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1. INTRODUCTION

An important problem of ionospheric data analysis
is to control the state of the ionosphere, to reveal and
interpret the anomalies arising during ionospheric dis�
turbances (Afraimovich and Perevalova, 2006; Lipe�
rovskaya et al., 2006; Deminov, 2008; Mandrikova
et al., 2013a). Ionospheric anomalies may be caused
by increased solar activity; in seismically active areas,
they can also be observed in periods of increased seis�
mic activity (Afraimovich and Perevalova, 2006;
Liperovskaya et al., 2006; Mandrikova et al., 2013a).
The structure of the ionosphere is variable and non�
uniform, and its study is based on the analysis of vari�
ations in recorded parameters of the medium. The
uncertainty of knowledge about the structure of
recorded parameters and the absence of a formal
model for their description make the given problem
very difficult. Despite the rapid development of tech�
nologies for monitoring near�Earth space and meth�
ods for data analysis, the potential for controlling and
forecasting the state of the ionosphere has still been
very limited (Afraimovich and Perevalova, 2006).

The complex structure of variations in ionospheric
parameters makes the traditional smoothing�based
methods inefficient for modeling and analysis; these
methods fail to study the fine features of data (Man�
drikova and Polozov, 2012; Mandrikova et al., 2013a),
which normally contain key information about the
processes under consideration. A popular method of
modeling and data analysis is the autoregressive inte�
grated moving average (ARIMA) (Box and Jenkins,
1974; Nikiforov, 1983; Marple, 1990). ARIMA models

make it possible to study the stable characteristics of
the data structure and build their prediction. The
practice has confirmed the power and flexibility of this
mechanism in solving many applied problems (Mar�
ple, 1990; Geppener and Mandrikova, 2003). How�
ever, ARIMA methods have limitations, both in the
possibility of their use for individual data structures
and the regularities revealed in this case (Geppener
and Mandrikova, 2003). The rapidly developing meth�
ods of wavelet transform (Donoho and Johnstone,
1998; Mallat, 2005), which couple the theory of data
approximation and filtering techniques, make it possi�
ble to largely cope with this problem (Geppener and
Mandrikova, 2003; Mandrikova and Polozov, 2012a;
Mandrikova et al., 2012; Mandrikova et al., 2013a).
Because of the great diversity of basis wavelet�func�
tions with compact supports, this mechanism enables
detailed study of the internal structure of complex
data. Fast algorithms of wavelet transform allow its
implementation in real time, which is very important
for solving problems of operational data analysis.

The method of modeling and analysis of iono�
spheric parameters proposed in this paper combines
the wavelet transform with ARIMA models. This
method is based on the construct of multiscale analysis
(fast wavelet transform (Mallat, 2005)), which repre�
sents the original time series as multiscale compo�
nents. The resulting components have a simpler struc�
ture compared with original data and are approxi�
mated by ARIMA methods. This approach was first
proposed for solving the problem of revealing anoma�
lies in subsoil radon data and proved to be efficient
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(Geppener and Mandrikova, 2003). The identification
of component models involves noise suppression and
the detection of stable characteristics of the data struc�
ture. This paper proposes to combine the resulting
multiscale component models into a common paramet�
ric construct describing the time course of data, allow�
ing one to build a forecast. Based on the estimation of
residual errors of the resulting forecast, we develop an
algorithm of anomaly detection.

The constructed multicomponent models of time
series of the critical frequency of the ionosphere foF2
(data recorded by the Institute of Space Physics
Research and Radiowave Propagation, Far East Divi�
sion, Russian Academy of Sciences) and the total
electron content (TEC) obtained from data of double�
frequency ground�based GPS receivers (Afraimovich
and Perevalova, 2006) over Kamchatka and Magadan
confirmed the efficiency of the proposed method and
made it possible to analyze the regular diurnal and sea�
sonal variations in the parameters. On the basis of esti�
mated deviations from the background level, we
revealed ionospheric anomalies from several dozen
minutes to several hours, resulting in periods of iono�
spheric disturbances. The analysis of anomalies indi�
cated that they occur in periods of increased solar
activity and during strong earthquakes in Kamchatka.

2. DESCRIPTION OF THE METHOD

2.1. Construction of the Model

Since the time series  has a structure that can
vary at random times, the most effective way to
describe it is to use approximation methods based on
the expansion of functions with respect to the basis of

the Lebesgue space 

where  is the expansion coefficients and  is

the basis of the space 
To construct models that adapt to the structure of

time series, we use nonlinear approximating schemes.
In this case, f is approximated by M vectors that
depend on its structure:

where I is the set of indices that depends on the struc�
ture of f.

Since the analyzed features are diverse in form and
have a local character and different scales, the most
appropriate for their representation is the wavelet�
space (Mallat, 2005):
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basis of the space , and  is the set of indices that
depends on the structure of f. The expansion coeffi�
cients  are regarded as the result of mapping of
f into the space of scale j.

