The NOAA website publishes data
on kp- and ap-indices for 1–4-week prediction inter-
vals. Images from the Extreme ultraviolet Imaging
Telescope (EIT) and the Large Angle and Spectro-
metric Coronagraph (LASCO) (NOAA/NWS, 2021)
are used for the GMS predictions in order to estimate
solar corona heating characteristics and CME pro-
cesses and to determine corona effect on the solar
wind. LASCO images are used for the WSA-Enlil pre-
diction model (NOAA/NWS, 2021), which has been
in operation since 2011. This large-scale physical model
of the heliosphere is designed to provide 1–4-day
advance warning of changes in solar wind structures
and CME motion directions. The Advanced Compo-
sition Explorer (ASE, United States) spacecraft
(NOAA/NWS, 2021) launched in 1997 is used, which
is permanently located at the Lagrange point at a dis-
GEOMAGNETISM AND AERONOMY  Vol. 62  No. 4 
tance of 1.44 million km from Earth on a straight line
connecting the Earth and the Sun. This spacecraft,
which can be taken as a patrol satellite, continuously
records parameters of the solar wind and the inter-
planetary magnetic field and automatically transmits
them to the Earth; the recorded parameters are pub-
lished on the NOAA websites for further processing.

GMS prediction can be implemented on the basis
of a number of methods, e.g., using probabilistic mod-
els or recognizing anomalies in time series. Thus, in
(Dobrovol’skii et al., 2019; Chinkin et al., 2019), the
use of special 2D variation functions of muon fluxes
and indicator matrices was proposed for matrix MH
observations.

Neural networks (NN) are widely used in solar-ter-
restrial physics in the problems of predicting (recog-
nizing) extreme events in the heliosphere and magne-
tosphere (Barkhatov and Revunov, 2010). A number of
publications related to NNs, Dst indices, and GMS’s
differ in the variants of the used methods, software
products, and information sources (databases). These
circumstances introduce significant variation in the
formulation of the problems.

In (Wu and Lundstedt, 1997; Stepanova and Pérez,
2000; Barkhatov et al., 2001; Dolenko et al., 2005;
Pallocchia et al., 2006; Shirokii, 2015; Efitorov et al.,
2018; Gruet et al., 2018) are materials concerning
research into the GMS prediction using NN variants.

The aim of this article is to develop a GMS predic-
tion method based on Dst index models, the combined
use of MH and NM observations, extrapolation tech-
nology, and NNs. The proposed formulation in some
details can be considered additional to the listed pub-
lications. The results obtained in the article on GMS
prediction based on NN model estimates of Dst indi-
ces with extrapolation are intended for a number of
scientific and technical applications, e.g., in case of
possible sudden absence (omission) of Dst indices,
GMS prediction can be implemented based on pre-
built models of Dst indices working only on MH and
NM observations. The proposed GMS prediction can
prove to be an alternative in case of possible patrol sat-
ellite failures.

2. ANALYSIS OF Dst INDICES 
AND MH, NM OBSERVATIONS

All variables used for NNs in this article were syn-
chronized and sampled in hourly steps on a single
UTC time scale. The time index k defined the sample
points Tk, T = 1 h. The Dst indices YD(k) and NM
observations YN(k) were implemented on the time
interval January 1, 2002–December 31, 2018, and the
MH observations YM(k), in the interval January 1,
2008–December 31, 2018. Initial and final indices for
YD took values k0 = 1, kf = 149016, for YM, indices k01 =
52285, kf = 149016, and for YN – k02 = 1, kf = 149016.
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Fig. 1. Graphs of fragments of the initial MH and NM observations YM(k), YN(k), and Dst indices YD(k).
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Figure 1 contains examples of the plots of frag-
ments of the initial variables YD = YD(k), YM = YM(k),
and YN = YN(k) for the 6-month time interval (April 1,
2012–September 30, 2012) as a function of time Tk.
GMS events were determined by the inequality
YD(k) ≤ YD0. For the threshold YD0 = –50 nT, nine
GMS events occurred in this interval. The analysis of
YD(k) in Fig. 1 led us to conclude that the average
duration of GMS was on the order of 2–2.5 days. The
consideration of the initial variables made it possible
to conclude that for them the average period of addi-
tive uninformative low-frequency trends to be filtered
was about 60–75 days. In Fig. 1, the uninformative
trends YDΦ0(k), YMΦ0(k), and YNΦ0(k) are shown as
smooth lines.

