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Abstract—The granitic basement rocks of central and western India, which are overlain by the Deccan Traps,
are important for understanding early Earth processes and crustal evolution. The Alirajpur region presents a
unique opportunity to study the complete sequence of basement granites, overlain by the marine Turonian
Bagh beds. These granitic basement rocks are mainly composed of orthoclase, quartz, plagioclase, and biotite
as rock-forming minerals. Abundant zoned zircons are hosted within biotite and hornblende. The whole rock
geochemistry is calc-alkaline with a prevalence of potassium over sodium. The Alirajpur granitoids exhibit
low REE with positive Eu anomaly exhibiting typical lower crust signatures. A detailed petrological-geo-
chemical comparison of the granitic basement rocks from the Koyna and Alirajpur basement, separated by
~500 km, indicates that they are genetically related and provide important clues about the extent of the Pre-
cambrian basement underlying the ~500000 km2 of Deccan Traps.
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INTRODUCTION
Basement rocks, particularly those of Precambrian

origin, play a critical role in understanding early Earth
processes and crustal evolution (Yan et al., 2010). How-
ever, the Precambrian granites of central and western
India, which are entirely covered by the ~65 Ma Dec-
can Traps (Schoene et al., 2015; U-Pb of basalts),
remain poorly characterized due to a lack of exposed
outcrops (Weber et al., 2003; Shuaibu et al., 2015). In
most parts of the Deccan Igneous Province (DIP), the
subtrappean basement has been typically inaccessible,
generating interest in better understanding the age and
composition of the basement. The understanding of
the basement rocks at DIP has been largely from indi-
rect sources such as: (i) scattered occurrences of
crustal/mantle xenoliths (Dessai et al., 2004; Ranjini
Ray et al., 2008); (ii) drill cores at a few localities,
mainly along the peripheral parts of the DVP and
(iii) geophysical data (e.g., Sain et al., 2002; Praveen
Kumar and Mohan, 2014; Rao et al., 2015; Desh-
pande and Mohan, 2016). Recently, samples obtained
from a scientific drilling expedition under the Deccan
traps at the Koyna-Warna region reported the major
and trace element geochemistry and Zircon U-Pb age
and Hf-isotope of these granitic basement rocks
(Bhaskar Rao et al., 2017; Shukla et al., 2022). Alira-

jpur (Fig. 1a) lies in the northern extremity of Deccan
traps where the lithology is quite distinct with a thin
cover of the Deccan basalts. This region is unique in
that it records a complete sequence of basement gran-
ites, overlain by the marine Turonian Bagh beds,
which are considered to be infratrappean to the over-
lying Deccan Traps.

A previous study on the granitic basement rocks
from Koyna (Shukla et al., 2022) reported fractionated
REE patterns with enriched light REE and depleted
heavy REE. Further, the Koyna granitoids display a
geochemical pattern with close proximity to the penin-
sular gneisses (PGC) of the Dharwar supergroup and
may be considered as it’s continuation. In close prox-
imity to the Alirajpur region, Banerjee et al. (2022a)
have reported detailed geochronology of the area where
the authors report 2544 ± 82 Ma for the coarse-grained
granitoid comprising majorly of Quartz, K-feldspar,
Plagioclase and Biotite. Such age suites bring out a need
for cross-examinations regarding the existence of older
rock sequences in and around the Alirajpur region
which has demonstrated very prominent exposures of
granitioids and granitic basement.

This study attempts to understand the geochemical
characteristics of Alirajpur granitoids (Fig. 1b) and
aims to compare the geochemical affinity of the Alira-
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Fig. 1. (a) India map with locations of Alirajpur, Godhra and Koyna marked with red circles and the green patch showing the
spatial distribution of Deccan basalts. (b) Geological map of Alirajpur modified from Banerjee et al. (2022a) showing locations
of studied samples (red circles).
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jpur granitoids with both Koyna and Dharwar granit-
oids. The study also explores the possibility of the
northern extent of the Dharwar granitoids which is
engulfed by the large extent of Deccan volcanism
extending all the way to Alirajpur.

GEOLOGICAL SETTING OF ALIRAJPUR 
GRANITES AND KOYNA BASEMENT

The Alirajpur basement rocks (Fig. 2) are exposed
in the Panwad-Kawant corridor of the Chhota Udai-
pur Alkaline Complex and exposed in small hillocks
on the roadside. The basement rocks are exposed at
lower elevation as compared to the granites. The Alira-
jpur rocks are lacking any kind of structural deformity
as compared to the Godhra litho-units where multiple
deformation events have been recorded (Banerjee
et al., 2022b). The granites are fresh with prominent
presence of biotite laths and feldspars which charac-
teristically give the buff red color to these rocks. The
basement gneisses are overlain by granits, however, a
strict boundary is not observed in the field.

