Major, Volatile, Ore, and Trace Elements in Magmatic Melts in the Earth's Dominant Geodynamic Environments. I. Mean Concentrations

V. B. Naumov^{*a*}, *, V. A. Dorofeeva^{*a*}, and A. V. Girnis^{*b*}, **

 ^a Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of Sciences, Moscow, 119991 Russia
 ^b Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, Moscow, 109017 Russia
 *e-mail: naumov@geokhi.ru

***e-mail: girnis@igem.ru* Received January 25, 2023; revised May 31, 2023; accepted June 26, 2023

Abstract—Data from our original database, which includes more than 2600000 analyses for 75 elements of mineral-hosted melt inclusions and quench glasses in volcanic rocks, are generalized to calculate the mean concentrations of major, volatile, ore, and trace elements in magmatic melts from the following dominant geodynamic environments: (I) spreading zones of oceanic plates (mid-oceanic ridges), (II) environments affected by mantle plumes in oceanic plates (oceanic islands and lava plateaus), (III, IV) environments related to subduction processes (III is zones of arc magmatism on the oceanic crust, and IV is zones of magmatism in active continental margins in which magma-generating processes involve the continental crust), (V) environments of continental rifts and areas with continental hotspots, and (VI) environments of backarc spreading. A histogram of SiO_2 distribution in natural magmatic melts shows a bimodal distribution: one of the maxima falls onto SiO₂ concentrations of 50-52 wt % and the other onto 72-76 wt %. The most widely spread melts contain $62-\tilde{66}$ wt % SiO₂. Mean temperatures and pressures are calculated for each of the environments. The normalized multielemental patterns presented for environments I through VI show the ratios of the mean concentrations of elements in magmatic melts of mafic, intermediate, and felsic composition to the concentrations in the primitive mantle. Mean ratios of incompatible, trace, and volatile components (H₂O/Ce, K₂O/Cl, Nb/U, Ba/Rb, Ce/Pb, etc.) are evaluated for the melts of each of the environments. The variations in these ratios are calculated, and it is demonstrated that the ratios of incompatible elements are mostly statistically significantly different in the different environments. The differences are particularly significant between the ratios of the most differently incompatible elements (e.g., Nb/Yb) and some ratios involving volatile components (e.g., K_2O/H_2O).

Keywords: melt inclusions, volatile components, ore and trace elements, geodynamic environments **DOI:** 10.1134/S0016702923120042

We were the first to publish in 2004 a review of mean concentrations of major components and volatile and trace elements in magmatic melts in the Earth's dominant geodynamic environments based on our database, which had been composed starting from 1994 in the system Paradox for Windows. Data in the database are analyses of glass in naturally quenched and experimentally homogenized melt inclusions in minerals and quench glasses in volcanic rocks (Naumov et al., 2004). The total number of analyses in the database was then almost 14000, and the database comprised 190 500 determinations of 60 elements. Our next review included 33000 analyses for 73 elements and was published in 2010 (Naumov et al., 2010). The number of measurements in the database amounted to 480000. The further intensification of such studies is well illustrated by data in Table 1.

The total number of the publications was 1936, and the overall number of the objects was 145000, which were analyzed for 75 elements. Nowadays the database comprises more than 2600000 measurements: 1312000 analyses for major components, 225000 analyses for volatiles (H₂O, Cl, F, S, and CO₂), 640000 analyses for ore and trace elements, 415500 analyses for REE, and the database additionally contains 24500 measurements of homogenization temperatures and >7700 measurements of pressures in natural magmatic melts.

Acute interest of many researchers in mineralhosted inclusions is explained by that these inclusions

 Table 1. Number of publications on mineral-hosted melt

 inclusions and quench glasses in rocks included in our data

 base during various periods of time

Period of time	Number of publications	%	Number of analyses	%
1970-1979	26	1.3	318	0.2
1980-1989	115	6.0	1749	1.2
1990-1999	366	18.9	9113	6.3
2000-2009	603	31.1	27593	19.0
2010-2022	814	42.7	106413	73.3
1970-2022	1936	100.0	145 186	100.0

provide likely the most straightforward and reliable means of estimating the composition and physicochemical parameters of natural magmatic melts. These studies were even more activated after quantitative analytical methods of high spatial resolution were invented: electron, ion, and proton probes; Raman spectroscopy; laser ablation—inductively coupled plasma—mass spectrometry, local IR spectroscopy, etc. Some lately published papers present data even on the isotopic composition of some elements in individual melt inclusions (e.g., Eiler et al., 2007; Bouvier et al., 2008; Le Voyer et al., 2008; Harlou et al., 2009; Layne et al., 2009; Wittenbrink et al., 2009; Anderson et al., 2021; Hartley et al., 2021; Li et al., 2021; Kawaguchi et al., 2022).

Our work was centered on analysis of similarities and differences between the behaviors of elements in natural magmatic systems and factors that control the most general features of the geochemistry of rocks in the Earth's dominant geodynamic environments. This analysis was carried out based on evaluation of the mean concentrations of elements in corresponding melts of mafic, intermediate, and felsic composition.

CHARACTERISTICS OF THE EARTH'S DOMINANT GEODYNAMIC ENVIRONMENTS

Herein we distinguish the following geodynamic environments that differ from one another in the parameters of generation and evolution of magmatic melts: (I) spreading environments of oceanic plates (mid-oceanic ridges), (II) environments in which effects of mantle plumes are discernible (on oceanic islands and lava plateaus), (III and IV) environments related to subduction processes (III is environments of arc magmatism, and IV is zones of magmatism on active continental margins in which continental crust is involved in the magma-generating processes), (V) environments of continental rifts and continental hotspots, and (VI) environments of backarc spreading.

Figure 1 presents a histogram of the distribution of SiO_2 concentrations in mineral-hosted homogeneous melt inclusions and in quenched glasses in volcanic rocks from all of the aforementioned geodynamic environments.

The distribution is obviously bimodal, with one of the maxima occurring at $SiO_2 = 50-52$ wt % and the other at 72–74 wt %. The falls on um SiO_2 concentra-

 25000^{n} 20000^{-1} 15000^{-1} 10000^{-1} 500^{-1} 500^{-1} 500

Fig. 1. Histogram showing the distribution of SiO_2 concentrations in magmatic melts from all of the Earth's principal geodynamic environments: data on mineral-hosted inclusions and quench glasses (*n* is the number of determinations).

tions of 62–64 wt %. We have previously mentioned the bimodal character of naturally occurring magmatic melts, with this conclusion based on 3465 analyses (Naumov et al., 2004), and later confirmed this based on 33000 analyses (Naumov et al., 2010). It seems to be reasonable to conclude that the further amassing of the analytical data will not any significantly modify this conclusion.

The histograms shown in Fig. 2 demonstrate how SiO_2 concentrations are distributed between magmatic melts in the various geodynamic environments (I–VI).

Melts in environment I (mid-oceanic ridges) are mostly of mafic composition. Environment II (oceanic islands) is also dominated by mafic melts, and ultramafic ones are quantitative strongly subordinate. Similar distribution types are characteristic of environments III and IV (island arcs and active continental margins). Intraplate continental environments (V) are characterized by a trimodal SiO₂ distribution. The magmatic melts show broad variations in SiO₂ concentration from 40 to 80 wt %. Data on backarc basins (environment VI) are still relatively sparse (2150 determinations), but they still show the dominance of mafic melts. In general and with regard to this distribution of the SiO₂ concentrations (Figs. 1 and 2), the mean concentrations of major components and volatile, trace, and rare-earth elements were calculated for three types of magmatic melts: mafic and ultramafic ones $(SiO_2 = 40-54 \text{ wt }\%)$, intermediate and low-SiO₂ felsic melts (SiO₂ = 54–66 wt %), and felsic ones $(SiO_2 > 66 \text{ wt } \%)$.

For each of the melt types, mean concentrations were calculated separately for each of the geodynamic environments (see above). Our earlier publications (Naumov et al., 2004, 2010, 2016, 2022) demonstrated that it is more reasonable to calculate geometric (but not arithmetic) mean concentrations, because the distributions of many elements are closer to lognormal ones. Lognormal distributions of trace elements and, hence, more adequate usage of geometric means have also been stressed by other researchers (Gale et al., 2013). Geometric mean concentrations were calculated at 95% confidence level. Determinations that did not meet this criterion were rejected, and the mean values were recalculated. The calculated mean concentrations of major oxides and volatile and trace elements are summarized in Tables 2-5.

How much the mean concentrations of elements have changed when new data were added and the number of the determinations has been significantly increased compared to the earlier ones? To estimate these changes, we compared data on mafic melts from all of the geodynamic environments published in (Naumov et al., 2010) with data on melts from the same environments in Table 2. The difference for major elements was 6.8 rel. %, that for volatile elements (H₂O, Cl, F, S, and CO₂) was 19.2 rel. %, that for nine trace elements (Li, V, Rb, Sr, Y, Zr, Ba, Th, and U) was 10.7 rel. % and that for REE was 9.4 rel. %.

Figures 3 and 4 show primitive mantle-normalized multielemental patterns for the mean concentrations of elements (Tables 2–4) in magmatic melts from geodynamic environments I–VI.

No such analysis of the distribution of trace elements in melts of different composition from different geodynamic environments extend beyond the scope of this paper. Many related issues have been discussed in papers on the analysis of data on some of these environments (e.g., Kovalenko et al., 2006, 2007, 2009). Herein we would only like to stress some issues commonly emerging when the whole data set on mineralhosted inclusions and glasses in rocks is analyzed.

(1) The mean compositions of mineral-hosted inclusions and glasses in rocks confirm the presence of characteristic geochemical fingerprints of mafic, intermediate, and felsic melts in each of the environments. First of all, this is the fan-shaped configuration of the normalized patterns of trace elements in mafic and intermediate melts. The greatest differences were found between the melts of environments I and V.

(2) The normalized trace-element patterns of intermediate and mafic melts are generally similar and differ from those of felsic rocks. This may indicate that the sources of intermediate and mafic melts were similar in each environment. It is also reasonable to hypothesize that the leading mechanism generating intermediate melts is the differentiation of mafic (mantle) magmas, whereas the sources and generation mechanisms of felsic magmas were different (derivation from crustal rocks).

