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Abstract—The solar activity index and parameters of the spatial distribution of sunspots are known to be
related. Using these relationships, we propose interrelated approximations for the sunspot number (SN) and
the two key latitude characteristics of their distribution in the cycle: the mean latitude of sunspots and the
standard deviation of their latitudes. The two parameters of these approximations are the cycle amplitude
SNmax and the drift of its downward branch relative to the cycle beginning t0. These approximations specifi-
cally take into account the relationship between amplitudinal and spatial properties of the 11-year solar cycle,
as well as the universality of the behavior of the activity and mean latitude of sunspots in the declining phase
of the cycle. We demonstrate that the pair of parameters SNmax and t0 allows approximation of both the shape
of the cyclic curve and the latitude–time diagram for sunspots of this cycle (“Maunder’s butterfly”).
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1. INTRODUCTION
The search for dependences describing the behav-

ior of the solar activity index in the 11-year solar cycle
dates back to the 19th century. Rudolf Wolff tried to
describe a dependence by superimposing four sinu-
soids corresponding to the phases of the motion of the
solar system planets (see Waldmeier, 1935); over the
next 150 years, there had been multiple attempts to find
an appropriate dependence (see, e.g., Vitinskii et al.
(1986), Hathaway et al. (1994), and references therein).

These approximations often have a formal mathe-
matical character: finding a function with a small
number of parameters that is most consistent with the
behavior of the given index. However, in describing
the approximating curve, it is useful to take into
account the relationships between sunspot distribu-
tion features.

It is known that the evolution of solar activity
during the 11-year cycle can be divided into two qual-
itatively different phases. The inclining and declining
phases are characterized by a comparatively rapid
increase and a slower decrease in activity, respectively.
The activity in the inclining phase increases more
quickly for higher cycles (“the Waldmeier rule”); on
the contrary, in the declining phase its behavior
depends weakly on the prehistory of this cycle, but it is
well correlated with the current mean latitude of sun-
spots (Eigenson et al., 1948; Gnevyshev and Gnevy-
sheva, 1949; Hathaway, 2011; Ivanov and Miletsky,
2014). The latter is useful because it allows one to con-
struct two interrelated approximating curves: the first

describes the evolution of the activity index in the solar
cycle, and the second describes the behavior of the
average latitude of sunspots.

Cameron and Schüssler (2016) showed that the
specific behavior of solar activity in the declining
phase of the cycle may be related to the fact that the
decrease of the magnetic field strength at this time
happens predominantly due to magnetic diffusion,
and they proposed a quantitative model of this mode
of activity.

In this study, we propose two consistent approxi-
mating functions that describe both the behavior of
the activity index in the 11-year cycle and the latitudi-
nal distribution of sunspots in this cycle; the form of
these sunspots takes into account the aforementioned
relationships and regularities.

2. DATA
The data used by us are the annual-mean values of

the recalibrated sunspot number SN for 1700–2016
(WDC-SILSO, Royal Observatory of Belgium, Brussels,
http://www.sidc.be/silso/DATA/SN_y_tot_V2.0.txt).
Our calculations of the spatial characteristics of sun-
spots for 1874–2016 are based on the Greenwich sun-
spot catalog (Greenwich – USAF/NOAA Sunspot
Data, http://solarscience.msfc.nasa.gov/greenwch.shtml);
the average latitude of sunspot groups ϕ and the stan-
dard deviations σϕ of these latitudes (regardless of their
sign) for the given year are calculated for these data.
The time intervals used below correspond to the
930



SHAPE OF THE 11-YEAR CYCLE OF SOLAR ACTIVITY AND THE EVOLUTION 931

Fig. 1. Relationship between the annual-mean sunspot lat-
itude ϕ and the SN index for 1874–2016. The black circles
indicate the years of the declining phase, and the dotted
line stands for regression (1).
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Greenwich catalog (1874–2016; i.e., cycles 11(12)–
23) unless otherwise noted.

3. RELATIONSHIP BETWEEN SN, ϕ, AND σϕ

Figure 1 shows the correlation between the annual-
mean SN values and the mean latitude of sunspots ϕ.
In the declining cycle phase (black circles), there is a
dependence between these indices (Ivanov and
Miletsky, 2014) with a correlation coefficient of R =
0.93, which can be described by the linear regression
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Fig. 2. Relationship between the annual-mean activity paramete
and (b) (ϕ, σϕ), the dotted line by regression (3). The regression
one year away from cycle minima (black circles).
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The standard deviations of latitudes σϕ are also

related to the SN (Ivanov et al., 2011) (Fig. 2a). If the
years of activity minima and their adjacent years (indi-
cated by empty circles in the figure), when the old and
new 11-year cycles often overlap and it is difficult to
determine their parameters unambiguously, are dis-
regarded, this dependence can be described by the
regression

(2)