The Alirajpur rocks lie very close (30–40 km) to
the Precambrian crystalline rocks of the Godhra-
Chhota Udaipur sector (Fig. 1b) which are divided
into four lithogenic units (Geological Survey of India,
1968): (a) a group of blastoporphyritic granitoids with
varying degrees of deformation (massive, foliated, and
mylonitic), collectively known as the Godhra granite;
(b) mesoscale outcrops of anatectic quartzo-felds-
pathic gneisses that have been intruded by the granite
body and contains biotite hornblende; (c) the Cham-
paner Group, which consists of amphibolites, meta-
arenites, deformed intraformational conglomerates,
mica schists, calc-schists, greenschist/epidote-amphi-
bolite facies, quartzites, and micaceous quartzites; and
(d) the Lunavada group consisting of quartzite, phyl-
lite, schist, and minor carbonates metamorphosed at
greenschist facies conditions. In the Champaner
Group, the abundances of meta-carbonate and Mn-
rich horizons decrease, and mafic-ultramafic rocks
increase from south to north. The Upper Cretaceous
Deccan volcanics, the infra-trappean Lameta Forma-
tion, and the inter-trappean Bagh beds partially
obstruct the southern lithogenic units.

The Koyna region, which is geochemically similar
to the Alirajpur granites, is located in the western part
of the Deccan Volcanic Province (DVP) in Maharash-
tra, India (Fig. 1a). The rocks primarily consist of sev-
eral basaltic lava f lows that constitute the main surface
lithology of the region (Geological Survey of India,
1968). The region is dissected by several prominent
lineaments, e.g., the West Coast lineament, the Koyna
lineament, Chiplun lineament, Warna lineament, etc.
(Talwani, 1997). Geographically, the DVP is bound by
the Bastar, Aravalli–Bundelkhand, and Dharwar Cra-
tons in the east, north, and south, respectively. The
basement rocks explored in the Koyna region, as well
as in the other parts of the DVP (e.g., south of Son–
Narmada–Tapti lineament zone), are mainly granite
gneiss/granitoids. Further, preliminary petrological
characteristics and age estimates suggest that these
basement sections are equivalent to the Archaean Pen-
insular gneisses and Closepet granites of the Peninsu-
lar Indian Shield (Gupta et al., 2003; Bhaskar Rao et al.,
2017 and Misra et al., 2017).
GEOCHEMISTRY INTERNATIONAL  2024
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Fig. 2. Rocks samples from Alirajpur. Granitoids (a–d). Biotite rich granite (d). Alirajpur basement gneiss (e) and pink granite (f).
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ANALYTICAL TECHNIQUES

Megascopically fresh samples were collected from
in and around the Alirajpur city stationed at Alirajpur
district of Madhya Pradesh, India. These samples
(~5 kg each) were first crushed to a coarse size and
GEOCHEMISTRY INTERNATIONAL  2024
then coned and quartered. The thin sections were pre-

pared from the rock chips which were mounted on a

glass slide and then ground smooth using progressively

finer abrasive grit until ~30 μm thickness was achieved.

The sections were then polished and the interference
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colours of the minerals were compared to the Michel-
Lévy interference colour chart. The thin sections are
studied under LEICA DM 2700 P microscope. The
minerals were identified by their optical properties and
composition of heavy minerals are determined in Zeiss
ULTRA Plus High-resolution field emission scanning
electron microscopy (HR-FESEM) with EDS at
Central Instrumentation Facility at IISER Bhopal.

Approximately 5 g of rock chips were powdered for
major and trace element analyses. To avoid metal con-
tamination, the materials were crushed in plastic
sheets, and 50 g of hand-picked chips were powdered
using an alumina ball mill (SPEX) at IISER Bhopal.
Fusion glass beads were made by heating a combina-
tion of powdered materials to f lux in a 1 : 10 ratio. The
flux was made up of pure-grade lithium tetraborate
(66.67%), lithium metaborate (32.83%), and lithium
iodide (0.50%). X-ray Fluorescence analysis was done
at in-house PANalytical Epsilon 4 spectrometer under
vacuum at the Central Instrumentation Facility,
IISER Bhopal. The source of X-rays was a ceramic
side window X-ray tube, for maximum stability along
with a 15 W, 50 kV Ag anode. Calibration was prepared
using eight international rock standards from the
United States Geological Survey (USGS). BHVO-2
and BCR-2 were analyzed as control standards along
with the samples to determine the accuracy and preci-
sion of analyses. The uncertainties associated with
most of the major oxides are <2%, except 2.5 to
3.5% for K2O and TiO2, and 5% for Na2O. The major
element data has been reported in Table 1.