We can see from the graphs that variables YD(k) and
YN(k) can be represented as a sum of informative low-
frequency trends and high-frequency noise. The vari-
able YM(k) can be represented as a sum of the informa-
tive low-frequency trend, interference components
from daily f luctuations and high-frequency noise. The
analysis of changes in informative low-frequency
trends of the variables YM(k), YN(k) allowed us to con-
clude that these, in some cases, behave almost identi-
cally in time.

3. FORMULATION OF THE GEOMAGNETIC 
PREDICTION PROBLEM

In the practice of analyzing geomagnetic observa-
tions, it is sometimes customary to make a conclusion
about the GMS prediction based on criteria that are
formed on the basis of different variants of geomag-
netic indices. A criterion based on comparing Dst indi-
ces with a given threshold is quite common and, to a
GEOMA
certain extent, reliable in GMS prediction. However,
sometimes the direct use of Dst indices for prediction
can be problematic due to the fact that there can be
none of them at the current and subsequent points in
time, for various reasons.

There is a well-defined functional relationship
between the Dst indices and the values of MH, MN
observations that can be represented by a model
scheme based on (Borog, 2008). The Dst index func-
tions act as GMS indicators and their values are deter-
mined by the intensity of the interaction of the CME
formations with the Earth’s magnetosphere. The
travel time of CMEs from the Sun to the Earth and the
time of the start of the GMS, if it is counted from the
time of emission of CMEs, is usually 1.5–2 days.
Simultaneously, CMEs modulate intensities of relativ-
istic proton f luxes approaching the Earth; their travel
time from the Sun to the Earth is about 8 min. Proton
fluxes enter into nuclear reactions with atoms of sub-
stances of the upper atmosphere, as a result of these
reactions, muon and neutron f luxes are formed, the
intensity of which is detected by the URAGAN hodo-
scope and neutron monitors. Modulations of proton
flux intensities under certain conditions cause modu-
lations of intensities of generated muon and neutron
fluxes, i.e., values of MH, MN observations. The
modulations of muon and neutron f luxes occur sig-
nificantly earlier than the GMS; this fact is the basis
for the proposed method for predicting GMS.

We will assume that:
— The current considered time is given, to which

corresponds the time index k which satisfies the
inequalities kf0 + 1 ≤ k ≤ kf. The preceding times are
those to which the time indices kf0 + 1, …, k – 1 corre-
spond, where kf0 is the given time index; the initial
GNETISM AND AERONOMY  Vol. 62  No. 4  2022
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Fig. 2. A diagram of computational operations for solving the GMS prediction problem.
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index k0, the final index kf, and the given index kf0 are
related by the inequalities k0 < kf0 <kf.

— In the interval k01 ≤ k ≤ kf0, a time series of MH
observations and a time series of Dst indices are imple-
mented; in the interval k02 ≤ k ≤ kf0, a time series of
NM observations and a time series of Dst index values.

— In the interval kf0 + 1, k – 1, k only the time
series of MH and NM observations are implemented.

We will consider GMS prediction with respect to
the current times with indices k on ke indices forward.

The aim of the work is to create a system of model
estimates of Dst indices in the interval kf0 + 1 ≤ k ≤ kf
based on the implemented times series of Dst indices
and MH, NM-observations in the intervals k01 ≤ k ≤
kf0, k02 ≤ k ≤ kf0 and use them for GMS prediction. For
this problem, we apply a full-connected feed-forward
NN and extrapolation technique in forming model
estimates of Dst indices.