Obviously, one can also construct a third linear
regression describing the correlation between σϕ and ϕ
in the declining cycle phase (Fig. 2b):

(3a)
Since the free term of this linear regression is small,

it can be dropped without loss of accuracy:

(3b)

4. SN APPROXIMATION
Cameron and Schüssler (2016) proposed a mecha-

nism describing the behavior of activity in the declin-
ing phase. Assuming that the intensity of the toroidal
magnetic field in this phase decreases mainly due to
diffusion through the equator and that the latitudinal
field profiles can be approximately described by nor-
mal distributions, these authors obtained for descrip-
tion of the SN a function F that satisfies the equation

(4)
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Here,

where η is the coefficient of turbulent magnetic diffu-
sion, R2 is the characteristic square of the radius of the

magnetic field generation region, and  is the

effective ratio of the coefficients in this region. With
relation (3b), the exponent and, hence, C are con-
stants. Then, Eq. (4) is a differential equation of the first
order, which, in view of (2) and (3), can be written as

(5)

where , , and its solution is

(6)
where f = g–1 is the inverse to the function

Thus, the activity in the declining phase can be
described by curve (6), which has the same form for all
cycles for fixed A and α, and the parameter t0 deter-
mines the shift of the declining branch of this cycle
along the time axis (hereafter, time t is assumed to be
counted from the cycle minimum). It was noted earlier
that it is such a universal behavior of the activity index
(unrelated to the cycle intensity) that is typical for the
declining cycle phase. In this case, the parameter α =
248 is equal to the ratio of the coefficients of linear
regression (2), and the second empirical parameter
A = 4.17 × 104 year–1, which determines the extension
of the standard curve f(x) along the ordinate axis, was
found by minimizing the sum of standard deviations
between the observed index and solution (6) in the
cycle declining phases for the entire SN data series
(1700–2016).

Unlike the cycle declining phase, the behavior of
activity in the inclining phase depends strongly on
cycle intensity (according to the Waldmeier rule). The
approximating function for this phase must have a
minimum at t = 0, sufficiently rapid growth, and a
maximum (SNmax) at some moment t = Tmax. With no
aim of describing in detail the behavior of activity in
the inclining phase, we choose the simplest function
of this form

(7)

The function approximating SN behavior in the
full cycle is proposed to be a piecewise-defined func-
tion F taking values of F1 and F2 at the time intervals
0 ≤ t ≤ t* and t ≥ t*, respectively. Here, the boundary
point t* is chosen such that F is continuous and differ-
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entiable on the domain of definition. This can be
achieved by requiring that the corresponding curves be
tangent to one another at t*:

It is rather clear (Fig. 3a) that, if SNmax < F2(0), the
point t* exists and is unique on the interval from Tmax
to 2Tmax. We do not strictly prove this fact; for our pur-
poses, it is sufficient that this point can be found for all
cycles of the full SN data series (see Table 1). The con-
dition imposed on F1 unambiguously relates the
parameters t0, SNmax, and Tmax. We have the freedom
of choice: we can choose t0 and SNmax or t0 and Tmax as
a pair of parameters specifying the function F. We
choose the first option: SNmax is assumed to be equal
to the observed cycle amplitude and the length Tmax is
uniquely expressed in terms of t0 and SNmax (thus, it
does not have to be equal to the observed length of the
inclining phase Tmax,obs, though it is close to it).

Thus, we have described the class of piecewise-
defined smooth functions F(t; t0, SNmax) with two
parameters (see Fig. 3b) describing the behavior of the
11-year cycle in both phases. Table 1 gives the approx-
imation parameters for the cycles of the full SN data
series, as well as the rms approximation errors Δ.
Figure 4 shows the approximating curves for the
Greenwich epoch.

In terms of approximation accuracy, the proposed
functions may compete well with other well-known
two-parameter formulas. For example, when the SN is
approximated by functions of the Stewart–Panofsky
type S3(t; C, β) = Ct3exp(–βt) (Steward and Panofsky
(1938); see also Vitinskii et al. (1986)) the rms error
on the full SN data series is 14.6, and for the func-
tions chosen by us it is 17.8. Here, our approximation
takes precedence over S3, because the form of
decreasing branches of functions F is consistent with
the universal law of activity decrease in the declining
phase (Fig. 3b).

Although the functions F(t; t0, SNmax) depend upon
two parameters, values of these parameters corre-
sponding to the full SN data series are not completely
independent. In this case, the correlation between
SNmax and t0 is R = 0.49, increasing up to R = 0.73 if
only the Greenwich cycles starting with the 12th cycle
are taken into account (see Fig. 5). The Greenwich
epoch is characterized by the following linear relation-
ship between the parameters of the functions:

(8)

In the pre-Greenwich epoch, the corresponding
correlation decreases to R = 0.40, which is caused,
probably, by increased error in determining of the SN
in this epoch.