For trace element analyses 25 mg aliquots of the
powdered samples were dissolved in 15 mL screw-cap
Teflon vials from Savillex, USA, using a mixture of
concentrated HF and HNO3 in the proportion of 2 : 3
following standard digestion protocol from Ghatak
et al. (2013). The final solution was a 4000 times dilute
solution in 2 wt % nitric acid (v/v) with a 10 ppb inter-
nal standard of In, Cs, Re, and Bi. Laboratory blanks
were also made parallelly to check of blank correc-
tions. The USGS rock standards BIR-1a (Reykjavik
Iceland Basalt), BCR-2 (Columbia River Basalt),
BHVO-2 (Hawaiian Basalt), RGM-2 (Rhyolite, Glass
Mountain) and AGV-2 (Guano-valley Andesite) were
analyzed as standards for calibration whereas, AGV-2
and BCR-2 are analyzed as control standards and sam-
ple CH-1 was used to test the repeatability for the exper-
iment. For all elements, internal precision (wt % RSD)
based on three repeat observations is better than 5%.
Based on multiple analyses of AGV-2 and BCR-2, the
external consistency for most elements is better than 5%.
The USGS standards and laboratory blanks were pro-
cessed in a similar manner to the rock samples. Ele-
ment concentrations were measured using a Thermo
Scientific iCAP-Q quadrupole inductively coupled
plasma mass spectrometer (ICPMS) at the in-house
facility at IISER Bhopal. Trace element data are
reported in Table 2.
RESULTS
Petrography

There are several texturally and compositionally
distinct subtypes of Alirajpur granites: (a) white-gray,
very coarse-grained granite; (b) pinkish-gray,
medium-grained granite; (c) fine- to medium-grained
biotite granite (Fig. 2). The Alirajpur granites exhibit
zonation in texture of minerals, color, and mineral
composition. However, the mineralogy is generally
uniform quartz, plagioclase (An1-11), K-feldspar,
biotite, muscovite, and opaques (Fig. 3a). The phe-
nocrysts and groundmass are made up of K-feldspars,
plagioclase, and quartz. Minor phases include zircon,
apatite, sphene, monazite, xenotime, opaques, and
thorite, the majority of which are biotite inclusions.
K-feldspar is found to be anhedral and typically shares
a close grain boundary with quartz grains accompa-
nied by biotite (Fig. 3b). The biotite-rich granites host
monazite within the biotite grains (Fig. 3c). In most of
the cases the zircons are being hosted by K-feldspar
(Figs. 3b, 3d, 3e). The majority of the phenocrysts are
up to 6 cm in length and made up of K-feldspar, which
includes microcline-perthites with zircons and biotite
(Fig. 3e). K-feldspars are typically cloudy or altered
(Figs. 3b, 3e).

Quartz grains ranging up to 2 cm in length, exhibit
recrystallization as anhedral isolated grains or aggre-
gates. Quartz intergrowths with K-feldspar and pla-
gioclase result in micrographic and/or granophyric
textures, accompanied by prominent myrmekites in
thin sections. Large phenocrysts of quartz often dis-
play wavy extinction, while intergrowths and smaller
grains show uniform extinction. Magnetite is the com-
mon opaque phase and contains ilmenite lamellae in
some instances. Magnetite (Fig. 3f) occurs as anhedral
crystals within or in close proximity to pyroxene.
Ilmenite crystals exhibit a range of shapes from pris-
matic to anhedral, with the majority of them inter-
grown with titanite and rutile (Fig. 3f). Apatite, the
most common accessory mineral, appears as inclu-
sions in biotite in various sizes, ranging from medium-
sized anhedral crystals to small hexagonal crystals.
Zircon grains are prismatic (Figs. 3b, 3e). Heavy min-
erals from Alirajpur granitoids and SEM images are
provided in the supplementary data (SM 1-3).

Geochemistry
Major and trace element concentrations of the Alira-

jpur granites are reported in Tables 1 and 2 respectively
and plotted in Figs. 4–15. Chemical analyses of granitic
samples show that SiO2 varies from 58.22 to 70.61 wt %
(avg. 66.65 wt %) whereas, Al2O3 varies moderately from
7.65 to 14.84 wt % (avg. 11.75 wt %). The total alkali
content of these granitic rocks varies from 12.21 to
22.99 wt % (avg. 16.52 wt %). The Predominance of
K2O (avg. 6.6 wt %) over Na2O (avg. 2.06 wt %) is

observed. TiO2 (0.02–0.048 wt %),  (0.11–T
2 3Fe O
GEOCHEMISTRY INTERNATIONAL  2024
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Table 1. Major elements data for Alirajpur suite of rocks from XRF analysis (all concentrations in wt % oxide)