4. THE GENERAL PLAN FOR SOLVING
THE GMS PREDICTION PROBLEM 
AND EXTRAPOLATION FORMULA

4.1. The general plan for solving the GMS predic-
tion problem taking the formulation in item 3 of the
formulation into account, is divided into five items,
including

(1) algorithms for preliminary digital processing of
initial Dst indices and MH, NM-observations in order
to isolate significant informative components in them;

(2) algorithms for training and validation of NNs;
(3) algorithm for extrapolation of MH, NM-obser-

vations;
(4) a calculation-test algorithm for model estimates

of Dst indices with NN-based extrapolation using
extrapolated MH, NM-observations;

(5) a decision rule algorithm for GMS prediction.
GEOMAGNETISM AND AERONOMY  Vol. 62  No. 4 
Figure 2 presents a diagram of computational oper-
ations that explains the solution to the GMS predic-
tion problem. The computational operations are sub-
divided into digital preprocessing block 1, blocks 2.1,
3.1 of MH, NM NN training, extrapolation blocks 4,
5, blocks 2.2, 3.2 for computing model estimates of Dst
indices for MH, NM, and block 6 for decision making
for GMS prediction.

Digital preprocessing algorithms for the initial Dst
indices YD = YD(k) and MH, NM observations YM =
YM(k), YN = YN(k) implement their filtering (Filter
Design, 2021) in order to remove high frequency noise
and daily variations as well as to remove low-frequency
uninformative trends and scale in order to ensure com-
mensurability of the initial variables, which is neces-
sary for efficient NN operation.

The results of the digital preprocessing are denoted
as YDC = YDC(k), YMC = YMC(k), and YNC = YNC(k). The
scaling operation brings the preprocessing results to a
single range: Ymin ≤ YMC(k) ≤ Ymax, Ymin ≤ YNC(k) ≤ Ymax,
Ymin ≤ YDC(k) ≤ Ymax, Ymin = 0.7, Ymax = 1.3. Figure 3
shows example graphs of fragments of the variables
YMC = YMC(k), YNC = YNC(k), and YDC = YDC(k)
obtained from the numerical preprocessing on the
monthly time interval April 1, 2012–April 30, 2012.

The NN training stage for MH variables YMC1(k) is
implemented in the interval with indices k01 + dk01 + 1 ≤
k ≤ kf0, for NM variables YNC1(k), on indices k02 +dk02 +
1 ≤ k ≤ kf0, variables YDC(k) are implemented in these
intervals. The values of dk01, dk02 are set. The
sequences of ∆k-dimension vectors moving in unit
steps and formed by these variables are fed to the NN
input. The validation stage of NN models after train-
ing is performed for the indices k01 ≤ k ≤ k01 + dk01 for
MH variables and for the indices k02 ≤ k ≤ k02 + dk02 for
NM variables. As a result of the training and validation
stages, MH, NM NN models for Dst indices are cre-
ated. The testing stage is dedicated to computing
 2022
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Fig. 3. Graphs of the variables YMP(k), YNP(k), and YDP(k) derived from the numerical preprocessing on the monthly interval.
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model Dst indices on the basis of NN models in the
interval with the indices kf0 + 1 ≤ k ≤ kf. For testing, an
extrapolation algorithm over the variables YMC2(k) and
YNC2(k) is implemented in order to further use the
extrapolations in the generated NN models.

Figure 4 shows examples of the plots of variables
YMC = YMC2(k), YNC = YNC2(k) obtained by filtering and
scaling on the 4-day interval of April 1, 2012—April 4,
2012, and prepared for extrapolation. It can be con-
cluded that the variables YMC2(k), YNC2(k) are well
suited for extrapolation: it can be seen that their suc-
cessful extrapolation based on parabolic functions is
quite acceptable at least for ke = 5–10 steps ahead.