(3) A remarkable feature of the patterns, first of all, those of mafic melts, is the very narrow range of the concentrations of the least incompatible elements in the right-hand parts of the patterns (from Tb through Lu). This uniformity indicates that the mantle sources and generation parameters of the magmas were generally similar, because the concentrations and ratios of HREE and other mildly incompatible elements most strongly depend on the generation parameters of the melts, in contrast to those of the most incompatible elements, whose concentrations in mantle sources significantly vary when even small melt and fluid portions are transferred (mantle metasomatism). It should be kept in mind that the relative concentrations of the least incompatible elements are least significantly affected by processes of crustal contamination, changes in the source compositions under the effect of fluid- and melt-assisted material transfer, etc. The small differences in these parts of the patterns are the most illustrative in this context. These components are most significantly enriched in the melts of mid-oceanic ridges, a fact that may indicate that the degrees of melting were the lowest, and the magma generation depths were the shallowest, in this environment.

Fig. 2. Histograms showing the distribution of SiO_2 concentrations in natural magmatic melts from all of the Earth's geodynamic environments (I–IV): data on mineral-hosted homogeneous inclusions and quench glasses (*n* is the number of determinations). Environments: (I) mid-oceanic ridges, (II) oceanic islands, (III) island arcs, (IV) active continental margins, (V) continental rifts and hotspot areas, (VI) backarc basins.

$\sin O_c = 40 - 54 \text{ wf } \%$) in the do		
afic and mafic magmatic melts ()	e in volcanic rocke	o III VUICAIIIC IUUN
e and trace elements in ultrams	o, and auco cicinonia in annana M inclusions and anench alasse	neepig iiniinnh niip eiinieninii fi
ior components and volatile or	-VII): data on mineral-hosted m	VI J. Uata UII IIIIIU al-IIUSICU III
2 Mean concentrations of ma	- III curcum concompany of the	goodynannuc chynonnuchus (1
Tahle	inent.	IIIaIII

inant geodynan	nic envir	.(IV-I) SINENCO	nata OII I									
Component	и	Ι	и	Π	и	III	и	IV	и	Λ	и	ΛI
SiO ₂ , wt %	17556	50.39	19701	49.79	8148	50.70	5278	50.04	10458	48.66	1464	50.35
		+1.02/-1.00		+1.98/-1.91		+3.05/-2.88		+2.89/-2.74		+3.26/-3.06		+1.83/-1.77
TiO ₂ , wt %	14740	1.21	17363	2.13	7828	1.00	5167	1.20	10010	1.58	1254	1.06
		+0.48/-0.34		+0.99/-0.67		+0.64/-0.39		+0.56/-0.38		+1.15/-0.67		+0.51/-0.35
Al_2O_3 , wt %	14509	15.61	17371	13.86	7772	15.45	5175	16.70	10059	14.45	1249	15.64
		+1.51/-1.37		+1.57/-1.41		+2.45/-2.11		+2.38/-2.08		+4.53/-3.45		+2.01/-1.78
FeO, wt %	14590	9.22	17447	11.22	7832	9.47	5177	9.24	10042	9.90	1249	8.63
		+1.59/-1.36		+2.19/-1.83		+2.66/-2.08		+2.76/-2.13		+3.74/-2.72		+2.50/-1.94
MnO, wt %	12632	0.16	15791	0.18	7367	0.17	5019	0.16	9439	0.16	1123	0.16
		+0.05/-0.04		+0.06/-0.05		+0.10/-0.06		+0.09/-0.06		+0.12/-0.07		+0.06/-0.05
MgO, wt %	12965	8.02	17634	7.10	7953	6.15	5168	5.90	10024	6.22	1317	7.12
		+1.50/-1.26		+2.57/-1.89		+3.57/-2.26		+2.94/-1.96		+5.25/-2.84		+2.29/-1.73
CaO, wt %	14535	11.80	17365	11.15	7800	10.34	5171	9.78	10059	10.10	1249	11.56
		+1.19/-1.08		+1.84/-1.58		+2.92/-2.28		$+2.30/{-1.86}$		+4.54/-3.13		+1.71/-1.49
Na_2O , wt %	14589	2.57	17355	2.39	7771	2.53	5170	3.15	10069	2.81	1249	2.62
		+0.63/-0.50		+0.62/-0.49		+1.06/-0.75		+1.09/-0.81		+2.16/-1.22		+0.67/-0.53
K_2O , wt %	15185	0.13	17305	0.48	7854	0.74	5170	0.89	10092	1.22	1310	0.55
		+0.19/-0.08		+0.61/-0.27		+0.91/-0.41		+0.73/-0.40		+2.34/-0.80		+0.94/-0.35
P_2O_5 , wt %	13288	0.13	16310	0.27	6823	0,17	4917	0.30	9011	0.46	1147	0.18
		+0.16/-0.07		+0.30/-0.14		+0.28/-0.11		+0.37/-0.16		+0.67/-0.27		+0.15/-0.08
H_2O , wt %	3927	0.25	6127	0.43	2716	1.87	1887	1.82	1993	1.12	458	0.76
		+0.27/-0.13		+0.56/-0.24		+1.67/-0.88		+1.72/-0.88		+2.36/-0.76		+0.76/-0.38
Cl, ppm	5752	90	8446	200	5396	830	4178	730	4659	1220	519	630
		+250/-70		+410/-130		+810/-410		+830/-390		+3810/-920		+1420/-430
F, ppm	2625	170	4694	440	1936	370	1245	680	2221	1400	220	160
		+160/-80		+630/-260		+570/-220		+650/-330		$+3940/{-1030}$		+160/-80
S, ppm	5721	1070	10558	750	4713	006	4026	1040	4656	960	380	066
		+390/-290		+1170/-460		+2450/-660		+1590/-630		+1840/-630		+570/-360
CO_2 , ppm	2908	210	5504	270	1103	250	1070	590	1234	066	184	180
		+260/-120		+910/-210		+1260/-210		+1550/-430		+2880/-740		+320/-110
Total		99.65		99.17		98.83		99.48		97.14		98.83
Li, ppm	3744	5.52	2722	4.41	1395	5.78	796	8.34	632	10.21	264	5.65
		+1.84/-1.38		$+3.00/{-1.78}$		+4.15/-2.41		+6.82/-3.75		+19.70/-6.72		+2.65/-1.80
Be, ppm	2815	0.52	676	0.87	555	0.61	94	0.68	325	2.43	242	0.58
		+0.31/-0.19		+0.72/-0.40		+0.34/-0.22		+0.70/-0.34		$+4.68/{-1.60}$		+0.46/-0.26
B, ppm	1270	1.30	1907	1.28	1019	12.80	464	6.79	420	10.50	22	5.29
		+1.30/-0.45		+1.41/-0.67		+9.47/-5.44		+13.17/-4.48		+32.13/-8.03		+9.63/-3.41
Sc, ppm	5343	38.87	2991	31.33	828	37.14	796	30.56	828	30.48	280	40.41

MAJOR, VOLATILE, ORE, AND TRACE ELEMENTS IN MAGMATIC MELTS

1257

Table 2. (Contd	(·)											
Component	и	I	и	II	и	III	и	IV	и	>	и	Ν
V mun	5057	+6.05/-5.24	3753	+9.89/-7.52	1064	+12.51/-9.36	974	+12.32/-8.78	808	+16.42/-10.67	414	+7.15/-6.07
mdd (1000	+73/-58	0	+102/-76		+103/-76		+77/-59	0/0	+163/-102	-	+95/-71
Cr, ppm	5486	278	3459	311	1248	120	495	80	1294	384	597	301
		+186/-111		+427/-180		+522/-98		+158/-53		+1287/-296		+646/-205
Co, ppm	3852	43.4	1733	42.9	555	33.8	445	35.2	372	42.8	301	40.4
		+5.2/-4.6		+12.5/-9.7		+11.5/-8.6		+19.9/-12.7		$+34.7/{-19.2}$		$+14.0/{-10.4}$
Ni, ppm	4387	97.3	2685	107	827	41.0	492	35.9	1041	233	301	90.9
		+55.2/-35.2		+118/-56		+86.0/-27.8		+87.6/-25.4		+706/-175		+78.4/-42.1
Cu, ppm	4380	75.6	2023	93.5	743	92.1	432	125	464	124	382	100.3
ľ		+20.8/-16.3	1	+60.8/-36.8		+66.6/-38.7		+185/-29		+297/-87		+64.4/-39.2
Zn, ppm	4078	86.8	1745	108.9	683	81.5	313	106.9	332	108.5	267	88.5
	7540	+28.7/-21.5	1050	+48.3/-33.5	070	+29.1/-21.5	771	+39.8/-29.0	157	+59.3/-38.3	171	+35.2/-25.2
ua, ppm	8400	+3 0/ 2 5	701	21.2 +53/_17	700	C.01 7 2 2 4 / 2 5	140	23.4 +5 0/4 5	/01	20.3 +71/_53	101	$\frac{10.3}{10.1}$
Ge. ppm	1183	1.54	272	1.67	59	1.68	I		23	1.76	31	1.77
		+0.11/-0.11		+0.34/-0.29		+0.27/-0.23		I		+0.94/-0.61		+0.12/-0.12
As, ppm	974	0.18	207	0.58	314	1.12	Ι	Ι	20	1.41	40	024
		+0.13/-0.07		+0.53/-0.27		+1.70/-0.67		I		+1.82/-0.80		+0.17/-0.10
Se, ppb	783	310	118	230	41	202	I	I	I	I	39	368
		+119/-86		+191/-104		+148/-85		I		I		+107/-83
Br, ppb	98	0.42	Ι	I	I	Ι	Ι	Ι	20	6.56	94	1.04
		+0.91/-0.29		I		I		I		+16.60/-4.70		+3.61/-0.80
Rb, ppm	5749	1.55	5144	8.42	1266	7.69	1176	13.3	1413	29.5	579	3.00
		+2.76/-0.99		+12.10/-4.96		+14.58/-5.03		+25.7/-8.7		+86.6/-22.0		+6.40/-2.04
Sr, ppm	6859	123	6469	260	1845	297	1375	488	2190	552	585	176
V man	0273	+63.7/-42.0	2003	+288/-137	10.46	+369/-164	1277	+342/-201	1007	+838/-333	963	+115/-70
т, ррин	0/+0	+10.1/-7.4	1770	+10.2/-7.2	1740	+9.1/-6.1	1701	+9.3/-6.3	1761	+12.6/-8.4	010	+12.9/-8.4
Zr, ppm	6548	85.9	6317	132	1914	57.2	1388	90.1	2099	178	569	68.8
		+62.8/-36.3		+145/-69		+64.0/-30.2		+67.3/-38.5		+204/-95		+55.3/-30.6
Nb, ppm	6370	2.83	6697	11.54	1969	1.30	1324	4.29	1996	26.76	616	1.36
		$+4.90/{-1.80}$		+19.00/-7.18		+1.73/-0.74		+7.72/-2.76		$+69.80/{-19.34}$		+2.19/-0.84
Mo, ppm	1994	0.56	791	0.95	308	0.46	158	0.58	106	2.31	154	0.39
		+0.36/-0.22		+0.66/-0.39		+0.59/-0.26		+0.43/-0.25		+2.23/-1.13		+0.42/-0.20
Ru, ppb	69	0.054	Ι	I	I	I	I	I	Ι	Ι	Ι	I
		+0.11/-0.036		I		I		I		I		Ι
Pd, ppb	89	0.51	Ι	I		I	1	I	Ι	I	Ι	Ι
		+1.14/0.35						I		I		I