Rock type Basement gneiss Granites

Sample Name/Oxides BASE CH-01 CH-02 CH-03 CH-04 CH-05 CH-06

SiO2 59.1 58.2 70.6 70.6 69.7 69.1 69.3

Na2O 1.66 1.55 2.32 0.66 4.36 3.24 0.66

MgO 6.78 6.37 0.04 2.08 0.12 1.01 5.08

Al2O3 8.08 7.65 14.37 14.85 14.32 14.65 8.39

P2O5 0.12 0.2 0.05 0.13 0.01 0.04 0.04

K2O 7.07 7.89 9.56 3.68 7.58 5.29 5.16

CaO 13.1 13.6 0.4 7.9 3.4 5.5 11.3

TiO2 0.04 0.05 0.07 0.05 0.01 0.02 0.05

MnO 0.05 0.08 0.01 0.02 0.02 0.01 0.04

2.57 2.5 0.16 0.27 0.49 0.12 0.47

Total 98.6 98.1 98.9 100.2 99.9 97.5 100.5

K2O/Na2O 4.26 5.11 4.12 5.58 1.74 1.63 7.77

K2O/CaO 0.54 0.58 25.97 0.47 2.26 0.97 0.46

(Na2O + K2O)/CaO 0.67 0.7 32.27 0.55 3.56 1.57 0.51

Al2O3/(CaO + Na2O + K2O) 0.37 0.33 1.17 1.22 0.94 1.05 0.49

Al2O3/(Na2O + K2O) 0.92 0.81 1.21 3.42 1.2 1.72 1.44

Agpaitic index –4.46 –5.39 –4.27 3.52 –4.36 –0.78 –1.38

CIPW

Quartz 3.0 3.2 20.4 35.3 14.3 20.7 24.6

Anorthite – – 0.56 26.6 – 9.9 4.7

Albite 2.2 – 20.1 5.6 31.5 27.8 5.6

Orthoclase 42.4 42.6 57.9 21.7 44.8 31.6 30.3

Diopside 44.7 42.6 0.5 9.0 2.1 5.8 28.4

Hypenthene – – – 1.33 – – –

Wollastonite 3.7 5.8 0.2 – 5.9 4.1 6.1

Acmite 1.2 1.2 – – 0.2 – –

K2SiO3 – 1.37 – – – – –

Na2SiO3 2.5 2.8 – – 1.2 – –

Ilmenite 0.08 0.09 0.13 0.09 0.02 0.04 0.09

Magnetite – – 0.04 0.06 – 0.03 0.10

Apatite 0.28 0.46 0.12 0.30 0.02 0.09 0.09

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T
2 3Fe O
2.56 wt %), MgO (0.11–6.78 wt %), MnO (0.01–
0.08 wt %), and P2O5 (0.07–0.19 wt %) shows a con-
spicuous antipathetic relation with silica. The content of
CaO is low to moderate and has a wide range (0.36–
13.56 wt %) (avg. 7.85 wt %).
GEOCHEMISTRY INTERNATIONAL  2024
In the TAS plot (Middlemost, 1994; Fig. 4) as well
as in other relevant figures (Figs. 4, 8, 10–12) the Ali-
rajpur samples are also compared to Koyna, Dhar-
war, and Godhra Sector rocks. Chemically, the Ali-
rajpur granites varies from granodioritic-quartz
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Table 2. Trace elements data for the Alirajpur suite of rocks (all the concentrations in parts per million)

Eu/Eu* = (Eu)CN/[(Sm)CN × (Gd)CN]0.5, McLennan, (1989). Abbreviations: CN—Chondrite Normalised.

Rock Type Basement Gneiss Granites

Sample No. CH-01 BASE CH-02 CH-03 CH-04 CH-05 CH-06

Trace Elements
Sc 0.9 1.2 0.2 1.0 1.2 1.6 2.8
Ti 2.3 1.7 0.1 1.5 0.7 0.6 1.5
V 70 37 1 20 2 2 17
Cr 95.2 7.0 63.5 5.5 8.1 60.9 91.8
Co 2.6 1.9 0.6 1.9 0.9 0.7 2.0
Ni 43.1 9.8 29.1 17.1 6.0 27.5 41.0
Cu 2.5 0.4 2.9 0.1 1.1 9.3 2.8
Ga 1.4 1.2 20.4 1.3 16.7 11.8 3.8
Rb 1.0 1.8 666 1.0 17.9 140 8.7
Sr 116 149 38 105 330 98 68
Y 4.3 4.1 5.3 1.4 2.3 6.0 6.1
Zr 6.9 7.1 7.1 4.5 105.8 42.9 17.4
Nb 0.8 0.7 2.9 0.4 3.7 11.3 2.7
Ba 115 95 125 22 67 802 78
Hf 0.2 0.2 0.5 0.1 3.2 2.3 0.6
Ta 0.1 0.1 1.5 0.1 0.4 1.9 0.2
Pb 3.4 6.6 131 1.1 18 19 1.9
Th 0.5 1.2 2.7 0.9 2.5 19.6 3.3
U 1.7 5.6 2.6 2.4 1.0 3.2 0.7

Ratios
Rb/Sr 0.01 0.01 17.5 0.01 0.05 1.43 0.13
Rb/Ba 0.01 0.02 5.33 0.05 0.27 0.17 0.11
Sr/Ba 1.01 1.57 0.31 4.75 4.96 0.12 0.87
U/Th 3.28 4.64 0.98 2.59 0.41 0.16 0.22

