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Abstract—Oscillations of coronal loops with electric currents from one base to another are studied. The
energy of longitudinal currents can be a source of energy for loop flares (Alfvén and Carlqvist, 1967). A sim-
plified model of a loop in the form of a composite cylindrical magnetic tube containing a shell with a potential
azimuthal magnetic field is considered for the theoretical study of oscillations of loops with longitudinal cur-
rents. The dispersion features of the tube natural kink oscillations are considered based on numerical calcu-

lations.
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1. INTRODUCTION

The known idea of a loop flare is based on the
assumption of the existence of electric currents flow-
ing in coronal loops from one base to another (Alfvén
and Carlqvist, 1967). The concept of coronal electric
currents is generally accepted and used in the study of
various dynamic processes in the corona (Torok et al.,
2014; Stepanov and Zaitsev, 2018). It is used to
describe energy release processes and particle acceler-
ation (Zaitsev and Stepanov, 2017). The magnetohy-
drodynamic (MHD) theory of coronal oscillations
was developed in a rather detailed linear approxima-
tion (Zaitsev and Stepanov, 1975; Edwin and Roberts,
1983). The bending oscillations of coronal loops
directly observed in the ultraviolet range are one of the
main objects studied in coronal seismology (Aschwan-
den, 2005; Stepanov et al., 2012). New observations of
coronal loops by the Solar Dynamics Observatory
provide a wealth of detailed information on the oscil-
lations (Abedini, 2018).

Oscillations of loops containing longitudinal elec-
tric currents are studied in this paper. The magnetic
field of such loops is in the form of twisted magnetic
flux ropes that influence the nature of oscillations
(Bahari and Khalvandi, 2017). The transverse distri-
bution of the current in loops is still controversial
(Torok et al., 2014). While the external magnetic field
surrounding the loops is directed along their axis, the
longitudinal currents, if there are any, are neutralized.
These are the coronal loops to be considered here,
although, according to some observation data, there
are also loops with an electric current that flows in
only one direction (Kontogiannis, 2017).

The adopted, simplified loop model looks like a
straight magnetic tube containing two surface currents
with longitudinal components flowing in opposite
directions, such that their sum is zero, i.e., the currents
are neutralized. We previously studied the radial oscil-
lations of this magnetic tube (Mikhalyaev and Khon-
gorova, 2012; Khongorova et al., 2012). Its kink oscil-
lations are studied in this work. Note that the theory of
kink oscillations in the solar atmosphere, which
includes the study of damping mechanisms related, in
particular, to the MHD wave emission into the envi-
ronment (Tsap and Kopylova, 2001), encounters diffi-
culties, even in the thin magnetic-tube approximation
(Tsap et al., 2018). Therefore, in this paper, we limit
ourselves to the case in which the eigenfrequencies of
the waves are real values, i.e., we consider free, sus-
tained oscillations.

2. CORONAL LOOP MODEL

We consider a magnetic tube consisting of two
coaxial, nested parts (Fig. 1). The central part, called
a filament, is a homogeneous magnetic tube of radius b;
it contains a homogeneous longitudinal field and
plasma density distribution, and is characterized by a
constant Alfvén velocity V;. The field structure in the
external environment is similar, and the Alfvén veloc-
ity is V.. Below, the i and e indices denote values
related to the filament and external environment,
respectively. In the outer part of the tube with radius a,
which we call the shell, the selected azimuthal field

and potential are (O, B, / OLr,O) (Mikhalyaev, 2005).
Here, o is the parameter defining the spatial scale,
and r is the radial coordinate in the cylindrical coor-
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Fig. 1. General view of the composite magnetic tube (left)
and radial plasma-density distribution (right).
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Fig. 2. Electric current flow on the surfaces that separate
the filament, shell, and external environment. The electric
currents lines are helically shaped.

dinate system, the Z axis of which coincides with the
tube axis. We choose the plasma density in the shell,

which decreases with the radius as p, / o’r’. Here, the
Alfvén velocity also takes a constant value denoted by
Vi, (which is also used in Eq. (2)).