1258

NAUMOV et al.

	Table 2. (Contd.	<u> </u>											
GE	Component	и	Ι	и	II	и	III	и	IV	и	>	и	VI
OCI	Ag, ppb	1060	23.3	108	55.0	75	28.6	125	51.2	Ι	1	40	37.6
HE			+7.6/-5.7		+38.3/-22.5		+12.7/-8.8		+53.1/-26.1		I		+10.3/-8.1
MI	Cd, ppb	1794	126	599	132.1	92	482	I	I	I	I	40	138
ST			+58/-40		+74.7/-47.7		+1340/-355		I		I		+24/-21
RY	In, ppb	1392	77.3	565	99.1	23	72.8		I	23	96.7	42	74.7
IN			+18.8/-15.1		+34.3/-25.5		+15.6/-12.9		I		$+23.9/{-19.2}$		+22.4/-17.2
TE	Sn, ppm	2150	1.00	937	1.63	69	0.63	30	1.48	37	2.67	81	0.92
RI			0.53/-0.35		+0.82/-0.54		+0.61/-0.31		+13.8/-1.34		$+5.89/{-1.84}$		+0.90/-0.46
NA	Sb, ppm	1368	0.03	580	0.05	124	0.06	20	.	I	. 1	36	0.02
TIC			+0.05/-0.02		+0.03/-0.02		+0.11/-0.04		Ι		Ι		+0.01/-0.01
)N.	Te, ppm	75	0.003	I	I	I	Ι	I	Ι	I	Ι	Ι	Ι
AL			+003/-0.001		I		Ι		Ι		Ι		Ι
	I, ppb	41	16.2	20	56.8	I	Ι	I	Ι	Ι	Ι	94	16.0
Vol			$+77.0/{-13.4}$		+43.5/-24.6		Ι		Ι		Ι		+80.1/-13.4
. 61	Cs, ppm	3494	0.03	1435	0.15	723	0.31	392	1.23	470	1.81	321	0.12
1			0.07/-0.02		+0.27/-0.10		+0.54/-0.19		+2.69/-0.84		+7.77/-1.47		+1.06/-0.11
N	Ba, ppm	6285	20.1	6658	83.7	2025	165	1392	288	2304	458	605	47.4
o. 1			+52.7/-14.5		+190.2/-58.1		+277/-103		+418/-170		+1676/-360		+107/-32.8
2	La, ppm	7175	3.75	6482	10.06	1980	4.82	1308	10.58	1972	30.21	560	4.32
20			+4.15/-1.97		+17.06/-6.33		+7.06/-2.86		+12.1/-5.64		+67.00/-20.82		+5.04/-2.32
023	Ce, ppm	7275	11.0	6563	25.6	1834	13.3	1310	24.8	1950	61.65	513	11.68
			+9.9/-5.2		+42.1/-15.9		+18.6/-7.8		+26.5/-12.8		+107.8/-39.22		+12.18/-5.96
	Pr, ppm	5093	1.60	4814	3.42	1084	1.52	976	3.30	839	5.55	379	1.65
			+0.94/-0.59		+3.06/-1.61		+1.82/-0.83		+2.65/-1.47		+6.73/-3.04		+1.16/-0.68
	Nd, ppm	7138	9.48	6255	17.6	1770	9.55	1229	15.0	1805	30.4	582	9.41
			+5.93/-3.65		+20.2/-9.4		+10.05/-4.90		+11.9/-6.6		$+34.9/{-16.3}$		+5.64/-5.53
	Sm, ppm	7312	3.15	6156	4.74	1769	2.39	1197	3.68	1814	6.85	600	2.86
			+1.52/-1.03		+3.64/-2.06		+1.82/-1.03		+2.39/-1.45		+5.99/-3.20		+1.37/-0.93
	Eu, ppm	6716	1.12	5718	1.40	1672	0.98	1166	1.18	1612	1.75	542	1.03
			+0.38/-0.28		+0.80/-0.51		+0.72/-0.42		+0.46/-0.33		+1.28/-0.74		+0.41/-0.29
	Gd, ppm	6183	4.13	5294	5.18	1395	3.00	1136	3.77	1624	6.07	506	3.68
			+1.59/-1.15		+3.05/-1.92		+2.14/-1.25		+1.93/-1.28		+4.88/-2.70		+1.81/-1.21
	Tb, ppm	4125	0.75	4403	0.86	953	0.50	472	0.66	686	0.92	365	0.73
			+0.24/-0.18		+0.30/-0.22		+0.37/-0.21		+0.29/-0.20		+0.50/-0.33		+0.27/-0.20
	Dy, ppm	6573	4.74	5998	4.82	1578	3.18	1139	3.57	1663	5.15	506	4.41
			+1.73/-1.27		+2.15/-1.49		+1.63/-1.08		+1.66/-1.13		+2.67/-1.76		+2.00/-1.38
	Ho, ppm	4913	1.02	4513	0.97	991	0.68	487	0.85	671	1.00	360	0.96
	Ľ		+0.32-0.24		+0.32/-0.24		+0.39/-0.25	500	+0.25/-0.19	1001	+0.50/-0.33	11	+0.40/-0.28
	Er, ppm	0/00	2.43	740/	2.40	1040	1.04	C/ NT	2.01	1001	10.7	014	60.7

MAJOR, VOLATILE, ORE, AND TRACE ELEMENTS IN MAGMATIC MELTS

1259

	Commonset	3	-	;	11	2	111	5	11/	2	11	2	1/1
	Component	u	Γ	u	П	u	111	u	1 V	u	>	и	11
			+1.02 - 0.76		+0.99/-0.71		+1.09/-0.68		+0.82/-0.58		+1.17/-0.81		+1.28/-0.87
	Tm, ppm	3917	0.42	4125	0.34	881	0.27	367	0.31	576	0.34	341	0.40
			0.14/-0.10		+0.13/-0.10		+0.17/-0.10		+0.15/-0.10		+0.17/-0.11		+0.20/-0.13
	Yb, ppm	6840	2.81	6161	2.11	1695	1.80	1200	1.82	1751	2.04	594	2.44
			+1.04/-0.76		+0.84/-0.60		+0.93/-0.61		+0.81/-0.56		+0.92/-0.63		+1.36/-0.87
	Lu, ppm	5783	0.43	4713	0.31	1082	0.28	529	0.30	901	0.29	433	0.40
			+0.14/-0.11		+0.13/-0.09		+0.19/-0.11		+0.17/-0.11		+0.16/-0.10		+0.19/-0.13
	Hf, ppm	5555	2.26	4236	3.26	1376	1.32	945	2.13	1161	4.20	477	1.49
			+1.12/-0.75		+2.09/-1.28		+0.97/-0.56		+1.11/-0.73		+3.10/-1.78		+0.92/-0.57
	Ta, ppm	4900	0.31	3248	1.00	864	0.09	827	0.34	846	1.47	437	0.11
			+0.48/-0.19		+1.25/-0.56		+0.20/-0.06		+0.54/-0.21		+2.01/-0.85		+0.21/-0.07
	W, ppm	2197	0.05	998	0.21	210	0.12	138	0.22	39	0.90	92	0.06
			+0.14/-0.04		+0.18/-0.10		+0.24/-0.08		+0.23/-0.11		+1.11/-0.49		+0.06/-0.03
	Re, ppb	730	0.89	41	0.85	30	1.32	I	I	I	I	126	1.03
			+1.07/-0.48		+0.40/-0.27		+0.68/-0.45		Ι		Ι		+0.71/-0.42
GF	Os, ppb	56	0,005	I	Ι	I	Ι	Ι	Ι	I	Ι	Ι	Ι
00			+0.007/-0.003		Ι		I		Ι		Ι		Ι
сн	Ir, ppb	87	0.022	Ι	Ι	I	I	Ι	Ι	21	5.20	Ι	Ι
EM			+0.042/-0.015		Ι		I		Ι		+14.09/-3.80		Ι
115	Pt, ppb	272	0.67	32	4.30	I	I	61	26.3	I	I	24	2.75
TR			+2.10/-0.51		+3.87/-2.04		Ι		+57.8/-18.1		Ι		+2.39/-1.28
ΥT	Au, ppb	267	1.52	I	I	50	2.33	I	Ι	47	143	33	3.48
NT			+8.57/-1.29		Ι		+1.75/-1.00		Ι		+250/-91		+2.34/-1.40
ER	Tl, ppb	1876	12.7	729	28.1	89	44.1	I	Ι	21	73.5	56	52.2
N/			+11.7/-6.1		+22.6/-12.5		+38.5/-20.6		Ι		+154/-49.7		+118.8/-36.2
ATI	Pb, ppm	5190	0.58	3716	1.04	1314	1.79	1155	3.94	858	3.33	504	0.96
ON			+0.37/-0.22		+1.08/-0.53		+2.04/-0.95		$+4.00/{-1.98}$		+5.78/-2.11		+1.29/-0.55
JAI	Bi, ppm	1335	0.007	402	0.016	69	0.018	I	I	I	I	34	0.013
			+0.005/-0.003		+0.011/-0.006		+0.016/-0.009		Ι		Ι		+.0.005/0.004
V	Th, ppm	5798	0.34	3849	1.15	1637	0.60	1176	1.16	1208	2.61	523	0.49
01			+0.63/-0.22		+2.02/-0.73		+0.82/-0.35		+1.10/-0.57		+5.78/-1.80		+0.85/-0.31
61	U, ppm	5670	0.09	3981	0.42	1392	0.28	1083	0.67	1035	1.03	463	0.15
			+0.15/-0.06		+0.58/-0.24		+0.43/-0.17		+0.66/-0.33		+2.43/-0.72		+0.29/-0.10
No	T, °C	2517	1240	3427	1200	1679	1175	1955	1190	4301	1220	34	1190
o. 1			+46/-45		+84/-79		+93/-86		+70/-66		+85/-79		+65/-62
2	P, bar	1172	800	1994	710	588	1540	430	1740	582	1890	Ι	Ι
2			+1820/-560		+2430/-550		+3170/-1030		+3510/-1160		+4050/-1290		Ι
023	In Tables $2-5$, n	is the nui	mber of determinati	ons. Con	centrations of elen	ients we	re calculated as geo	metric	means for 95% co	nfidence	; level, numerals ber	neath m	ean concentrations
	מו ה וווה מהי זמווהיוי	(/ hum unu	A IIIIII of Loop very design of the second s	y, w	CONDUCTION TIDATION								