Without a loss of generality, the basis of the space of
recorded discrete data can be taken to be the closed

space  =  :  of scale j = 0

generated by the scaling�function  (Mallat,
2005). Then, based on multiscale expansions (of fast
wavelet�transform) up to level m, we can represent the
data in the form proposed in (Mandrikova and Polozova,
2012a; Mandrikova et al., 2013a):
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(3) We conduct diagnostic tests for the resulting
component models (Box and Jenkins, 1974). If these
tests confirm that the model is adequate to data, we
assume that the model of the component is ready for
use and that this component describes the stable char�
acteristics of the data structure in line with the theory
of ARIMA methods.

(4) Using relationship (1), we combine the models
of identified components into a common parametric
construct (the remaining components of the series of
relationship (1) are assumed to be noisy). Let us obtain
a parametric multicomponent model describing the time
course of data:

(2)

where  =  –  is

the estimated value of the µth component,  are the
autoregressive parameters of the µth component,

 =   =   =  µ = 

is the order of the difference of the µth component,

 is the order of the autoregressive model of the µth

component,  is the order of the model,  are the
parameters of the moving average of the model of the

µth component,  are the residual errors of the
model of the µth component, M is the number of
modeled components describing the stable character�

istics of the data structure,  is the length of the µth

component,  is the scaling�function,  =

 µ =  is the wavelet�basis of the µth compo�
nent, and j is the scale.

Remark. Relationship (2) is true for any scale j.
Therefore, the proposed model can be identified with�
out restoring the components to the original scale j = 0
(see operation 1) (Mandrikova et al., 2013). Thus, based
on a changed expansion level (see relationship (1)), dif�
ferent models of form (2) can be obtained for descri�
bing a time series. By minimizing the residual errors of
the resulting models, one can chose the best multicom�
ponent time�series model. The resulting estimate can
also be improved by using different wavelet�functions.
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The residual errors of the µth component of the
model of scale j are determined as the difference
between predicted and actual data values at the time

The resulting model (2) describes the regular
changes in approximated data. If there is an anomaly
in data, their structure is changed, and the absolute
values of residual errors increase. Therefore, the proce�
dure for separating anomalies can be built on estimated
residual errors of resulting component models
obtained in the operation of forecasting.

The detection of anomalies in the component with
number µ of scale j is done by checking the condition

(3)

where  is the length of the observation window on
the scale j, and  is some preset threshold value indi�
cating the presence of anomalies of scale j in the data.

3. MODELING RESULTS 
AND DATA ANALYSIS

This study used hourly data on the critical fre�
quency foF2 and two�hour TEC data for regions of
Kamchatka and Magadan. The foF2 data contain
gaps, which significantly complicates the process of
modeling and analysis. To reduce the error in the
results obtained, time periods with the smallest num�
ber of gaps were chosen. Since the ionospheric process
has a seasonal character, the data were arranged with
respect to seasons and modeled separately. Below, we
give a detailed description of the modeling stages of
data on the critical frequency for winter and summer
seasons.
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functions proposed in (Mandrikova and Polozov,
2012b), we specify Daubechies family basis functions
for the expansions. Using a changed level of decompo�
sition (see relationship (1)) and different wavelet�
functions to describe the time course of foF2, different
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series of foF2 and their approximating components of
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:t k q= +

µ µ µ

+ + += −predicted actual, , , , ,( ) ( ) ( ).j k q j k q j k qa t s t s t

( )( )
2

,

1

1 ,
j

j j

U

U j k q A
j k

D a t T
U

µ

+

=

= >∑

jU

jAT



596

GEOMAGNETISM AND AERONOMY  Vol. 54  No. 5  2014

MANDRIKOVA et al.

(for the winter and summer seasons) having the fol�

lowing form in the wavelet space (Fig. 1):

(4)

where the component  = 
describes the trend of the series, the components

 =  , describe different�

scale units, and  is the noise component.

For each of the restored components  =

 (the scale of the component before
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from transform (4), we identified second�order inte�
grated autoregressive models. The table shows evalua�
tion parameters of the models of these components,
obtained for data of different time periods. Due to the
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corresponding components, we specified a common
model for the time course of foF2 for the winter and
summer seasons:
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  are the residual errors of the model of

the µth component;  =   = 

   are the residual errors in the
model of the µth component; N is the length of the

series;  is the scaling�function; and 
and µ = 2, 3, is the wavelet�basis of the µth compo�
nent.