4.2. Extrapolation formulas are implemented based
on approximation parabolic models with respect to the
current index k; the extrapolation parameter ke, the
number of extrapolation steps k + 1, k + 2, …, k + ke, is
set. The number of indices in the interval k, k – 1, …,
k – ka + 1, in which the approximation model is supposed
to be built, is set. Parabolic approximation functions with
parameters ,  and
approximation functionals are formed

Optimal parameters of the approximation models are
determined by minimizing the introduced functionals
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The extrapolated models ȲMC2 = ȲMC2(k, ke), ȲNC2 =
ȲNC2(k, ke) are formed on ∆k-dimension intervals
moving in unit steps. For  indices

, the extrapolated models are
represented by the parabolic approximation functions

(1)

For  indices 
, the extrapolated models are

represented by formulas

(2)

Moving extrapolated model estimates of Dst indi-
ces are computed using NN models for the extrapo-
lated MH, NM observations ȲDM = ȲMC2(k, ke), ȲDN =
ȲNC2(k, ke) in the interval k1T ≤ k ≤ k2T. In order to cal-
culate k1T , k2T, the following inequalities derived from
(1)–(2) are written

The solution of these inequalities makes it possible to
determine the boundary indices

(3)
The decision rule algorithm for predicting GMS’s

is based on the computed moving extrapolated model
estimates of Dst indices ȲDM, ȲDN and comparing them
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Fig. 4. Graphs of variables YMP2(k), YNP2(k) obtained from filtering and scaling operations on the 4-day interval (Apr. 1–Apr. 4,
2012).
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to a given threshold YD0. GMS prediction decision
making is implemented in the interval k1T ≤ k ≤ k2T (3).

5. NN ARCHITECTURE

The results obtained above are based on a fully-
connected feed-forward NN generated using a generic
software product (Deep Learning, 2021). The use of
NN of this type is due to the fact that in this case the
raw data and observations are scalar time series.

The architecture of the used NN is presented in
Fig. 5. Four connected layers (CLs) with input vari-
ables YDC, YMC1, YNC1 were implemented, on the basis
of which the ∆k-dimension input vector sequences were
formed. Activation functions f(x) = 1, x > 0, f(x) = 0, x ≤ 0
were used. The outputs from the four layers CL1–CL4
were fed to the summing fully-connected layer (FCL).
The NN output at the training stage is the generated
NN models.

The indices of the intervals of initial variables took
numerical values in accordance with item 2 and were
assigned dk01 = 12000, dk02 = 15000. The index kf0 =
131810 corresponding to the date of January 1, 2017,
was assigned, which defined the 8-year training inter-
GEOMAGNETISM AND AERONOMY  Vol. 62  No. 4 
val (January 1, 2008–December 31, 2016) for the MH
and the 14-year interval (January 1, 2002–December 31,
2016) for the NM. The 2-year interval (January 1,
2017–December 31, 2018) was allotted to compute
model estimates of Dst indices based on MH, NM
observations using NN model structures.

6. THE GMS PREDICTION DECISION RULE
We reduce the GMS prediction method to a classi-

fication procedure (Bishop, 2006; Fomin, 2010) based
on comparing extrapolated model estimates of Dst
indices to a given threshold for the current index k
given the extrapolation steps ke.

We create a decision rule for GMS prediction deci-
sions based on the joint use of MH, NM model esti-
mates of Dst indices, which is that if at least one or
both conditions for the current index k are met

(4)

then we will make a GMS prediction decision for the
index k + ke; in other cases, we will make the opposite
decision.
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≤ ≤
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 2022