Table 2. (Contd.)

NAUMOV et al.

Table 3. Mean concentrations of major components and volatile, ore, and trace elements in intermediate magmatic melts (SiO₂ = 54-66 wt %) in the dominant geodynamic environments (II–VI): data on mineral-hosted melt inclusions and quench glasses in volcanic rocks

Component	п	II	п	III	п	IV	п	V	п	VI
SiO ₂ , wt %	1844	61.04	11357	60.10	2731	58.67	6228	58.96	422	57.68
-		+3.79/-3.57		+4.35/-4.05		+5.23/-4.80		+2.83/-2.70		+4.23/-3.94
TiO ₂ , wt %	1830	0.90	11239	0.99	2683	0.92	6149	0.55	392	0.85
-		+0.79/-0.42		+0.72/-0.42		+0.70/-0.40		+0.35/-0.21		+0.41/-0.27
Al ₂ O ₃ , wt %	1825	16.76	11213	15.20	2716	15.93	6202	18.19	393	15.41
		+3.06/-2.59		+1.80/-1.61		+2.10/-1.86		+2.80/-2.43		+3.42/-2.80
FeO, wt %	1826	4.93	11216	6.98	2702	6.12	6190	3.41	393	7.69
		+4.41/-2.33		+3.61/-2.38		+4.44/-2.57		+1.81/-1.18		+4.52/-2.85
MnO, wt %	1704	0.19	10734	0.15	2553	0.12	5782	0.14	389	0.15
		+0.15/-0.08		+0.10/-0.06		+0.12/-0.06		+0.13/-0.07		+0.09/-0.06
MgO, wt %	1834	0.82	11303	2.01	2679	2.34	6143	0.73	407	2.21
		+1.31/-0.50		+1.67/-0.91		+2.72/-1.26		+0.96/-0.41		+1.99/-1.05
CaO, wt %	1821	1.95	11299	5.44	2689	5.25	6184	2.44	393	6.44
		+2.59/-1.11		+2.74/-1.82		+4.18/-2.33		+1.85/-1.05		+2.40/-1.75
Na_2O , wt %	1822	6.04	11207	3.85	2713	3.89	6196	4.26	393	2.96
		+2.84/-1.93		+1.43/-1.04		+1.11/-0.86		+1.96/-1.34		+1.57/-1.03
K_2O , wt %	1826	3.45	11282	1.42	2712	1.65	6202	7.30	401	0.88
		+3.09/-1.63		+1.47/-0.72		+1.33/-0.74		+3.29/-2.27		+0.52/-0.33
P_2O_5 , wt %	1596	0.20	9867	0.27	2424	0.27	4997	0.14	332	0.21
		+0.59/-0.15		+0.37/-0.16		+0.26/-0.13		+0.40/-0.10		+0.18/-0.10
H_2O , wt %	354	1.45	1236	1.42	720	1.60	908	1.68	128	1.51
		+1.43/-0.72		+1.55/-0.74		+2.68/-1.00		+2.36/-0.98		+0.45/-0.35
Cl, ppm	987	1680	8096	980	1289	950	3151	4280	158	2080
		+1830/-880		+930/-480		+1290/-550		+7760/-2760		+1630/-910
F, ppm	714	1390	4392	480	311	920	1054	3000	95	390
~		+1790/-780		+990/-320		+3710/-740		+5180/-1900		+990/-280
S, ppm	511	300	7213	110	1047	300	1098	350	80	360
<u> </u>	124	+500/-190	402	+530/-90	170	+960/-230	200	+560/-210	20	+1610/-300
CO_2 , ppm	134	1/0	403	90	1/0	460	209	460	26	20
T (1		+810/-140		+320/-70		+1850/-370		+880/-300		+180/-20
	425	98.09	1220	98.00	411	97.04	1250	98.62	00	96.28
Li, ppm	425	18.02	1229	12.80	411	1/.02	1339	32.20	88	8.74
Re ppm	03	+12.30/-7.30	225	+10.39/-7.23	158	+13.33/-0.20	00	+23.74/-13.00	80	+3.77/-3.48
be, ppm	33	+0.99/_0.77	555	+0.51/-0.30	156	+0.79/-0.49	90	+1154/-431	80	+0.52/-0.32
B ppm	196	8 25	689	28.2	276	27.8	119	59 7	_	- 0.52
D, ppin	170	+5.57/-3.33	007	+30.2/-14.6	270	+57.9/-18.8	11)	+279.6/-49.2		_
Sc. ppm	420	7.36	1018	27.27	600	15.61	1405	4.69	95	30.98
~ -, FF		+6.58/-3.47		+15.46/-9.87		+9.83/-6.03		+2.76/-1.74		+12.27/-8.79
V, ppm	377	39.8	1251	192	590	154	1542	82.4	133	265
		+63.5/-24.5		+224/-103		+107/-63		+86.3/-42.1		+217/-119
Cr, ppm	117	19.3	941	40.6	472	44.7	210	94.7	136	16.0
		+258.6/-18.4		+387.4/-36.7		+131.3/-33.4		+1485.8/-89.0		+79.0/-13.3
Co, ppm	176	3.01	645	23.6	448	18.41	683	3.50	118	28.49
		+6.91/-2.10		+16.7/-9,8		+12.04/-7.28		+8.13/-2.45		+14.17/-9.46
Ni, ppm	82	34.5	813	17.8	458	26.8	176	81.6	115	11.9
		+565.0/-32.5		+57.7/-13.6		+47.0/-17.1		+1209/-76.4		+24.6/-8.0
Cu, ppm	83	25.0	860	99.2	406	84.6	117	30.7	159	85.8
_		+82.9/-19.2	_	+116.0/-53.5		+320.4/-67.0		+154.7/-25.6		+167.7/-56.8
Zn, ppm	146	146.5	783	81.2	264	83.3	171	113.0	128	99.7

 Table 3. (Contd.)

Component	п	II	n	III	n	IV	n	V	n	VI
		+85.2/-53.9		+27.6/-20.6		+49.0/-30.9		+70.7/-43.5		+45.6/-31.3
Ga, ppm	129	27.9	338	49.3	92	45.2	90	28.2	52	20.5
		+9.4/-7.0		+227.0/-40.5		+70.0/-27.4		+10.2/-7.5		+7.9/-5.7
Ge, ppm	42	1.92	54	1.72	_	, 	_	—	_	,
		+1.47/-0.83		+0.30/-0.25		_		_		—
As, ppm	_	_	659	2.77	_	_	_	_	34	1.83
		_		+4.28/-1.68		_		_		+1.24/-0.74
Se, ppb	_	_	36	324	_	_	_	_	-	_
		_		+1200/-255		_		_		_
Br, ppb	—	—	—	—	44	5.75	—	—	26	4.16
		—		—		+7.07/-3.17		—		+3.98/-2.03
Rb, ppm	469	84.2	1541	22.2	936	48.7	1651	313	218	14.3
		+105.4/-46.8		+73.7/-17.1		+124.4/-35.0		+140/-97		+11.5/-6.4
Sr, ppm	513	215	1637	229	939	479	1844	516	213	221
		+708/-165		+273/-125		+359/-205		+818/-316		+238/-115
Y, ppm	481	38.6	1465	23.7	913	19.4	1648	27.1	218	24.0
_		+26.5/-15.7		+22.1/-11.4		+14.4/-8.3		+14.6/-9.5		+20.9/-11.2
Zr, ppm	519	602	1503	104	957	138	1755	290	115	78.4
		+452/-258	1.1.60	+189/-67	0.16	+107/-60		+238/-131		+125.8/-48.3
Nb, ppm	527	120	1460	1.88	946	6.41	1650	45.7	235	1.46
м		+145/-66	1 1 2	+3.91/-1.27	110	+9.30/-3.79		+39.1/-21.1	24	+1.76/-0.80
Mo, ppm	66	3.4/	442	0.92	112	1.84	92	3.74	34	0.46
D-lh		+2.23/-1.36	21	+1.1//-0.52		+2.08/-0.98		+4.41/-2.03		+0.40/-0.21
Pa, ppo	_	_	21	1/.1	_	_	_	_	_	_
A a much		_	80	+3.3/-4.2	17	- 162		_		_
Ag, ppb	_	—	89	30.3 ⊥55.0/ 22.0	17	102 $\pm 2450/152$	_	—	_	—
Cd pph	26	103	00	+33.9/-22.0		+2430/-132		_		_
Cu, ppu	20	+166/80	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+038/278		—	_	—	_	—
In pph	26	147	_		_	_	_	_	21	93.1
m, ppo	20	+28/-24		_		_		_	21	+99.6/-48.1
Sn ppm	39	5 16	187	1 32	36	9.80	23	27.7	35	0 74
Sii, ppii	57	+1.28/-1.03	107	+0.73/-0.47	50	+502.0/-9.61	23	+3390/-2557	55	+0.62/-0.34
Sb. ppm	29	0.15	241	0.38	_	_	_	_	_	_
		+0.07/-0.05		+0.95/-0.27		_		_		_
I, ppb	_	_	_	_	_	_	_	_	26	104
		_		_		_		_		+240/-73
Cs, ppm	329	1.07	850	0.69	538	2.49	1523	15.56	154	0.64
		+1.16/-0.56		+0.90/-0.39		+5.01/-1.66		+15.91/-7.87		+0.98/-0.39
Ba, ppm	663	721	1666	371	968	739	1886	780	233	150
		+1113/-438		+1045/-274		+529/-308		+2853/-612		+205/-87
La, ppm	491	84.20	1442	6.00	823	17.20	1691	65.44	216	7.15
		+64.46/-36.32		+15.64/-4.33		+14.66/-7.91		+39.17/-24.50		+7.27/-3.61
Ce, ppm	480	163.88	1499	20.66	842	36.96	1705	126.1	215	16.85
		+87.32/-56.97		+50.44/-14.66		+33.62/-17.61		+78.3/-48.3		+15.52/-8.08
Pr, ppm	373	17.46	1229	1.86	299	3.88	1485	13.30	185	2.34
		+6.16/-4.55		+3.34/-1.20		+2.90/-1.66		+6.54/-4.38		+1.84/-1.03
Nd, ppm	479	60.16	1387	14.29	747	19.32	1616	47.72	217	11.70
		+21.45/-15.81		+27.13/-9.36		+11.55/-7.23		+22.94/-15.49		+10.41/-5.51
Sm, ppm	447	10.51	1395	2.80	682	4.23	1603	8.63	213	3.38
-		+5.42/-3.57	10.00	+3.42/-1.54	600	+2.20/-1.45		+3.89/-2.68	a c -	+2.73/-1.51
Eu, ppm	440	2.87	1360	1.13	689	1.11	1589	1.89	207	1.06