In coronal conditions, we disregard the gas pres-
sure in comparison with the magnetic pressure. The
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following ratios can be derived from the requirements
of pressure balance at the cylindrical surface boundaries:
Bab = B, = B.oa. Discontinuities at the boundaries of
the regions lead to the concentration of surface electric
currents at the boundaries of these regions (Fig. 2):
jo(B) = J.(b) = cB J4m;  jy(a) = j.(a) = ~B. /4.
The longitudinal components of the current have
opposite directions, and the total current in the tube is
zero. The considered model is used, because it pro-
vides explicit analytical solutions of the MHD equa-
tions, although magnetic tubes with diffuse current
distribution would be more realistic models.

3. BENDING OSCILLATIONS
OF THE CORONAL LOOP

We consider fast magnetoacoustic modes in the
form of kink disturbances that correspond to an azi-
muthal number of m =1. We are interested in the
question of the existence of sustained free oscillations,
which was studied earlier in detail for the case of a
homogeneous magnetic tube (Zaitsev and Stepa-
nanov, 1975; Edwin and Roberts, 1983). The distur-
bances of the radial velocity can be written in the fol-
lowing form

v, =V (r)exp(ikz + i¢ — iwt). (1)

The boundary conditions on the disturbed surfaces of
the “filament—shell” and “shell—environment” inter-
faces for the velocity radial component and total pres-
sure disturbance can be written as

Vi(b) =V, (b), V.(a)=V,(a), ()
P(b) = P,(b) By (b)
I ° 47'Ci(D(X2b3 ° ’ (3)
2
P.(a) = By (a) + — 22V, (a).
4dmiono a

The index “0” indicates the values related to the shell.
In the filament and external environment, where the
field is longitudinal and homogeneous, the depen-
dence on the radial variable is expressed with Bessel
functions. The corresponding expressions for the total
pressure disturbance and the radial-velocity compo-
nent are known from the theory of linear oscillations
of a homogeneous magnetic tube:

P(r)=AJ,(\r),

—i0) LA, (A7 2 4)
Vi(r):( )2 112(2 )’ A = w_2_k2’
o (0 - V7K?) W

P.(r) = AK, (A.r),

i ! 2 5
Ve(") =( lm)}“zeA4K12(72"er), }\'e — _%_l_ kz‘ ( )
0. (0 - Vi) V.
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Here, the derivatives of the corresponding functions

are marked with primes, and values 4, and A, are arbi-
trary constants. In the external environment, the dis-
tribution decreases rapidly with the radius; thus, the
solution describes a fast magnetoacoustic wave that is
localized in the tube or, in other words, trapped by the
tube (trapped modes).

In the shell, the dependence on the radial variable

is determined by the equation of the following form,
which we call radial:

d’P dP,
d&20 +E@3ET -5 =L

dg

EE -1

+A=xE + 00 -8 -3|R =0, (6
_ro . _Vk
é_%’ X (0'

In addition to the zero singular point associated with
the geometry of the problem, it has an additional end
singular point &, = 1, which has a resonance value. It
corresponds to the value of the radial variable
.=V, / . The resonance can be given the following
physical meaning: exactly one wavelength with a phase
velocity of ¥, and frequency of @ can be placed on the
circumference of radius r,.

We consider the solutions of the radial equation (6)
in a unit circle:

gl <1, (7)

thus excluding the resonance case that will be the sub-
ject of our special study. The determination of the
equation for the zero singular point has solutions —1
and —3, which differ by an integer. Linearly indepen-
dent solutions of the radial equation have singularities
in the form of poles, and the latter solution contains an
attached vector in the form of logarithm. The solu-
tions have the following expansions:

-1 n -3 n
W) =&Y 0k, W,(6)=WinE+E7YhE" ®)
n=0 n=0
The expansion coefficients are found from recurrent
relations. The wave distribution in the cylindrical shell
can be written in the form of their linear combination

By (r) = AW (Aor) + AW, (Aor) s 7»0=03/V0, )]