394 GETMANOV et al.

Fig. 6. First and second variants of GMS predictions.
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Let us provide clarifications on the implementation
of the prediction. We assume that the possible GMS
was implemented on a time interval with indices that
satisfied the inequalities kGS1 ≤ k ≤ kGS2. We will still
assume that the prediction is performed for a point in
time with the index k for ke indices forward. We con-
sider two possible cases: 1. When the time k of making
a prediction is outside the interval with the GMS; 2.
When the time k of making a prediction is inside the
interval with the GMS. In that case, even if both pre-
diction variants are implemented, which is equivalent
to the inequality kGS1 ≤ ke ≤ kGS2, the variants are sig-
nificantly different. For the first variant, the imple-
mented variant is quite complete, because the predic-
tion was implemented in advance with respect to the
GMS. In the second variant, the prediction took place
when the GMS had already occurred. Figures 6a and
6b show the predictions for the first and second vari-
ants. The following inequalities correspond to the first
and second variants of the GMS prediction

7. CALCULATING ESTIMATES OF THE 
PROBABILITIES OF CORRECT AND FALSE 

GMS PREDICTIONS
GMS prediction is usually accompanied by errors,

such as incorrect forecasting and generation of false
predictions. These errors depend on the probability
characteristics of the variables ȲDM, ȲDN. Let us use the
results of (Merkov, 2014; Mikhailov and Voitishek,
2006) for their approximate calculation. Let us form
estimates of prediction error probabilities, in which we
use the initial Dst indices YD(k), model estimates of
predicted Dst indices ȲDM(k, ke), ȲDN(k, ke), which are
random. We implement calculations for a number of vari-
ants of extrapolation steps  and use decision rule (4).

We fix the threshold YD0 and consider the time with
the index k + ke in which GMS takes place if the
inequality YD(k + ke) ≤ YD0 is satisfied. We calculate
the number NGS of the states with the GMS which are
determined by the fulfillment of this inequality in the
interval k1T ≤ k ≤ k2T using the following sum

(5)

where sgnx = 1, x ≥ 0, sgnx = 0, x < 0. Let us determine
NM,GS, which is the number of correct GMS predic-
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tions using ȲDM(k, ke) based on (4), and find βM, which
is an estimate of the probability of correct forecasting

(6)

We count the number NN,GS of correct GMS pre-
dictions using ȲDN(k, ke) using (4) and determine an
estimate of the probability of correct forecasting βN

(7)

The estimate of the probability of correct GMS
predictions βMN when ȲDM(k, ke), ȲDN(k, ke) and (4) are
used together is found as follows

(8)

The numbers N0GS, NM,0GS, NN,0GS, NMN,0GS and the
probabilities of false predictions of the GMS , ,

 will be calculated by formulas similar to (5)–(8).
Calculations by formulas (5)–(8) are implemented for
the set of extrapolation steps ke. We determine the
probabilities of omitting predictions for MH, NM,
and MH|NM by the differences , , and

.

8. EXPERIMENTAL STUDY OF THE GMS 
PREDICTION METHOD

8.1. Estimating the Probability of Correct 
and False GMS Predictions Depending

on the Extrapolation Step ke

In an interval with indices k1T ≤ k ≤ k2T, the time
series YD(k) of Dst indices from the database (World
Data Center, 2021) was examined. For the given inte-
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Fig. 7. (a) Estimates , ,  of probabilities of cor-
rect GMS forecasting. (b) Estimates , ,  of
probabilities of false GMS forecasting.
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ger parameters ke, extrapolated model estimates
ȲDM(k, ke), ȲDN(k, ke) were calculated and compared
with the YD0 threshold, and the probabilities of correct and
false GMS predictions were determined using formulas
(5)–(8) as a function of the parameter ke for the range

,   for YD0 = –50 nT., ,e mn e e mxk k k≤ ≤ , 0,e mnk = , 9e mxk =
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Table 1. Extrapolation ke = 5, 2017

N0 TkGS1 TkGS2 TkM1 TkM2

1 05.28.00 05.28.20 – –
2 07.16.12 07.17.17 07.16.21 07.17.17
3 09.07.23 09.10.03 09.08.03 09.08.21
4 09.14.20 09.14.21 – –
5 09.28.01 09.28.13 – –