Table 3. (Contd.)

Component	n	II	п	III	п	IV	n	V	п	VI
		+2.13/-1.22		+0.85/-0.49		+0.38/-0.28		+0.84/-0.58		+0.65/-0.40
Gd, ppm	467	8.46	1309	3.89	661	3.81	1548	6.56	188	3.61
		+4.88/-3.09		+3.44/-1.83		+1.75/-1.20		+2.74/-1.93		+2.48/-1.47
Tb, ppm	358	1.18	891	0.59	248	0.69	1425	0.92	168	0.72
		+0.60/-0.40		+0.63/-0.30		+0.35/-0.23		+0.28/-0.21		+0.45/-0.28
Dy, ppm	473	7.34	1368	3.80	651	3.10	1558	4.99	181	4.16
		+4.48/-2.78		+2.86/-1.63		+1.72/-1.11		+2.09/-1.47		+3.24/-1.82
Ho, ppm	361	1.30	891	0.84	251	0.87	1456	0.97	155	0.91
		+0.53/-0.37		+0.68/-0.38		+0.41/-0.28		+0.37/-0.27		+0.54/-0.34
Er, ppm	441	3.90	1318	2.19	611	1.55	1528	2.61	185	2.55
		+2.62/-1.57		+1.48/-0.88		+0.91/-0.57		+1.19/-0.82		+1.86/-1.08
Tm, ppm	352	0.55	821	0.37	168	0.37	1266	0.40	123	0.57
		+0.31/-0.20		+0.36/-0.18		+0.22/-0.14		+0.19/-0.13		+0.50/-0.27
Yb, ppm	489	3.47	1539	2.48	708	1.52	1588	2.35	197	2.53
		+2.34/-1.40		+1.44/-0.91		+0.99/-0.60		+0.96/-0.68		+2.09/-1.15
Lu, ppm	416	0.57	1135	0.40	285	0.41	1412	0.38	184	0.49
		+0.38/-0.23		+0.32/-0.18		+0.34/-0.18		+0.20/-0.13		+0.40/-0.22
Hf, ppm	410	12.02	1113	1.63	354	3.40	1471	5.73	185	1.82
		+5.92/-3.97		+1.92/-0.88		+2.74/-1.52		+2.55/-1.76		+1.51/-0.82
Ta, ppm	381	8.71	1137	0.28	346	0.45	1532	2.01	151	0.09
		+6.89/-3.85		+0.78/-0.21		+0.54/-0.24		+1.72/-0.93		+0.11/-0.05
W, ppm	70	0.88	356	0.88	59	0.27	26	5.21	44	0.10
		+0.36/-0.26		+1.61/-0.57		+0.27/-0.14		+40.95/-4.62		+0.12/-0.05
Re, ppb	-	—	_	_	—	_	—	_	27	1.43
		—		_		—		—		+0.67/-0.46
Au, ppb	-	—	70	3.22	-	—	—	—	27	3.01
		—		+3.44/-1.66		—		—		+6.13/-2.02
Tl, ppb	36	85.9	200	237	—	—	—	—	45	109.4
		+32.1/-23.4		+401/-149		—		—		+94.9/-50.8
Pb, ppm	412	8.70	1213	5.28	518	10.60	1478	48.16	201	3.13
		+9.46/-4.53		+11.45/-3.61		+12.36/-5.70		+19.76/-14.01		+3.02/-1.54
Bi, ppm	_	—	132	0.09	—	—	—	—	—	—
		—		+0.26/-0.060		—		—		—
Th, ppm	425	10.94	1321	0.85	714	3.76	1597	24.51	206	0.97
		+11.25/-5.55		+4.15/-0.70		+5.29/-2.20		+19.37/-10.82		+1.41/-0.57
U, ppm	414	2.95	1400	0.78	428	1.27	1572	7.51	196	0.47
		+2.68/-1.40		+1.97/-0.56		+1.55/-0.70		+4.34/-2.75		+0.47/-0.24
T, °C	327	850	762	1150	321	1110	1362	950	—	—
		+88/-80		+120/-110		+130/-115		+175/-150		—
P, bar	47	360	192	1010	96	900	102	1290	_	—
		+700/-240		+1420/-590		+2850/-690		+6240/-1070		

(4) The increase in the normalized concentrations of elements with an increase in their incompatibility generally replicates the distribution character of elements in the mean composition of the continental crust. At the same time, a simple model of the direct contamination of mantle melts (like the depletion of melts in environment I) with crustal material is inacceptable, because the mean concentrations of some incompatible elements in mafic melts are higher than in the continental crust. For example, the Ta and La concentrations in the continental crust are 0.7 and 20 ppm, respectively (Rudnick and Gao, 2003), whereas those in the melts of environment V are 1.47 and 30.2 ppm, respectively. More promising models seem to be those involving the derivation and migration of small portions of highly enriched melts and/or fluids that modify the compositions of the mantle sources and/or mantle magmas.

(5) Melts related to the environments of continental margins (III and IV) are noted for significant vari-

Table 4. Mean concentrations of major components and volatile, ore, and trace elements in felsic magmatic melts (SiO₂ > 66 wt %) in the dominant geodynamic environments (II–VI): data on mineral-hosted melt inclusions and quench glasses in volcanic rocks

Component	п	II	п	III	п	IV	п	V	п	VI
SiO ₂ , wt %	1889	71.43	29199	73.13	10649	72.89	12927	73.99	261	68.42
-		+2.10/-2.04		+3.07/-2.95		+3.19/-3.06		+2.73/-2.64		+2.48/-2.39
TiO ₂ , wt %	1880	0.29	28029	0.26	9878	0.18	10590	0.12	228	0.60
		+0.25/-0.13		+0.43/-0.16		+0.31/-0.11		+0.21/-0.08		+0.14/-0.11
Al ₂ O ₃ , wt %	1696	12.91	28272	12.88	10046	12.89	10852	12.11	228	13.59
		+1.84/-1.61		+1.55/-1.39		+1.60/-1.42		+1.54/-1.37		+1.37/-1.24
FeO, wt %	1705	3.07	28250	1.26	9969	1.12	10779	1.00	228	4.66
		+1.04/-0.78		+0.82/-0.49		+0.92/-0.51		+1.34/-0.57		+1.82/-1.31
MnO, wt %	1461	0.14	25816	0.06	8568	0.06	8776	0.05	227	0.11
		+0.13/-0.07		+0.11/-0.04		+0.10/-0.04		+0.16/-0.04		+0.10/-0.05
MgO, wt %	1643	0.13	27994	0.25	9547	0.17	9891	0.03	229	1.10
		+0.51/-0.10		+0.56/-0.17		+0.43/-0.12		+0.07/-0.02		+0.72/-0.43
CaO, wt %	1885	0.85	28300	1.12	10058	0.95	10684	0.51	228	3.48
		+1.07/-0.47		+0.75/-0.45		+0.97/-0.48		+0.38/-0.22		+1.37/-0.98
Na_2O , wt %	1692	4.86	28252	4.01	9893	3.69	10818	3.59	228	3.62
		+1.18/-0.95		+0.93/-0.75		+1.16/-0.88		+1.18/-0.89		+0.99/-0.78
K ₂ O, wt %	1696	3.74	28282	3.18	9951	3.82	10854	4.72	229	1.54
		+2.20/-1.38		+1.27/-0.91		+1.48/-1.06		+0.93/-0.77		+0.34/-0.28
P ₂ O ₅ , wt %	1416	0.03	18061	0.05	7535	0.04	2998	0.02	209	0.22
		+0.06/-0.02		+0.13/-0.04		+0.10/-0.03		+0.05/-0.02		+0.13/-0.08
H ₂ O, wt %	319	2.43	4055	2.36	2967	1.88	3426	2.62	56	1.35
2		+2.75/-1.29		+3.18/-1.35		+2.32/-1.04		+2.55/-1.29		+0.62/-0.43
Cl. ppm	1095	1150	20017	1330	3612	1120	4392	1850	85	3760
		+1890/-720		+910/-540		+1420/-630		+2520/-1070		+4180/-1980
F, ppm	736	1480	12278	120	1622	600	3410	3160	30	630
		+3460/-1040		+1580/-110		+1990/-460		+7070/-2190		+360/-230
S, ppm	642	80	14791	60	2100	50	955	150	48	40
		+110/-50		+190/-40		+200/-40		+330/-100		+170/-30
CO ₂ , ppm	29	50	835	100	964	30	1364	150	_	—
		+130/-30		+220/-70		+190/-30		+420/-110		_
Total		99.22		98.72		97.94		99.30		99.13
Li, ppm	619	23.72	2918	35/97	1911	29.01	4905	55.36	_	—
		+17.50/-10.07		+38.87/-18.67		+39.71/-16.76		+6.43/-30.60		_
Be, ppm	114	2.99	792	1.63	644	2.20	1052	9.56	—	—
		+1.64/-1.06		+4.14/-1.17		+1.81/-0.99		+13.90/-5.67		—
B, ppm	303	19.67	2342	33.60	1561	46.18	2761	27.29	—	—
		+3.25/-2.79		+44.67/-19.18		+70.28/-27.87		+44.87/-16.97		—
Sc, ppm	420	8.63	2042	8.35	1031	4.56	2285	4.26	—	—
		+1.88/-1.54		+10.40/-4.63		+3.70/-2.04		+4.43/-2.17		—
V, ppm	376	17.0	1711	6.61	722	5.81	1798	1.42	35	48.4
		+22.1/-9.6		+20.71/-5.01		+16.82/-4.32		+4.45/-1.08		+73.8/-29.2
Cr, ppm	55	3.32	764	2.40	174	4.91	856	2.93	50	4.29
		+22.83/-2.90		+4.59/-1.58		+17.16/-3.81		+5.50/-1.91		+22.58/-3.60
Co, ppm	94	0.74	649	1.61	582	1.22	515	1.08	28	7.19
N .T.		+0.57/-0.32		+3.19/-1.07		+1.81/-0.73		+4.61/-0.87		+3.70/-2.44
Ni, ppm	21	1.60	608	1.32	148	4.56	864	1.72	_	—
		+8.71/-1.35		+1.91/-0.78		+9.09/-3.03		+3.61/-1.16		—
Cu, ppm	111	17.2	1509	6.44	1394	21.13	1520	4.48	101	24.9

