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Abstract—The problem of the penetration of nonstationary ionospheric electric fields into the lower atmo-
spheric layers is considered based on the model of the global electric circuit in the Earth’s atmosphere. For
the equation of the electric field potential, a solution that takes into account exponential variation in the elec-
trical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three
cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds
to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case
of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal
to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric
potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the
increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approx-
imation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimat-
ing the electric field strength near the Earth’s surface have been obtained.

DOI: 10.1134/S0016793217050140

1. INTRODUCTION

The problem of the penetration of ionospheric
electric fields into the lower atmospheric layers was
considered in different approximations in a series of
works by Russian and foreign investigators. For exam-
ple, in (Roble and Hays, 1979), this problem was con-
sidered in a spherical coordinate system with the ori-
gin in the Earth’s center in the stationary approxima-
tion. In this case, ionospheric fields originated from an
ionospheric generator that arose due to solar and lunar
tides. In (Morozov and Troshichev, 2008), the trans-
formation of ionospheric electric fields caused by the
action of the magnetospheric generator that arose
during the interaction between the solar wind and
magnetic field of the Earth was considered.

At the same time, it is interesting to consider a non-
stationary variant of the problem. For example, in
(Morozov, 2012), the nonstationary problem of the
penetration of ionospheric electric fields into lower
atmospheric layers was considered. The electric
potential distribution at the ionosphere level was spec-
ified and, in the one-dimensional case, an expression
for the electric field strength near the Earth’s surface
was obtained; from that expression, it followed that
the stationary state was established with a time delay
with respect to the establishment of this state in the
ionosphere.

In this paper, the three-dimensional problem of the
distribution of the electric field potential in the atmo-
sphere with exponentially increasing electrical con-
ductivity is considered under the assumption of the
harmonic time variation of the potential at the lower
boundary of the ionosphere. The obtained analytical
solution at different frequency intervals is used to find
the vertical component of the electric field strength
near the Earth’s surface.

2. STATEMENT AND SOLUTION 
OF THE PROBLEM

To study the problem of the penetration of nonsta-
tionary electric fields into the lower atmospheric lay-
ers, we proceed from the following equation presented
in (Morozov, 2005):

(1)

where ϕ is the potential of the electric field of the
atmosphere; λ is its electrical conductivity; and t is
time.

We assume that the electrical conductivity of the
atmosphere increases by the exponential law

(2)

where R is the Earth’s radius;  is the electrical conduc-
tivity near the Earth’s surface; and α = (0.2–0.3) km–1.
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Let us write Eq. (1) in a spherical coordinate sys-
tem  with the origin in the center of the Earth:

(3)

We assume that, at the lower boundary of the ion-
osphere at r = R + H (Н is the lower ionosphere height
reckoned from the Earth’s surface), the electric field
potential varies by the harmonic law

(4)

In Appendix A, the solution of Eq. (3) at boundary
conditions (4) is considered. Using the results of
Appendix A, let us consider some approximations fol-
lowing from solutions (A.19) and (A.20). In the limit-
ing case , for the solution (A.19), we obtain
the representation
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Here, it is assumed that i(i + 1)  α2R2 = (1.64 –
3.69) × 106.

Using boundary conditions (A.17), we obtain the
following solution of the problem for frequencies sat-
isfying the condition 

(6)

From (6), we have an expression for the vertical com-
ponent of the electric field strength

(7)

For frequencies satisfying the condition 
using solution (A.20), we obtain

(8)

Using boundary conditions (A.17), we obtain the fol-
lowing solution of Eq. (A.16):

(9)

For the vertical component of the electric field
strength, we obtain
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Note that, at , from (9) and (10) we obtain
formulas for the quasi-stationary case:

(11)

Comparison of formulas (7) and (11) for the vertical
component at z = 0 shows that the electric field
strength in the quasi-stationary case is larger by a fac-
tor of  (at Н = 80 km and α = 0.3 km–1, we obtain
αН = 24) than the electric field strength determined
by expression (7) and smaller by a factor of 24 than the
electric field strength determined by expression (11).

Finally, let us consider the case where the condi-

tion  being satisfied in a certain variation
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 Let us estimate the quantity 
for different frequencies by rewriting this expression in
the following form: 

 Т is the period of oscillations; and

 is the time of the electric relaxation near
the Earth’s surface, which is taken to be equal to 250 s.

As follows from the consideration of Table 1, solu-
tion (A.19) should be used for frequencies exceeding
628 s–1; for frequencies less than 0.004, solution
(A.20) should be used. For the intermediate case, it is
necessary to consider regions separated by the height
h(T) = h(ω) individually and to unite the obtained
solutions.

Using the results of Appendix B, we obtain the fol-
lowing expression for  at z > h(ω):
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Table 1. Dependence of the transition boundary height h
on frequency ω (α = 0.2 km, )

Т, s 0.01 0.1 1 10 100 1570

 s–1 628 62.8 6.28 0.628 0.0628 0.004

h(T) = h(ω), km 60 50 40 20 10 0

1
0 0(4 ) 250 s−τ = πλ =

2 ,Tω = π
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 (12)

Relation (B.4), as well as the second condition (A.17),
yield the following expression for the electric field
potential at  

(13)

In the region z < h(ω) and   we
obtain

(14)

Estimates at H > h(ω) for denominators of (13) and
(14) yield the following expressions for the electric
field potential in these regions:

(15)

For the vertical component of the electric field
strength, using the first expression of (15), we obtain
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Thus, the obtained expressions for the electric field
potential and electric field strength differ from expres-
sions (6) and (7) in that, for frequencies that are lower
than 628 s–1 but higher than 0.004 s–1, the ionosphere
height Н is replaced by the height h(ω), which is the
boundary between the region with small values of
electric relaxation times and region where the effect of
the electrical conductivity is small. For frequencies
that are higher than 628 s–1, the frequency  is close
to the height H.