3
QoW _e2d g2
(—i(!))(X2I/() I/rO (7') E.: d&{; })0 (r),
with the arbitrary coefficients 4, and 4;.
Substituting the found wave distributions into the
boundary conditions, we obtain a homogeneous algebraic
system for the arbitrary coefficients A4,,4,,4;, and A,.
The condition of system resolvability is met when its
determinant is equal to zero. This leads to the disper-
sion equation, which binds the frequency ® and the
longitudinal wave number k. The obtainment of the

€ -1 (10)
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dispersion equation is a standard procedure for this
kind of problem, so we omit its full presentation. The
dispersion equation for kink oscillations can be written
as the following equality

DD, - D,D; =0, (11)

where
_ AbJ(Nb)
) Ji (Mb)
— (Agh” = 3] (Mb) + Ao W7 (Aob),
_ MbJ, (Md)
) Ji (Mb)
— (AoD” = 3W, (M) + Mo W (Mb),
_hak, (ha)
K (Aa)
— (Ab” = 3W, (M) + hga W, (Moa),
_heak (Aea)
K (A.a)
— (Ab” = 3W, (M) + ha W, (Moa).

D, (b W] (Mob) + 2W;(hob))

(12)

D, Mob W3 (hob) + 2W5(Aob))

(13)

D, = (hoaW; (Moa) + 2W;(Lga))

(14)

D, = (hoa W5 (M) + 2W5(Ma))

(15)

4. SPECTRUM OF KINK OSCILLATIONS

The dispersion equation is solved with respect to ®
for different values of k£ under the condition of the
absence of resonance (7), which imposes the upper
limit on the values of the wave number. On this basis,
we limit ourselves to the consideration of long-wave
oscillations (ka <€ 1). The equation is solved numeri-
cally with the finite sums in the expansions (8); the
error related to the removal of the series remainder is
controlled in the calculations. Figure 3 presents the
results of the solution of the dispersion equation. For

the typical coronal conditions, we choose V, >V, and

consider a number of values of the Alfvén velocity V;,
the principal characteristic of the shell. The main con-
clusion is that the sustained free oscillations exist.

Dispersion curves are constructed for the case of a
relatively thick shell (a = 4b/ 3) and a relatively thin

shell (a =3.25/3). The results show that thin shell
parameters have an insignificant influence on its
oscillation spectrum. The phase velocity slowly
decreases with an increase in the value of the wave
number, which is typical of kink oscillations of a
homogeneous tube in the fundamental mode. The
numerical values of the oscillation periods for the typ-
ical coronal parameters are close to the periods of a
homogeneous magnetic tube, which are used as a
model in coronal seismology. This indicates that the
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Fig. 3. Dependences of the kink oscillation phase velocity (left) and frequency (right) for the internal and external cylinder radius

ratios: a/b = 4/3 (top panel) and a/b = 3.2/3 (bottom panel).

observed coronal loops may contain longitudinal elec-
tric currents.

The role of resonance in the behavior of kink oscil-
lations must be studied for a more detailed analysis of
oscillations over a wider range of the wave number val-
ues, and it is the subject of our further research.

5. CONCLUSIONS

The presence of electric currents in coronal loops is
a universally recognized concept; therefore, the study
of loop oscillations with these physical properties can
be considered a relevant problem. The linear-oscilla-
tion model considered in the paper provides an algo-
rithm to determine the spectrum of kink oscillations of
a magnetic tube with an azimuthal component of the
field. In the long-wave range, the oscillation-spec-
trum properties are similar to those of the homoge-
neous magnetic-tube oscillations.

The presence of resonance is a characteristic fea-
ture of the kink oscillations of the magnetic tube with
an azimuthal component of the field. This is stipulated
not by the usual radial variation of the Alfvén velocity,
but by the existence of a surface, on which the time of
wave propagation along a circumference of certain
radius coincides with the Alfvén time. Here the value
of the Alfvén velocity itself can be constant, indepen-
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dent of the radius. The study of the resonance is the
subject of our special study.
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