Table 2. Extrapolation ke = 7, 2015

N0 TkGS1 TkGS2 TkM1 TkM2

1 08.25.23 08.26.09 08.26.09 08.27.11
2 09.10.18 09.11.20 – –
3 09.22.02 09.22.20 09.22.11 09.22.12
4

Figures 7a and 7b present graphs of the results of
calculations of the estimates of probabilities of correct
forecasting (MH), (NM),  (MH|NM) and
probabilities of false prediction (MH), (NM),

 (MH|NM) depending on ke. From the presented
graphs with the results of the calculations, it can be
seen that the combined use of MH and NM observa-
tions increased the efficiency of GMS prediction.
From Fig. 7a, we can conclude that for the prediction
parameter ke = 5, the probability of correct joint GMS
prediction took the maximum value and was

, which is greater than the corresponding
value  by 13–15%. The probability of false
joint prediction, according to Fig. 7b, did not exceed

.

8.2. Calculating GMS Predictions 
for a Given Time Interval

An initial time interval with indices k1T ≤ k ≤ k2T
was considered, on which model estimates of Dst indi-
ces were computed and the GMS prediction problem
was solved. In this interval, the time series YD(k) was
formed and extrapolated model estimates ȲDM(k, ke),
ȲDN(k, ke) were calculated for the given values of the
extrapolation parameter ke.

The control interval with indices k1C, k2C that satis-
fied the inequalities k1T < k1C ≤ k ≤ k2C < k2T was con-
sidered. Sequences of intervals kGS1 ≤ k ≤ kGS2 in which
GMS occurred were determined by checking inequal-
ities for moving k and the given value of the extrapola-
tion parameter ke
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TdkM TkN1 TkN2 TdkN Tdke

– 05.27.21 05.29.11 +3 +3–cf
–5 07.16.08 07.17. 21 +4 +4–cf
–4 09.07.21 09.10.09 +2 +2–cf
– 09.14.15 09.15.17 +5 +5–cf
– – – – –mcf

TdkM TkN1 TkN2 TdkN Tdke

–10 08.25.22 08.26.14 +1 +1–cf
– 09.10.11 09.10.21 +7 +7–cf
–9 – – –9 –9–mcf
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Fig. 8. (a) Graphs of the variables YD(k), ȲDM(k, ke), and ȲDN(k, ke), ke = 5. (b) Graphs of the variables YD(k), ȲDM(k, ke), and
ȲDN(k, ke), ke = 7.
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Sequences of intervals kM1 ≤ k ≤ kM2 and kN1 ≤ k ≤ kN2,
in which GMS predictions were made according to
decision rule (4), were determined by checking the
following inequalities

The GMS predictions took into account the
mutual arrangement of intervals (kGS1, kGS2) and (kM1,
kM2), (kN1, kN2). Time differences TdkM, TdkN for sep-
arate observations and differences TdkMN, where
kMN = max(kM1, kN1) for joint MH, NM observations
were introduced to assess the effectiveness of GMS
predictions
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Obviously, GMS predictions make sense when the
inequalities TdkM > 0, TdkN > 0, and TdkMN >0 were
satisfied in separate and joint observations.

Depending on the positions (kGS1, kGS2) and (kM1,
kM2), (kN1, kN2), there are obviously possible imple-
mentations of correct forecasting (cf), miss of correct
forecasting (mcf), and false forecasting (ff) of GMS’s.
The larger the values of the introduced differences, the
more advance the GMS prediction is. Negative values
for dkM, dkN, dkMN can be assumed to correspond to
missing forecasts, mfc.