Table 2 presents the calculation results for the
amplitude of the vertical component of the electric
field strength near the Earth’s surface with respect to
the transition boundary height h(ω) which is a func-
tion of the oscillation frequency of the electric field
potential at the upper boundary. As seen from Tables 1
and 2, the height h(ω) decreases with a decrease in the
frequency and the electric field strength amplitude
increases. In the limiting case of low frequencies with
a typical time period on the order of 1 h, estimates by
formula (11) yield  = –(20–30) V/m at α = (0.2–
0.3) km–1, i.e., low-frequency oscillations of the iono-
sphere potential effectively penetrate the ground layer of
the atmosphere and, at  kV, the
amplitude of the vertical component of the electric field
strength near the Earth’s surface amounts to 20–30% of
the quasi-stationary electric field equal to 100 V/m and
determined by the action of thunderstorm generators
(Morozov, 2005).

3. DISCUSSION

Thus, the calculations performed above yield
expressions for the vertical component of the electric
field strength near the Earth’s surface and estimates
for frequency intervals:
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In the case of taking into account the transition
from the nonconducting region to the conducting one,
we obtain at 
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These expressions can be used to estimate the vertical
component of the electric field strength in the above-
mentioned frequency intervals.
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Table 2. Dependence of the amplitude of the vertical
component of the electric field strength  on height
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4. CONCLUSIONS
(1) The solution of the problem about the penetra-

tion of nonstationary ionospheric electric fields into
lower atmospheric layers has been obtained in an elec-
trostatic approximation with allowance for the expo-
nentially increasing electrical conductivity of the atmo-
sphere. Analysis of the obtained solutions describing
the distribution of the electric field potential in the
atmosphere with respect to the oscillation frequency
of the electric field potential at the ionosphere level
revealed three cases for the dependence of the solution
on height. The first case (the case of high frequencies)
corresponds to the Coulomb approximation, when the
electrical conductivity of the atmosphere can be
neglected. In the case of low frequencies (when the
frequency of changes in the ionosphere potential is less
than the quantity reciprocal to the time of electric
relaxation of the atmosphere), a quasi-stationary
regime, in which the variation in the electric potential
of the atmosphere is determined by the electric con-
duction currents, occurs. In the third case, due to the
increase in the electrical conductivity of the atmo-
sphere, two spherical regions appear: with the Cou-
lomb approximation in the lower region and conduc-
tion currents in the upper one.

(2) The penetration of the ground layer by iono-
spheric nonstationary electric fields significantly
depends on the oscillation frequency of the electric
field potential that arises at the ionosphere level. In the
case of high-frequency oscillations, the amplitude of
the vertical component of the electric field strength
near the Earth’s surface is less than 1% of the value
corresponding to the quasi-stationary value of the
electric field strength (100 V/m). For low-frequency
oscillations of the ionosphere potential, this quantity
amounts to 20–30% of the quasi-stationary electric
field at a given value of the ionosphere potential

 kV.

APPENDIX A
The solution of Eq. (3) under boundary conditions (4)

is sought in the following form:

(A.1)
Substituting (A.1) into (3), we obtain the equation for
determining the function 

(A.2)

Assuming that spatial variations at the lower boundary
of the ionosphere are determined by spherical har-
monics, we represent the solution of Eq. (6) as an
expansion in spherical harmonics  (Jackson,
1965)
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and obtain the following equation for determining
components of the function  entering into
expansion (7)

(A.4)
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For the solution of Eq. (A.4), let us first consider
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reduced to the equation
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The solution of Eq. (A.5) is written in the following
form:
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 (A.11)

For the spatial component of the electric field poten-
tial in the atmosphere, we obtain

(A.12)

In the case where the expression under the integral sign
does not depend on angles, we obtain instead of (A.12)
the expression

(A.13)

This expression coincides with that obtained in
(Morozov, 2005).

For the electric field strength near the Earth’s sur-
face, we obtain the expression
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Let us now turn to the case where the sphericity of the
Earth’s surface can be neglected. In this case, we have
the equation
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For , making a change of variables  we

obtain the following solution:

 (A.20)

The hypergeometric function  is defined
by the expression

(A.21)

APPENDIX B

To consider the transition of solution (A.19) from
the region u < 1 to the region u > 1, we use the formula
(Bateman and Erdélyi, 1984)
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Solution (A.19) can be written in the following
form:

 (B.2)

Using (B.1) and (B.2), we obtain a solution in the
region  

(B.3)

The relation between the constants C1, ij and C2, ij is
found using the first boundary condition (A.17). It has
the following form:
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Hypergeometric functions entering into (B.3) are cal-
culated with approximate expressions for these func-
tions for k/α  1 (Kamke, 1971):

 (B.5)
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