=

=
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F t F t

( ) ( )= + =0 max maxSN 13.2 0.00862 SN 0.73 .t R
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Fig. 3. (a) Search for the conjugation point of the curves of F1 and F2. The curves indicated by solid lines and marked with the
numbers from 1 to 5 correspond to functions F1(t; SNmax, Tmax) with a fixed SNmax = 240 and successively increasing Tmax; curve
F1 number 3 is tangent to the curve F2(t; t0) at the point with abscissa t*. (b) Solid lines are the approximating curves F(t; t0,
SNmax) corresponding to the cycle amplitudes SNmax = 80, 120, 160, 200, 240. The dotted line on both graphs denotes the func-
tion F2(t; t0) for t0 = 15 years. In the graph (b), this function describes the behavior of activity common for all SNmax in the cycle
declining phase.
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It should be noted that the approximation chosen
by us leads naturally to the Waldmeier rule. As men-
tioned above, the length of the declining phase of the
approximating curve Tmax is functionally associated
with t0 and SNmax. If the shift in t0 were the same for all
cycles, Tmax would decrease with SNmax growth (see
Fig. 3b) and the correlation between these parameters
would be close to –1. However, in real data, t0
increases with cycle amplitude according to (8); here,
the curve of F2 shifts rightward and Tmax increases.
GEOMAGNETISM AND AERONOMY  Vol. 58  No. 7 

Table 1. Characteristics of functions F(t; t0, SNmax) approxim
the function parameters, Tmax is its time of maximum, t* is the

Cycle 
number

t0,
years

SNmax
Tmax,
years

t*,
years Δ

–4 12.4 96.7 3.9 4.8 21.2
–3 14.2 105.0 5.2 6.5 13.4
–2 14.7 203.3 3.7 4.1 27.9
–1 15.5 185.0 4.7 5.5 18.4

0 15.0 139.0 5.1 6.4 14.8
1 15.4 143.2 5.4 6.5 18.0
2 14.1 176.8 3.7 4.1 18.1
3 14.4 257.3 2.3 2.4 46.3
4 15.7 220.0 4.2 4.8 22.2
5 14.1 79.2 5.5 7.3 6.7
6 14.4 76.3 5.8 7.7 14.1
7 15.4 117.4 5.8 7.4 6.2
8 15.1 227.3 3.6 3.9 21.0
9 16.5 208.3 5.2 5.9 17.1
Thus, there is no full anticorrelation between SNmax
and Tmax. Nevertheless, the correlation between these
parameters remains sufficiently strong (Fig. 6):

(9)

5. APPROXIMATION OF THE CURVE 
OF MEAN LATITUDES OF SUNSPOTS

It is well known that the mean sunspot latitudes ϕ
decrease monotonically with the evolution of the 11-year

( ) ( )= − =max max maxSN 6.56   0.0129 SN –0.78 .T R
 2018

ating the SN index in individual solar cycles: t0 and SNmax are
 boundary of intervals, Δ is the rms error of the approximation

Cycle 
number

t0,
years

SNmax
Tmax,
years

t*,
years Δ

10 14.7 182.2 4.2 4.7 20.1
11 14.4 232.0 2.9 3.0 22.5
12 14.3 106.1 5.2 6.5 12.2
13 14.2 142.0 4.4 5.5 8.6
14 13.9 105.5 4.9 6.2 13.9
15 14.1 173.6 3.8 4.2 22.6
16 14.0 129.7 4.5 5.5 11.9
17 15.4 190.6 4.5 5.3 8.5
18 14.8 214.7 3.6 3.8 19.5
19 15.5 269.3 3.1 3.3 23.1
20 15.2 150.0 5.1 6.2 19.3
21 15.2 220.1 3.8 4.3 18.4
22 14.8 211.1 3.7 4.0 19.1
23 15.2 173.9 4.7 5.5 12.4
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Fig. 4. Annual-mean SN (top) and annual-mean sunspot latitude ϕ (bottom). The circles correspond to observed values and the
lines correspond to the approximations F(t; t0, SNmax) and Fϕ(t; τ(t0)), respectively.
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cycle (“Spörer’s law”), and it has repeatedly been
shown that their behavior depends weakly on the cycle
amplitude and can be described, for example, by an
exponential dependence (Hathaway, 2011; Roshchina
and Sarychev, 2011; Ivanov and Miletsky, 2014):

(10)

where ϕ0 = 15° and β = 8.3 years are empirical coeffi-
cients common for all cycles and τ is a cycle-depen-

ϕ
⎛ ⎞τ −τ = ϕ ⎜ ⎟β⎝ ⎠

0( ; ) exp ,tF t
GEOMA

Fig. 5. Relationship between the approximation parame-
ters t0 and SNmax. The black circles indicate the cycles of
the Greenwich epoch (starting from the 12th cycle), and
the light circles indicate the cycles of the pre-Greenwich
epoch. The dotted line is regression (8).
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dent parameter that determines the shift of the expo-
nent along the time axis. Table 2 shows the parameters τ
and the rms approximation errors Δϕ for the Green-
wich epoch cycles.