REE
La 2.68 2.94 3.2 2.51 2.91 6.6 8.0
Ce 3.52 4.12 2.71 3.65 3.68 12.7 13.1
Pr 0.58 0.67 0.27 0.57 0.45 1.61 1.95
Nd 2.19 2.58 0.73 2.01 1.73 5.74 7.05
Sm 0.38 0.51 0.21 0.36 0.31 1.29 1.33
Eu 0.14 0.16 0.25 0.09 0.54 0.54 0.21
Gd 0.46 0.5 0.34 0.32 0.37 1.27 1.23
Tb 0.07 0.08 0.09 0.04 0.05 0.21 0.17
Dy 0.51 0.53 0.76 0.24 0.34 1.18 0.97
Er 0.3 0.31 0.57 0.12 0.25 0.74 0.6
Tm 0.05 0.04 0.11 0.02 0.05 0.11 0.09
Yb 0.27 0.27 0.84 0.11 0.37 0.89 0.56
Lu 0.04 0.04 0.13 0.02 0.07 0.14 0.1

Ratios
(Ce/Yb)CN 3.4 4.0 0.9 8.5 2.6 3.8 6.2
(La/Lu)CN 7.5 8.5 2.5 16.3 4.4 5.0 8.7
(La/Sm)CN 4.4 3.6 9.4 4.3 5.9 3.2 3.8

Eu/Eu* 1.0 1.0 2.8 0.8 4.9 1.3 0.5
(Gd/Lu)CN 1.5 1.7 0.3 2.4 0.7 1.2 1.6
(La/Yb)CN 6.7 7.3 2.6 15.1 5.4 5.0 9.7
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Fig. 3. Photomicrograph of Alirajpur granites depicting the close association of heavy minerals with the rock-forming minerals.
The Zircon is hosted by K-feldspar. Monazite is exclusively being hosted by Biotite. Abbreviations: Bt—Biotite, Cal—Calcite,
Di—Diopside, Ilm—Ilmenite Kfs—K-feldspar, Mag—Magnetite, Q—Quartz, Mnz—Monazite, Zrc—Zircon, Pyx—Pyroxene.
PPL—Plane polarized light, XPL—Cross Polarized light.
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monzonite field. The Harker variation plots SiO2 vs.

Al2O3, CaO, , MgO, and MnO wt % show an
overall decreasing trend that indicates progressive
evolution of a granitic magma (Figs. 5b–d, 5f, 5h),
which has calc-alkaline parentage with ferroan to

T
2 3Fe O
GEOCHEMISTRY INTERNATIONAL  2024
magnesian nature along with fractionation of pla-
gioclase and ferromagnesian (Fe–Mg) minerals. The
SiO2 versus P2O5  and TiO2 wt % plots (Figs. 5g, 5i)
show a negative correlation with increasing silica con-
tent, which indicates the formation of titanomagnetite
and apatite phases during crystallization, which are
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Fig. 4. Total Alkali–Silica classification of Middlemost (1994). The samples for Alirajpur, Koyna basement and Dharwars
(DIGIS Team, 2023, “GEOROC Compilation: Rock Types”, https://doi.org/10.25625/2JETOA, Goettingen Research
Online/Data, V1; Lehnert et al., 2000) are plotted to understand the range of compositional variation within the rock types.
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confirmed by the petrographic studies. SiO2 wt % ver-
sus Na2O wt % plot (Fig. 5a) show scatter indicating
mobility of Na2O during secondary processes. These
rocks when translated to QAPF diagram fall largely in
the silica oversaturated bracket of quartz rich granit-
oids (Fig. 6a). The composition of Alirajpur granitoids
ranges from granitic to monzograntic suite with a calc-
alkaline parentage (Figs. 6b, 7a and 7b). These rocks
evolved in a low-pressure environment where these
rocks evolved below 0.1 Gpa (Fig. 6c). K2O wt %
shows a positive correlation with SiO2 wt % with sho-
shonitic trends which is consistent with Archean gran-
itoids (Fig. 9a). Trace element data reflects\strong
variation in LILEs and moderately enriched HFSEs
(Arth, 1976). Rb/Sr, Rb/Ba, and Sr/Ba ratios are low
with an average value of 2.38, 0.74, and 1.82 respec-
tively. The overall distribution of trace elements shows
low to moderate abundance of V, Cr, Co, Y, and U.
Elements such as Cu, Ga, and Nb show low concen-
trations and Pb and Th have moderate concentrations.
All the samples have low to moderate concentrations
of REE (Fig. 11a) and are enriched in light rare earth
elements (LREE) relative to the heavy rare earth ele-
ments (HREE), as indicated by LREE/HREE ratio,
which ranges from 2.68 to 11.06 (average 6.75).