For the first example, a reference time interval of
5 months (May 1, 2017–September 30, 2017) was con-
sidered; YD = YD(k) and ȲDM = ȲDM(k, ke), ȲDN =
ȲDN(k, ke) with ke = 5 were used. Figure 8a shows
graphs for these variables. The dotted line indicates
the assigned threshold YD0 = –52.5 nT. The results of
the prediction calculations are presented in Table 1;
GNETISM AND AERONOMY  Vol. 62  No. 4  2022



GEOMAGNETIC STORM PREDICTION BASED ON THE NEURAL NETWORK 397
for space considerations, the year 2017 is omitted from
the dates; the columns contain the calendar variables,
such as month, day, and hour, derived from the con-
version of the k indices. Columns 2, 3 contain times of
the intervals (TkGS1, TkGS2) of start and end of the
events due to YD(k) reductions, which can turn out to
be GMS events; the first column defined numbers N0
of intervals with GMS events. Columns 4, 5 and 7, 8
contain interval times (TkM1, TkM2), (TkN1, TkN2) with
1-hour accuracy. A total of 5 GMS events took place.
From the contents of column 10 with prediction time
Tdke = max(TdkM, TdkN), we can conclude that cor-
rect GMS predictions were made in four events, Ncf = 4:
for no. 1, prediction was made in 3 h, no. 2, in 4 h,
no. 3, in 2 h, and 4, in 5 h. For event no. 5, there was a
miss of correct forecasting Nmf = 1. There were 0 false
forecasts, Nff = 0.

For the second example, the 3-month reference
interval (August 1, 2015–October 31, 2015) was con-
sidered and YD = YD(k) and ȲDM = ȲDM(k, ke),
ȲDN = ȲDN(k, ke) with ke = 7 were used; the threshold
YD0 = –52.5 nT was assigned. Figure 8b shows the cor-
responding graphs of the variables with the dotted line
indicating the threshold. The results of the calcula-
tions are presented in Table 2. Three GMS-events
took place during the 3-month interval under consid-
eration. We can conclude from the contents of column
10 that correct GMS predictions were made in two
cases, Ncf = 2: for no. 1, prediction was made in 1 h and
for no. 2, in 7 h. There was one false forecast, Nff = 1,
and one miss of correct forecasting, Nmf = 1.

In order to approximate the effectiveness of the
GMS prediction method, we introduced coefficients
of correct and false forecasting εcf and εff, whose quite
obvious physical meaning is derived from the follow-
ing formulas

The calculation of the coefficients on the basis of
Tables 1 and 2 allowed us to establish their average val-
ues , , which can be taken as first
approximations of estimates of the effectiveness of the
proposed prediction method.

9. CONCLUSIONS

1. The proposed method for predicting geomag-
netic storms (GMS) on the basis of joint observations
of the URAGAN muon hodoscope and neutron mon-
itors using a fully-connected feed-forward NN and
extrapolated model estimates of Dst indices is opera-
tional.

2. The study of the proposed method of GMS pre-
diction on observations of the muon hodoscope, neu-
tron monitors, and Dst indices obtained for 2008–
2018 and 2002–2018 showed its effectiveness.

ε = + ε =cf cf cf mf ff ff cf( ), .N N N N N

ε ≈cf 73% ε ≈mf 25%
GEOMAGNETISM AND AERONOMY  Vol. 62  No. 4 
3. The conducted calculations of the combined use
of MN and NM observations showed that for the opti-
mal prediction parameter ke = 5, the estimated proba-
bility of correct GMS prediction is , which
is greater than the corresponding value  by
13–15%; the probability of false forecasting does not
exceed .

4. The consideration of examples of experimental
data on 5-month intervals showed that it is possible to
implement the coefficients of correct and false fore-
casting ≈73%, ≈25% using the proposed method,
which indicates acceptable capabilities of the pro-
posed method.

5. The proposed GMS prediction method has a lot
of room for improvement, in particular, in terms of
further optimization of the NN parameter settings in
order to increase correct prediction probabilities and
decrease false prediction probabilities.

6. The proposed GMS prediction method has a
favorable outlook for its use in applied geophysical
problems.
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