 Table 4.
 (Contd.)

Component	п	II	п	III	п	IV	п	V	n	VI
		+10.8/-6.6		+28 26/-5 24		130 92/-18 20		+1641/-352		+53.9/-17.0
Zn ppm	250	209.1	1478	36.04	1258	40 52	3341	78.20	79	80.5
zii, ppiii	250	+797/-577	11/0	+39.75/-18.90	1250	+3531/-1887	55 11	+9465/-4282	17	+337/-237
Ga ppm	337	31.8	607	16 21	506	27.88	2845	25 38	_	
Ga, ppin	551	+143/-98	007	+5.61/-4.16	500	+34.88/-15.50	2045	+7.92/-6.03		_
Ge ppm	21	4.06	73	2 53	38	1 71	104	2.00	_	_
oe, ppm	21	+245/-153	15	+1.22/-0.82	50	+0.22/-0.20	101	+0.89/-0.62		_
As ppm	64	4 16	1248	6.84	428	130.6	392	6.40	46	3 45
ns, ppm	04	+1.10 +1.58/_1.14	12-10	+11.76/-4.32	420	+2981/-1251	572	+1624/-459	-10	+1.94/-1.24
Br pph		1.30/-1.14	24	11.68	100	2,43		10.24/-4.39		1.74/-1.24
ы, рро			27	+3.31/2.58	107	+3.16/1.37				_
Ph nnm	618	102.7	2083	111	3044	131.8	6376	211.0	00	22.06
Ko, ppin	040	$\pm 34.3/25.7$	3983	$\pm 134/61$	3044	± 153.0 ± 153.0 70.80	0370	$\pm 130 4 / 84 1$	00	$\pm 10.73 / 7.22$
Sr ppm	472	5 20	3051	+ 134/-01	2668	102.8	6101	139.4/-04.1	87	10.73/-7.22
Si, ppili	4/2	$\pm 42.02/1.79$	3931	$\pm 150.1/52.0$	2008	$\pm 217/ 776$	0101	$\pm 12.10/2.56$	07	$\pm 121/99$
V nnm	176	+42.03/-4.78	2024	+130.1/-32.9	2107	+31/-77.0	6190	+13.10/-3.30	07	+131/-00
r, ppm	4/0	/0.4 +22// 22 2	3924	± 24.30	2107	$\pm 17.06/.065$	0180	$\pm 00.22/25.17$	07	$\pm 12.77/0.29$
Zr nnm	177	+33.4/-23.2	2002	+21.23/-11.39	2400	+17.80/-8.03	6272	+90.32/-33.17	07	+13.77/-9.28
Zi, ppili	4//	91/	3903	110.4	2400	122.9	0323	1/3.4	0/	107.2
Nih nom	175	$\pm 1041/-400$	2001	+104.9/-33.0	2271	+133.0/-08.3	6252	+292.0/-108.9	100	+03.3/-39.9
No, ppm	4/3	139	3901	0.04	22/1	10.75	0233	49.39	108	1.40
Mannus	227	+184/-79	12(5	+11.81/-4.78	077	+13.13/-3.91	20.40	+84./0/-31.28		+0.78/-0.51
Mo, ppm	221	0.04	1205	1.88	8//	3.00	2848	5.09	_	_
A		+1.26/-1.04	170	+1.94/-0.96	01	+5.6//-1.96	226	+3.4//-2.06		_
Ag, ppb	_	_	1/8	39.7	81	1/3./	236	119.7	_	_
		_	21	+40.6/-20.1		+1/14/-15/./		+212.2/-/6.5		_
Cd, ppb	_	—	21	194.0	_	—	57	135.5	_	—
T 1		—		+49.0/-39.1		—		+30.2/-24.7		—
In, ppb	_	_	_	_	_	_	57	103.1	_	_
C	200	-	40.4	-	70(-	1202	+29.1/-22./		—
Sn, ppm	208	9.2/	404	3.06	/26	9.83	1282	8.49	_	_
CI		+1./8/-1.49	201	+9.38/-2.31	200	+1/5.0/-9.31	205	+13.29/-5.18		—
Sb, ppm	74	0.48	396	3.21	388	29.62	295	0.56	_	—
G	100	+0.20/-0.14	1025	+32.04/-2.92	1070	+1098/-28.84	22.40	+0.4//-0.26	25	_
Cs, ppm	436	1.38	1925	3.91	1970	5.40	3248	7.03	35	0.78
D		+0.57/-0.40	4010	+6.94/-2.50	0505	+14.92/-3.97	57 0 4	+15.98/-4.88	100	+0.19/-0.15
Ba, ppm	553	300	4013	602	2535	650	5784	78.3	109	330
r.	450	+501/-188	2005	+68//-321	1010	+1363/-440	500(+46/.1/-6/.1	0.0	+151/-103
La, ppm	452	95.09	3885	19.80	1813	21.76	5226	64.44	88	10.50
~		+71.57/-40.83		+14.75/-8.45		+20.73/-10.62		+77.49/-35.18		+6.64/-4.07
Ce, ppm	465	201.11	3965	41.58	1881	41.03	5943	106.7	88	23.87
_		+171.1/-92.44		+27.29/-16.48		+37.85/-19.69		+154.2/-63.1		+14.02/-8.83
Pr, ppm	430	25.07	2579	4.57	892	4.48	4399	13.32	50	2.94
		+15.79/-9.69		+3.15/-1.87		+3.39/-1.93		+13.29/-6.65		+0.94/-0.71
Nd, ppm	452	90.58	3124	18.17	1392	16.99	5088	46.46	88	15.40
		+63.41/-37.30		+14.41/-8.04		+13.31/-7.46		+67.53/-27.52		+7.78/-5.17
Sm, ppm	635	19.00	3219	3.83	1475	3.38	4944	9.95	87	4.42
		+6.78/-5.00		+2.87/-1.64		+2.59/-1.47		+13.04/-5.64		+2.17/-1.45
Eu, ppm	622	3.93	2702	0.68	1305	0.60	4498	0.65	82	1.14
		+1.72/-1.20		+0.75/-0.36		+0.45/-0.26		+1.22/-0.42		+0.26/-0.21
Gd, ppm	445	15.11	2661	3.82	1184	3.08	4594	10.81	56	4.45