Figure 2 shows the results of modeling and fore�
casting of foF2 data at Paratunka station using the
resulting model (5) (for the period of analysis from
Feb. 12, 2011 to Feb. 25, 2011). Analysis of Fig. 2 con�
firms the efficiency of the proposed method and shows
that the resulting model can predict ionospheric param�
eters with a step of up to five hours. Certain times points
are characterized by increased prediction errors
(Figs. 2h–2j). To analyze the prediction errors, the
model results were compared with geomagnetic data
(for the Н�component of the geomagnetic field),
which were used to estimate the intensity of geomag�
netic disturbances in the given time periods (the inten�
sity of geomagnetic disturbances was estimated by the
method proposed in (Mandrikova et al., 2013b)). The
analysis results presented in Fig. 3 show that an
increase i prediction errors indicating the occurrence
of anomalies in the ionosphere was observed on the
eve of the major earthquake in Kamchatka (Feb. 20,
2011; energy class of Е = 14.1; the time of anomaly is
shown in Fig. 3 by the dashed line). The periods of
increased geomagnetic activity are also characterized
by an increase in prediction errors. The statistical
analysis of foF2 data for different years showed a sub�
stantial dependence of the intensity and frequency of
anomalies in the ionosphere on the levels of solar (Fig. 4)
and geomagnetic activities, which is consistent with
the results of (Afraimovich and Perevalova, 2006). In a
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period of high solar activity, the background level of
errors increases, while during increased geomagnetic
activity, the deviation from the background level signif�
icantly increases, which points to the occurrence of
anomalies.

The results of modeling of TEC data confirmed the
relation of anomalies arising in the ionosphere with
seismic events. Figure 5 shows as an example the
results of a combined analysis of data on the critical
frequency and TEC data. The anomalies in iono�

0
Feb. 28Feb. 10 Feb. 12 Feb. 14 Feb. 16 Feb. 18 Feb. 20 Feb. 22 Feb. 24 Feb. 26

2
4
0

1
2

–1.5

1.5
0

0

10

5

0

10

5

0

10

5

0

10

5

0

10

5

0

10

5

0

10

5

Feb. 20 (E = 14.1)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 2. Modeled and predicted data of foF2: (a) forecast of the component  with a step of q = 1; (b) forecast of the sum of

components  and  with a step of q = 1; (c) forecast of the sum of components , , and  with a step of q = 1;

(d), (e), (f), and (g) forecasts of the sum of components , , and  with steps of , respectively. The arrow indi�
cates a seismic event.

1
0 ( )f t

1
0 ( )f t 3

0( )g t 1
0 ( )f t 3

0( )g t 2
0( )g t

1
0 ( )f t 3

0( )g t 2
0( )g t 2,5q =

Parameters of component models

Time period
first 

parameter
second 

parameter
first 

parameter
second 

parameter
first 

parameter
second 

parameter

27.06.2005–10.07.2005 (Kamchatka) 1.013 –0.291 0.828 –0.339 0.443 –0.572

16.01.2006–04.02.2006 (Kamchatka) 1.012 –0.278 0.829 –0.344 0.371 –0.622

09.02.2011–27.02.2011 (Kamchatka) 1.009 –0.266 0.805 –0.355 0.437 –0.473

16.01.2006–04.02.2006 (Magadan) 1.009 –0.267 0.821 –0.348 0.366 –0.624

General model parameters (for summer 
and winter seasons)

1.01 –0.27 0.81 –0.35 0.35 –0.65

1
0 ( )f t 3

0( )g t 2
0( )g t



598

GEOMAGNETISM AND AERONOMY  Vol. 54  No. 5  2014

MANDRIKOVA et al.

spheric parameters were identified by checking condi�
tion (3) in a moving time window of 3 h for critical fre�
quency data and 6 h for TEC data. On the eve of the
series of seismic events (July 05, 2005, July 06, 2005,
July 07, 2005, and July 10, 2005), there was a local
increase in the prediction error in parameters of the
critical frequency (Juny 30, 2005, the time of the
anomaly was shown in Fig. 5 by the dashed line). At
the time of the strongest earthquake (July 07, 2005;
energy class of E = 13), the parameters of the critical
frequency and TEC data are characterized by an aris�
ing large�scale anomaly of several days in length
(shown in Fig. 5 by the dash�dotted line).

4. CONCLUSIONS

Using the proposed method of modeling and anal�
ysis of ionospheric parameters on the basis of a combi�
nation of wavelet�transform with ARIMA models, we
approximate of the natural course of the critical fre�
quency and TEC over Kamchatka and Magadan. Sta�
tistically, we have demonstrated that this method is
efficient and can be used for studying regular changes
in ionospheric parameters and predicting them with a
step of up to five hours.

Based on estimated residual errors of the resulting
models, we have revealed ionospheric anomalies with
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a duration of several dozen minutes to several hours
that arise in periods of ionospheric disturbances. The
observed changes in ionospheric parameters have dif�
ferent scales and arise before and at the times of strong
earthquakes in Kamchatka.

Analysis of the parameter variations in periods with
different solar activity and comparison of model
results with geomagnetic data showed that the inten�
sity and frequency of anomalies in the ionosphere
depends on the level of solar and magnetic activities.
High magnetic activity is characterized by a significant
increase in the deviation from the background level,
which points to the occurrence of anomalies. High
solar activity is characterized by an increase in the
background level of errors and the frequency of anom�
alies.
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