The primitive mantle normalized trace elements
pattern (Fig. 8b) of the basement granitic rocks of Ali-
rajpur, depicts that Th, U, and Sr are enriched,
whereas Nb, Nd, and Y are depleted in accordance
with the normal calc-alkaline continental arc granit-
oids (Brown, 1984). High Rb, Th, U, and low Zr and
Ti values are compatible with typical crustal melts
(Carr et al., 1986; Chappell and White, 1992) and sug-
gest crustal contamination during magmatic evolu-
tion. Negative Ba, Nb, and Ti anomalies are typical
characteristics of subduction-related magmas (Pearce,
1984). The Nb-Ta trough is typical for calc-alkaline
magmas formed above subduction zones and reveals an
arc signature in the evolution of magmas (Khalaji et al.,
2007; Arsalan and Aslan, 2006). The chondrite nor-
malized REE pattern for the basement granitic rocks
of Alirajpur shows enrichment in LREEs relative to
the HREEs. Strong fractionation of LREE from
HREEs is a distinct feature of the Archean gneissic
complex (Martin, 1994) as represented by moderate
ratios of (La/Lu)CN: 2.49–8.71, (La/Yb)CN: 2.59–15.1
GEOCHEMISTRY INTERNATIONAL  2024
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Fig. 5. Harker diagram for Alirajpur granitoids (Harker, 1909).
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and (Ce/Yb)CN: 0.85–6.14. This can be attributed to
the presence of zircon, ilmenorutile, and apatite as
accessory phases in felsic liquids causing the depletion
of HREE. Fractionation among the HREEs is weak
(Gd/Lu)CN: 0.31 to 1.66. Positive Eu anomaly is
related to Eu/Eu* ratio (Eu/Eu* = (Eu)CN/[(Sm)CN ×
(Gd)CN]1/2; McLennan, 1989): 0.49–4.86 and pla-
gioclase fractionation. The possible tectonic environ-
ment that prevailed at the time of the evolution of the
granitic rocks of Alirajpur were volcanic arc + syn-col-
lisional and post-orogenic (POG) settings (Fig. 10).
These granitic rocks were most likely derived from
mafic to tonalitic sources through continental arc mag-
matism in post-continental collision tectonic settings.

DISCUSSION
Low REE Granitic Basement with Lower Crust Signature

The use of REE in studying granites is more chal-
lenging compared to mafic igneous rocks as they occur
in the accessory minerals in felsic rocks and their
GEOCHEMISTRY INTERNATIONAL  2024
abundances are influenced by the complicated physi-
cal and chemical factors that define accessory mineral
assemblages (Guo et al., 2005). However, as previ-
ously stated, the REEs are useful in differentiating
between highly fractionated I- and S-type granites
(Figs. 11a–11d). They may also be able to distinguish
between I-type granites produced at various tempera-
tures (Chappell et al., 1998). The rare earth pattern in
Alirajpur granites exhibits low REEs with Eu positive
anomaly which is a characteristic lower crust signature
(Fig. 8a). This typically occurs due to accumulation of
igneous plagioclase during fractionation of a magma
in the lower crust (Rudnick, 1992). This pattern also
resembles the Dharwar granites and the granitic base-
ment reported from Dharwar sequences (Moyen et al.,
2001; Jayananda et al., 2008, 2018). It has been
noticed worldwide that the emplacement of younger
granites has significant REE contents as compared to
the older granites (Rino et al., 2008; Hu et al., 2020).
However, from petrographic and SEM studies it is
observed that there is the presence of Zircon, Monazite
and Xenotime which are potential hosts for REEs but
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Fig. 6. (a) QAPF (Silica Oversaturated) classification for Alirajpur granitoids (b) AFM diagram (Irvine and Baragar, 1971) and
(c) Q–Ab–Or for depiction of depth for Alirajpur granitoids(most samples falls within <0.1 Gpa) (Wyllie, 1983).
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it is not reflected in the whole rock chemistry since the
dominant phase in the granites is morphed by quartz
and feldspar which are low REE hosts. These granites
display no evidence of hydrothermal alteration that
could have influenced the REE pattern.

Koyna Basement Rocks and a Strong Geochemical 
Affinity with the Alirajpur Granitoids

The data from scientific drilling down to 3 km
depth provide fresh perspectives into the petrographic
and geochemical details of a deep section of the crys-
talline basement underlying the Deccan Traps in west-
ern India’s Koyna region (Shukla et al., 2022). The
Koyna basement granitoids’ whole rock geochemical
analyses reveal a wide range of whole-rock chemistry.
Based on preliminary composition and age studies,
basement granitoids are possibly an extension of the
Dharwar Craton’s peninsular gneiss. The geochemis-
try of Alirajpur granitoids shows a strong correlation
with Koyna which has a close association with Dhar-
war. Further, the presence of Dharwar rocks as a
basement in the Chhota-Udaipur has been reported
by Gwalani et al. (1993) and points towards a possi-
bility of the Alirajpur granitoids rocks belonging to
the Dharwar system. However, extensive work done
by Banerjee et al. (2022a, b) gives a 934 ± 7 Ma and
1610 ± 9 Ma of monazite and zircon ages respectively
GEOCHEMISTRY INTERNATIONAL  2024
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Fig. 7. (a) Ab–An–Or ternary diagram after Barker (1976); (b) K–Na–Ca plot (trends from Baraker and Arth, 1976).
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Fig. 9. (a) SiO2 and K2O correlation diagram (Peccerillo and Taylor, 1976). (b) Characterization diagram for the Archean rock suites.
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with a strong correlation with the Godhra granites of
the Lunawada group. Geochronology of the Alirajpur
granites can shed further light on its genetic associa-
tion with Koyna and Dharwar, as opposed to the
Godhra granites.