1266

Component	n	II	п	III	п	IV	n	V	п	VI
		+4.39/-3.40		+3.32/-1.78		+2.48/-1.37		+12.83/-5.87		+1.19/-0.94
Tb, ppm	426	2.41	1585	0.65	833	0.58	3676	1.48	50	0.74
		+0.54/-0.44		+0.49/-0.28		+0.52/-0.27		+1.17/-0.65		+0.21/-0.16
Dy, ppm	452	14.26	2890	3.84	1192	3.07	4558	11.52	43	4.99
		+4.39/-3.36		+3.08/-1.71		+2.65/-1.42		+14.31/-6.38		+1.16/-0.94
Ho, ppm	426	2.77	1615	0.89	795	0.68	3647	1.83	48	1.06
		+0.71/-0.57		+0.73/-0.40		+0.41/-0.26		+1.61/-0.86		+0.24/-0.19
Er, ppm	443	7.78	2872	2.44	1160	1.85	4499	7.17	56	3.09
		+2.28/-1.76		+1.81/-1.04		+1.45/-0.81		+7.67/-3.71		+0.94/-0.72
Tm, ppm	425	1.09	1552	0.44	728	0.31	3525	1.06	34	0.48
		+0.32/-0.25		+0.42/-0.22		+0.22/-0.13		+0.84/-0.47		+0.12/-0.10
Yb, ppm	460	8.96	2937	2.78	1250	2.05	4804	6.45	85	3.23
		+2.96/-2.08		+2.05/-1.18		+1.64/-0.91		+6.59/-3.26		+1.45/-1.00
Lu, ppm	421	1.05	1926	0.53	875	0.37	3698	1.03	84	0.53
		+0.33/-0.25		+0.42/-0.24		+0.23/-0.14		+0.88/-0.47		+0.31/-0.20
Hf, ppm	620	23.5	2564	4.05	1090	3.67	4246	7.17	87	3.11
		+12.3/-8.1		+3.66/-1.92		+2.28/-1.41		+5.98/-3.26		+1.58/-1.05
Ta, ppm	437	9.71	2736	0.77	1202	0.74	4406	3.60	61	0.10
		+5.42/-3.48		+1.01/-0.44		+0.93/-0.41		+3.81/-1.85		+0.04/-0.03
W, ppm	53	1.97	807	1.95	430	23.00	1525	3.65	_	—
		+1.61/-0.89		+4.63/-1.37		+98.77/-18.66		+4.42/-2.00		_
Re, ppb	_	_	_	—	29	147.8	_	_	31	1.09
		_		—		+113.0/-64.0		_		+0.93/-0.50
Au, ppb	_	_	_	—	38	68.43	42	2.20	29	1.32
		_		—		+273.8/-54.74		+10.36/-1.81		+1.21/-0.63
Tl, ppb	_	_	97	418	169	648	269	2665	_	—
		_		+788/-273		+288/-199		+2094/-1173		—
Pb, ppm	623	9.91	2926	15.12	1862	18.81	5248	35.99	109	5.58
		+3.39/-2.53		+9.13/-5.69		+12.94/-7.67		+17.41/-11.73		+1.96/-1.45
Bi, ppm	_	_	324	1.90	368	4.48	608	0.70	_	_
		_		+5.69/-1.42		+22.52/-3.74		+0.88/-0.39		_
Th, ppm	648	16.04	3304	10.73	1994	12.22	5805	25.36	108	1.07
		+6.38/-4.56		+14.09/-6.09		+14.91/-6.71		+16.56/-10.02		+0.63/-0.39
U, ppm	636	4.68	3267	2.62	1951	4.08	5637	7.59	108	0.75
		+2.09/-1.44		+2.65/-1.32		+4.05/-2.03		+4.05/-2.64		+0.33/-0.23
T, °C	284	850	1396	850	1192	830	3338	790	20	955
-		+54/-50		+90/-80		+120/-105		+80/-70		+60/-55
<i>P</i> , bar	46	475	892	1170	727	940	479	1550	20	2270
		+340/-200		+1220/-600		+2960/-710		+900/-570		+3140/-1320

 Table 4.
 (Contd.)

ations in the left-hand parts of the patterns, a phenomenon commonly described with reference to geochemical anomalies. A shining example of such anomalies is the widely known negative Ta-Nb anomaly. The nature of this anomaly is still uncertain. A strong decrease in Nb and Ta concentrations in melts could not result from the mixing of magmas from different sources, because the concentration levels of these elements are very low (particularly in melts of environment III, in which Ta and Nb concentrations are lower than in the mafic magmas of mid-oceanic ridges). Both Nb and Ta were likely retained in the residue in the course of melting. These elements are selectively concentrated in, for example, rutile, but mafic melts in equilibrium with rutile would have been notably enriched in Ti, which is not the case.

(6) Another interesting feature of the mafic melts of environments III and IV is their positive Pb anomaly (high Ce/Pb = 7.41 and 6.29, respectively). The origin of this anomaly is also disputable. Both elements are strongly incompatible when silicate minerals crystallize from melts. The fractionation of Ce and

Table 5. Ratios of elements in mafic magmatic melts (SiO₂ = 40-54 wt %) in the dominant geodynamic environments (I–VI): data on mineral-hosted melt inclusions and quench glasses in volcanic rocks

Year	п	Ι	п	II	п	III	n	IV	п	V	n	VI
H ₂ O/Ce												
2010	649	190	204	130	300	1310	124	950	152	70	63	880
		+80/-50		+130/-60		+3040/-910		+4100/-770		+520/-60		+1000/-470
2022	2522	210	3250	180	739	1460	743	820	714	70	217	550
		+90/-60		+300/-110		+3800/-1050		+1890/-570		+230/-50		+1070/-370
Ce/Pb												
2010	421	23.1	378	25.6	251	6.2	172	7.4	116	32.3	69	14.9
		+8.4/-6.2		+16.8/-10.1		+3.8/-2.3		+6.1/-3.3		+15.5/-7.1		+9.9/-6.0
2022	4833	24.6	3506	28.3	1284	4.8	11244	5.9	839	14.7	463	13.8
		+7.7/-5.9		+10.9/-7.9		+4.1/-2.2		+6.0/-3.0		+22.6/-8.9		+13.6/-6.8
K ₂ O/H ₂ O												
2010	1177	0.6	1194	1.0	872	0.4	429	0.7	553	1.9	196	0.3
		+0.4/-0.2		+1.5/-0.6		+0.7/-0.2		+1.9/-0.5		+4.2/-1.3		+0.2/-0.10
2022	3756	0.6	5232	1.0	2651	0.4	1795	0.5	1921	2.0	421	0.3
		+0.4/-0.2		+2.1/-0.7		+0.8/-0.3		+0.7/-0.3		+4.9/-1.4		+0.2/-0.1
K ₂ O/Cl												
2010	1288	11.7	1855	22.6	1459	7.9	1068	14.5	1219	14.7	142	3.2
		+18.4/-7.1		+26.7/-12.2		+8.3/-4.1		+13.4/-7.0		+24.0/-9.1		+2.3/-1.3
2022	5593	14.3	8364	24.2	5350	7.1	4159	12.6	4578	19.4	478	5.5
		+19.9/-8.3		+27.4/-12.9		+9.4/-4.0		+15.4/-6.9		+30.6/-11.8		+7.6/-3.2
La/Yb												
2010	1028	1.2	1044	2.7	526	2.4	211	6.1	236	13.9	123	1.6
		+1.1/-0.6		+5.1/-1.8		+2.4/-1.2		+10.0/-3.8		+36.0/-10.0		+1.5/-0.8
2022	6754	1.2	6148	3.6	1678	2.1	1200	5.2	1701	12.3	537	1.5
		+1.0/-0.5		+5.7/-2.2		+2.5/-1.1		+5.6/-2.7		+26.6/-8.4		+1.3/-0.7
2010	477	10.7	1 440	50 7	1 201	Nb/U	1.64	10.0		05.4	=	
2010	4//	42.7	446	50.7	391	5.4	164	12.8	222	25.4	/6	2.3
2022	510(+10.//-8.5	2720	+14.0/-11.0	1242	+3.1/-2.0	10/0	+18.0/-7.5	1002	+49.6/-16.8	451	+1.4/-0.9
2022	5180	43.1 $\pm 11.7/0.2$	3/28	43.8 $\pm 12.2/10.2$	1343	0.3	1068	8.0 +12.5/ 5.0	1003	33.3 ±40.97 19.4	431	13.7
		+11.//-9.3		+15.2/-10.5		+8.0/-3.3 Nb/Vb		+15.5/-5.0		+40.8/-18.4		+40.1/-11./
2010	733	11	835	60	494		208	37	257	11.6	78	0.4
2010	155	+22/-07	055	+8.8/-3.6	TUT	+0.6/-0.4	200	+5 2/-2 2	251	+365/-88	70	+0.7 - 0.7
2022	5980	11	5891	4 2	1636	0.8	1186	19	1701	10.0	525	0.7
2022	5700	+20/-07	5071	+68/-26	1050	+0.9/-0.4	1100	+2.8/-1.1	1/01	+273/-73	525	+0.9/-0.4
2.0/-0.7 0.0/-2.0 0.7/-0.4 2.0/-1.1 27.3/-7.3 0.9/-0.4 $7r/Nh$												
2010	892	24.2	897	8.8	616	38.1	235	17.9	313	6.4	132	47.1
		+38.3/-14.8		+6.6/-3.8		+20.2/-13.2		+20.3/-9.5		+8.9/-3.7		+58.4/-26.1
2022	6171	23.0	6119	9.8	1867	34.5	1314	21.7	1996	6.5	545	34.8
		+36.0/-14		+7.2/-4.1		+32.2/-16.7		+21.5/-10.8		+7.9/-3.6		+41.6/-19.0
τι τη												
2010	503	1.0	343	1.0	100	6.6	129	2.8	170	1.4	64	3.9
		+0.3/-0.2		+0.4/-0.3		+12.6/-4.3		+5.9/-1.9		+1.0/-0.6		+16.4/-3.1
2022	4814	1.0	2606	1.1	861	4.8	801	5.3	786	1.8	407	2.1

Table 5. (Contd.)