It follows from relation (1) that τ must be related to
the cyclic curve parameters. Indeed, the following
regression can be obtained for τ:

(11)( ) ( )τ = =0 00.61  – 4.30 0.80 .t t R
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Fig. 6. Relationship between the cycle amplitude SNmax
and the growth phase length Tmax for approximating func-
tions to illustrate the Waldmeier rule. The dotted line cor-
responds to regression (9).
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Table 2. Characteristics of functions Fϕ(t; τ) approximating the
mean sunspot latitude in individual solar cycles: τ is the func-
tion parameter and Δϕ is the rms error of the approximation

Cycle number τ, years Δϕ

11 4.84 0.89°
12 4.41 0.67°
13 4.54 1.39°
14 4.20 0.76°
15 4.06 0.56°
16 4.24 0.87°
17 5.09 0.58°
18 4.12 0.69°
19 5.03 0.66°
20 5.25 1.17°
21 4.83 0.73°
22 5.04 0.41°
23 5.24 0.58°
Thus, the two parameters t0 and SNmax can be used
to describe both the level of cycle activity and one of
the characteristics of the spatial distribution of sun-
spots. Approximations of the mean latitude in cycles
corresponding to dependence (10) with the parameter
determined from (11) are shown on the bottom panel
of Fig. 4.
GEOMAGNETISM AND AERONOMY  Vol. 58  No. 7 

Fig. 7. The observed butterfly diagram (top) and its synthesized v
clarity, only one of the ten sunspot groups is shown on each diag
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6. SYNTHESIS OF THE BUTTERFLY DIAGRAM
In a good approximation, the distribution of sun-

spots by latitude is normal (Ivanov et al., 2011) and the
variance of this distribution  is determined by rela-
tion (2); therefore, the approximations obtained above
for the SN and ϕ can also be used to describe the distri-
bution of sunspots by latitude. This means that, knowing
the pair of parameters that determine the behavior of the
activity level (t0 and SNmax), one can describe in some
approximation their spatial distribution as well.

Figure 7 shows two time–latitude diagrams for sun-
spots (“Maunder’s butterflies”). The top diagram was
obtained from the observed data, and the bottom dia-
gram was constructed with the use of parameters t0 and
SNmax (see Table 1). Here, for each year and hemisphere,
we generated a random sequence of sunspot groups, the
number of which corresponded to half of the full SN
index calculated with the help of the function F and the
moments of appearance were distributed uniformly over
the year, and the latitudes were distributed according to
the normal law with a mean latitude ϕ and its variance σϕ
obtained from approximation (10) and regressions (11)
and (2).

It can be seen that the observed and synthesized “but-
terfly diagrams” are quite consistent in their form. Some
differences between the diagrams are explained by the
facts that (a) the actual distribution of sunspots is slightly

ϕσ2
 2018

ersion constructed from approximating functions (bottom). For
ram.
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Fig. 8. The synthesized butterfly diagram for the pre-Greenwich epoch. For clarity, only one of the ten sunspot groups is shown
on the diagram.
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different from the normal distribution (Ivanov et al.,
2011) and (b) the mean sunspot latitude at minima is not
described by an approximating function (10) (see Fig. 4)
because of its strong dependence on the details of the dis-
tribution of sunspots in the old and new cycles.

Since the calculation of approximation parameters
requires only data for the activity level, we can also
construct similar diagrams for the pre-Greenwich
epoch, for which there are no systematic data on sun-
spot latitudes (Fig. 8).

7. CONCLUSIONS
Thus, we have constructed a class of functions F(t;

t0, SNmax) that approximate the SN behavior and
depend on two parameters of the cycle: its height
SNmax and the shift of the activity curve in the declin-
ing phase t0. The descending branches of these functions
have a universal form and differ only by the shift along the
time axis. This feature agrees with the observed form of
the 11-year cycle of solar activity and can be caused by the
special diffusion mode of toroidal magnetic fields in the
declining phase of the 11-year solar cycle.

The fact that the activity in the declining phase cor-
relates well with the mean sunspot latitude allowed us
to construct another class of approximating functions
Fϕ(t; τ), describing the behavior of the mean latitudes.
These functions depend on a single parameter τ,
which can be related to t0 by relation (11).

Finally, the two parameters of the approximation
proposed by us turn out to be sufficient to describe
both the form of the cyclic curve (i.e., the activity level
behavior) and resulting evolution of characteristics of
the latitudinal sunspot distribution (and, as a result,
the “butterfly diagram” for the given cycle).
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