Comparison of Alirajpur Granitoids 
with Dharwar Granitic Rock Suites

In order to better understand the geochemical
affinity of Alirajpur with the Dharwar granitic suites
few discrimination diagrams proved helpful to under-
stand the trends and mineral fractionations (Fig. 12).
A comprehensive geochemical evaluation was made
among the Dharwar granitic gneiss, Closepet granite
and Alirajpur granitoids to understand the variation
among the rock suites which are separated over 500 km
apart. It is noted that Alirajpur granitoids follow the
I-type trends in accordance with the Dharwar suites of
rocks (Figs. 12a, 12b). The mobile elements like P and
Rb proves to be a good indicator element to study such
trends since these elements are sensitive to secondary
processes and are key elements to discriminate
between I and S type granites (Chappell and White,
1992). Further, the trends defined in Sr versus Ba and
Sr versus Rb/Ba plots (Figs. 12c, 12d) suggest that
K-feldspar and plagioclase were being removed in
sequence from the melt leading to enrichment of feld-
spars in the Alirajpur granitoids.

However, the geochronological studies of Alirajpur
granitoid is still pending but from previous studies
(Banerjee et al., 2022a) the authors report series of
geochronological ages for the rock suites from adja-
cent area around Alirajpur. The upper intercept of
GEOCHEMISTRY INTERNATIONAL  2024
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Fig. 10. Discrimination diagram for granitoid characterization where all Alirajpur granitoids fall into Volcanic Arc granitoids.
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Table 3. The geological formations from the Archean to Neoproterozoic formation of the Indian subcontinent

Geological Formations Events (Time) References

Peninsular Gneissic 
Complex (PGC)

3000–3400 Ma Pichamuthu (1976); Rao et al. (1991a, b); 
Naha et al. (1993)

Dharwar Supergroup 2500–2700 Ma Patra et al. (2020); 
Jayananda et al. (2000, 2006, 2013)

Aravalli Supergroup 2500–3300 Ma Gopalan et al. (1990); Roy and Kröner (1996); 
Wiedenbeck and Goswami (1994); 

Wiedenbeck et al. (1996); Roy et al. (2001)

Godhra 965 ± 40 Ma (Whole Rock Sr) 
and 921–1657 Ma (U-Pb Zircon)

Gopalan et al. (1979) 
and Banerjee et al. (2022a)

Koyna 2710 ± 63 Ma and 2700 ± 49 Ma 
(U-Pb Zircon)

Bhaskar Rao et al. (2017), 
Shukla et al. (2022)

Alirajpur Geochemical signatures 
corroborate PGC and Dharwar rocks

This Study
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Fig. 11. Granitic classification diagram showing Alirajpur granitoid is exclusively I-type.
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U-Pb dating for quartzo-feldspathic gneiss is reported
to be 2485 ± 15 Ma whereas, for coarse grained gran-
ites it was found to be 2544 ± 82 Ma. As far as Koyna
basement rocks are concerned, these rocks yield con-
sistent U–Pb ages of 2710 ± 63 and 2700 ± 49 Ma
(Bhaskar Rao et al., 2017) equivalent to the Kushtagi
granitoids that occurs in the central part of the Neoar-
chean eastern Dharwar Craton (Mohan et al., 2013).
The age bracket reported for the peninsular gneisses
from various exposures of the Dharwar supergroup
ranges from 2500 to 3400 Ma (Taylor et al., 1984;
Pichamuthu and Srinivasan, 1984; Rao et al., 1991a, b).
While comparing the upper intercepts of the quartzo-
feldspathic gneiss and coarse-grained granites (Baner-
jee et al., 2022a) it comes under the close age ranges of
the lower intercepts of the Neoarchean peninsular
gniesses from Dharwar supergroup. In congruence to
such close age brackets, we presume that the age of the
Alirajpur granitoids may fall within the same age
suites. A geological correlation has been made with all
the Precambrian formations of the Indian subconti-
nent and its comparison with Alirajpur granitoids to
bring forth a greater understanding of the geochemical
similarities (Table 3, Fig. 13).

In summary, this study attempts to compare the
rock suites from Neoarchean Era and bring out infer-
ences regarding the geochemical fit between these
rock types. Since, the Alirajpur granitoid share a
close geochemical affinity with the Dharwar granitic
suites, in this regard we assume a possibility of close
genetic relationship of Alirajpur granitoids with the
Koyna basement rocks which is reported to be the
continuation of the Peninsular gneissic complex
(Shukla et al., 2022). In this regard, such geochemi-
cal fit of the Alirajpur granitoids with the Koyna
basement rocks and the Dharwar granitic suites with
dissimilar REE pattern with Godhra granites
(Figs. 11c, 11d) can be protracted with the similar age
brackets as that of Peninsular gneissic complex of the
Dharwar supergroup.
GEOCHEMISTRY INTERNATIONAL  2024



GEOCHEMISTRY OF ALIRAJPUR GRANITOIDS 15

Fig. 12. Geochemical affinity of Alirajpur granitoids with Dharwar granitic suites: (a) SiO2 vs. P2O5 (wt %) showing I-type trend.
(b) Rb (ppm) vs. Th (ppm) showing positive correlation indicating I-type trend from all rock types. Binary relation between Ba vs
Sr (c) and Sr vs. Rb/Ba (d) showing that fractional crystallization of K-feldspar and plagioclase played a significant role during
the formation of the Alirajpur granitoids. The arrow mark indicates the Rayleigh fractionation vectors. The dataset for Dharwar
is compiled from DIGIS Team, 2024, “GEOROC Compilation: Rock Types,” https://doi.org/10.25625/2JETOA, Goettingen
Research Online/Data, V1; Lehnert et al. (2000).
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Present Status and Perspective of Alirajpur Granitoids

The Alirajpur granitoids in this study comprise of
shallow carapace granitoids and the basement granit-
oids which have a very clear demarcation when
observed in the field. The age constraints as mani-
fested by Banerjee et al. (2022a) gives a demonstration
of early Neoproterozoic orogenic welding where the
authors have clearly mentioned the Late Neoarchean
granitoids are unlikely to represent the basement for
the younger Late Paleoproterozoic gneisses because
the Neoarchean granitoids would be unable to escape
the ubiquitous 1.65–1.60 Ga metamorphism-anatexis
at T ≥ 750°C (Banerjee et al., 2022b). Given the wide
range of ages of the granitoids, the term “Godhra
granite” was coined by Gopalan et al. (1979) and sub-
sequently used by later workers for the sector’s felsic
intrusives (Shivkumar et al., 1993; Srimal and Das,
1998; Goyal et al., 2001). However, this study has
made a detail comparison of the Alirajpur granites
GEOCHEMISTRY INTERNATIONAL  2024
with the Koyna basement granitoids and Dharwar
granitoids and show the genetic similarity of these two
groups. This raises the question of the extension of the
Dharwar Group further the north beyond the Central
India Suture Zone (CITZ). The Chhota Udaipur alka-
line complex which is stationed adjacent to the
Godhra-Chhota Udaipur sector have reported the pres-
ence of Precambrian gneiss and schists as the basement
(Gwalani et al., 1993). In this regard, the notion of the
presence of older granitoids as the basement cannot be
ruled out. A strong correlation in this study brings a
necessity to constrain the age of Alirajpur granitoids to
make it allocate the exact age suite.

CONCLUSIONS

The geological and geochemical characterization
of Alirajpur basement granitic rocks was carried out in
this study. Field and petrographic observations reveal
a close relation with the basement rocks of Koyna.
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Fig. 13. The aerial rock distribution from Alirajpur region. The figure demonstrates the location of Alirajpur, Godhra, Koyna and
Dharwar along with Peninsular gneissic complex from central to southern region of Indian subcontinent. Source: Geological Sur-
vey of India, 2024. Bhukosh. Geological Survey of India. https://bhukosh.gsi.gov.in/Bhukosh/Public (accessed April 20, 2024).
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These granitoids are composed primarily of feldspar,
quartz, biotite, and minor plagioclase which are
medium to coarse-grained holocrystalline and hypid-
iomorphic. As an accessory constituent, opaque min-
erals (magnetite and ilmenite), zircon, apatite, and
xenotime grains are present. Geochemical studies of
granitic rocks show that the sub-alkaline granitic
magma evolved progressively during its extrusion from
calc-alkaline parentage. These granitic rocks have
magnesian to ferroan, calcic to calc-alkalic, and meta-
aluminous to peraluminous parentage. The trace and
REEs concentration show that the magmatic differen-
tiation process was active during the evolution of these
rocks. HREE depletion versus LREEs indicates incor-
poration in fractionating accessory phases such as zir-
con, apatite, and xenotime. Overall, the petrology,
mineralogy, and geochemistry of the Alirajpur granit-
oids' granites are comparable to I-type granites, which
exhibit characteristics of typical volcanic arc granites
related to the active continental margin. The close
geochemical proximity with the Koyna granitic base-
ment indicates correlation of these rocks with the
Dharwar granitoids which raises the question of the
extent of Dharwar suites of rocks below the Deccan in
the northern part of the subcontinent. In this regard,
geochronological studies are necessary to understand
the genesis of these rocks with proper correlation to
other granitic rocks of the subcontinent.
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