Year	п	Ι	n	II	п	III	п	IV	n	V	n	VI
		+0.3/-0.2		+0.3/-0.2		+9.4/-3.2		+7.6/-3.1		+1.9/-0.9		+3.8/-1.3
Th/Yb												
2010	632	0.1	464	0.6	421	0.3	167	0.7	255	1.5	41	0.1
		+0.2/-0.1		+0.9/-0.4		+0.4/-0.2		+1.2/-0.4		+4.0/-1.1		+0.6/-0.1
2022	5299	0.1	3200	0.6	1432	0.3	1097	0.7	1093	1.5	484	0.2
		+0.2/-0.1		+1.0/-0.4		+0.6/-0.2		+0.6/-0.3		+2.8/-1.0		+0.4/-0.1
Th/U												
2010	578	2.7	463	3.5	343	1.7	171	2.5	248	3.4	48	2.6
		+0.8/-0.6		+1.4/-1.0		+1.0/-0.6		+1.2/-0.8		+1.4/-1.0		+0.8/-0.6
2022	5546	3.0	3289	3.3	1371	2.2	1076	2.6	1023	3.8	433	2.9
		+0.8/-0.6		+0.8/-0.7		+1.6/-0.9		+1.2/-0.8		+1.6/-1.1		+1.2/-0.8
Ba/Rb												
2010	636	11.1	629	11.4	184	13.5	190	28.0	194	11.1	165	10.5
		+2.9/-2.3		+5.2/-3.6		+8.8/-5.3		+28.6/-24.2		+8.7/-4.9		+6.2/-3.9
2022	5298	11.0	4874	11.5	1247	12.8	1137	22.8	1343	12.8	578	9.6
		+2.7/-2.2		+4.5/-3.2		+13.1/-6.5		+21.6/-11.1		+9.9/-5.6		+3.9/-2.8
				•		P_2O_5/I	F	Į.	•			
2010	309	7.6	1000	5.3	527	4.0	95	4.2	412	2.6	—	_
		+5.0/-3.0		+3.8/-2.2		+4.2/-2.0		+5.0/-2.3		+8.4/-2.0		
2022	2314	7.6	4544	4.8	1713	4.9	1240	6.1	1971	3.3	159	9.4
		+3.4/-2.3		+4.2/-2.2		+7.2/-2.9		+6.7/-3.2		+9.1/-2.4		+9.9/-4.8
TiO_2/Dy												
2010	1030	2800	929	4100	494	2900	196	3400	239	3300	99	2700
		+840/-650		+1900/-1300		+750/-600		+1000/-790		+2700/-1500		+490/-420
2022	6029	2800	5734	4190	1542	2720	1091	3300	1387	3910	460	2720
		+610/-500		+1850/-1280		+950/-700		+1180/-870		+2770/-1620		+630/-510

Pb can be driven by sulfides, because Pb is a typical chalcophyle element (Hart and Gaetani, 2006). However, sulfides are quite commonly found in mafic magmas in all environments, whereas a Pb anomaly is obvious in the melts only of two of them. Another possible enrichment mechanism of magmas (or their sources) in Pb relative Ce is material transfer with aqueous fluids derived at the degassing of a subducted slab (Ayers, 1998). Note that a Pb anomaly is also typical of intermediate and felsic melts, and the Pb anomaly of the latter is pronounced even better than their Nb anomaly.

Table 5 lists some average ratios of components in mafic magmas from various environments. Obviously, the number of analyses for the elements has significantly increased over the past 12 years. This information quantitatively appends the conclusions that can be derived from the analysis of the multielemental patterns. Many of the variation ranges significantly overlap and very little change from one environment to another, for example, those of the Th/U, P_2O_5/F , and

 TiO_2/Dy ratios. These ratios are insusceptible to geodynamic environments, and the insignificant variations in these ratios were likely caused by local processes. The rest of the ratios are distributed more contrastingly, but none of them can be used to reasonably reliably determine the affiliation of a composition with any of the six environments. Moreover, some parameters make it possible to combine some environments into larger groups within which differences are insignificant. For example, environments of platform boundaries (III and IV) notably differ from environments related to mantle plumes in Ce/Pb, Nb/U, Zr/Nb, and Th/Ta ratio. Some parameters of environment I are closely similar to those of "plume" environments (for example, the Th/Ta ratio), whereas other parameters make this environment similar to environments III and IV (for example, the Zr/Nb ratio). Environment I principally differs from all other environments in the La/Yb and Th/Yb ratios (these ratios can be employed as indicators of the depleted mantle). It is worth mentioning that this depletion is not associated

Fig. 3. Primitive mantle-normalized (Sun and McDonough, 1989) trace-element and REE patterns of mafic, intermediate, and felsic melts in (I) mid-oceanic ridges, (II) oceanic islands, (III) island arcs, (IV) active continental margins, (V) continental rifts and continental hotspot areas, and (VI) backarc spreading areas.

Fig. 4. Primitive mantle-normalized (Sun and McDonough, 1989) REE patterns of mafic, intermediate, and felsic melts in (I) mid-oceanic ridges, (II) island arcs, (III) oceanic islands, (IV) active continental margins, (V) continental rifts and continental hotspot areas, and (VI) backarc spreading areas.

with any significant changes in the ratios of incompatible elements: for example, the H₂O/Ce and Ce/Pb ratios in environments I and II are similar but principally differ from those in III + IV. Quantitative interpretations of these differences is a challenging task, because they may be related to the redistribution of components with the involvement of melts and fluids that had been derived under different thermodynamic parameters. Some of the differences may have likely been inherited during various evolutionary stages of geospheres. In this context, it would be interesting to trace the changes in the ratios of elements in similar melts with time, but such data on ancient complexes are still very sparse.

CONCLUSIONS

(1) Our database has been remarkably extended and now includes more than 2600000 determinations of 75 elements in mineral-hosted melt inclusions and in quench glasses in volcanic rocks. These data were generalized, and mean concentrations of major components and volatile, ore, and trace elements in magmatic melts were calculated for all of the dominant Earth's geodynamic environments.

(2) Our newly acquired data confirm that, from the viewpoint of geochemical specifics, all melts data on which are available from the current version of the database definitely belong to any of the following six

types, which correspond to the previously distinguished geodynamic environments: (I) environments of the spreading of oceanic plates (mid-oceanic ridges), (II) environments with mantle plumes at oceanic plates (oceanic islands and lava plateaus), (III and IV) environments related to subduction processes (III is arc magmatic zone on the oceanic crust, and IV is magmatic zones in active continental margins in which magma-generating processes involve the continental crust), (V) continental rifts and areas with continental hotspots, and (VI) environments of backarc spreading (Naumov et al., 2010).

(3) The distribution of SiO₂ concentrations in natural magmatic melts is bimodal in all of the geodynamic environments: one of the maxima occurs at SiO₂ = 50-52 wt %, and the other at 72-76 wt %. The smallest number of analyses corresponds to SiO₂ concentrations of 62-66%.

(4) The primitive mantle-normalized multielemental patterns for the mean compositions of mafic, intermediate, and felsic rocks in environments I-VIshow inherent features of melt compositions in each of the environments.

(5) Generalized and averaged data on the composition of mineral-hosted melt inclusions and glasses in rocks were used to calculate the average ratios of incompatible trace and volatile components (e.g., H_2O/Ce , K_2O/Cl , Nb/U, Ba/Rb, and Ce/Pb) in the magmatic melts of each of the environments. The variations in these ratios were calculated, and it is demonstrated that ratios of incompatible elements are mostly statistically significantly different in the different environments. The differences are particularly significant in the different environments, and these differences are the largest between the ratios of elements of different incompatibility (for example, Nb/Yb) and some volatiles (for example, K_2O/H_2O).

ACKNOWLEDGMENTS

The authors thank A.V. Lavrenchuk, S.Z. Smirnov, O.A. Lukanin, and the anonymous reviewer for constructive criticism and valuable recommendations.

FUNDING

This study was carried out under government-financed research projects for Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of Sciences, and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

GEOCHEMISTRY INTERNATIONAL Vol. 61 No. 12 2023

REFERENCES

- O. E. Anderson, M. G. Jackson, E. F. Rose-Koga, J. P. Marske, M. E. Peterson, A. A. Price, B. L. Byerly, and A. A. Reinhard, "Testing the recycled gabbro hypothesis for the origin of "Ghost Plagioclase" melt signatures using ⁸⁷Sr/⁸⁶Sr of individual olivine-hosted melt inclusions from Hawai'i," Geochem. Geophys. Geosyst. **22** (4), 1–21 (2021).
- J. Ayers, "Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones," Contrib. Mineral. Petrol. **132**, 390–404 (1998).
- A.-S. Bouvier, N. Metrich, and E. Deloule, "Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints," J. Petrol. 49 (8), 1427–1448 (2008).
- J. M. Eiler, P. Schiano, J. W. Valley, N. T. Kita, and E. M. Stolper, "Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle," Geochem. Geophys. Geosyst. 8 (9), 1–21 (2007).
- A. Gale, C. A. Dalton, C. H. Langmuir, Y. Su, and J.-G. Schilling, "The mean composition of ocean ridge basalts," Geochem. Geophys. Geosystems. 14, (2013). https://doi.org/10.1029/2012GC004334
- R. Harlou, D. G. Pearson, G. M. Nowell, C. J. Ottley, and J. P. Davidson, "Combined Sr isotope and trace element analysis of melt inclusions at sub-ng levels using micro-milling," TIMS and ICPMS," Chem. Geol. 260, 254–268 (2009).
- S. R. Hart and G. A. Gaetani, "Mantle Pb paradoxes: the sulfide solution," Contrib. Mineral. Petrol. **152**, 295–308 (2006).
- M. E. Hartley, J. C. M. de Hoog, and O. Shorttle, "Boron isotopic signatures of melt inclusions from North Iceland reveal recycled material in the Icelandic mantle source," Geochim. Cosmochim. Acta 294, 273–294 (2021).
- M. Kawaguchi, K. T. Koga, E. F. Rose-Koga, K. Shimizu, T. Ushikubo, and A. Yoshiasa, "Sulfur isotope and trace element systematics in arc magmas: Seeing through the degassing via a melt inclusion study of Kyushu Island volcanoes, Japan," J. Petrol. 63 (7), 1–31 (2022).
- V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. V. Yarmolyuk "Estimation of the average content of H_2O , Cl, F, and S in the depleted mantle on the basis of the compositions of melt inclusions and quenched glasses of mid-ocean ridge basalts," Geochem. Int. **44**, 209–231 (2006).
- V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. V. Yarmolyuk, "Average compositions of magmas and mantle sources of mid-ocean ridges and intraplate oceanic and continental settings estimated from the data on melt inclusions and quenched glasses of basalts," Petrlogy 15, 335–368 (2007).
- V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. V. Yarmolyuk, "Peralkaline silicic melts of island arcs, active continental margins, and intraplate continental settings: evidence from the investigation of melt inclusions in minerals and quenched glasses of rocks," Petrology 17, 410–428 (2009).

- G. D. Layne, A. J. R. Kent, and W. Bach, "δ³⁷Cl systematics of a backarc spreading system: the Lau Basin," Geology **37** (5), 427–430 (2009).
- M. Le Voyer, E. F. Rose-Koga, M. Laubier, and P. Schiano, "Petrogenesis of arc lavas from the Rucu Pichincha and Pan de Azucar volcanoes (Ecuadorian arc): major, trace element, and boron isotope evidences from olivine-hosted melt inclusions," Geochem. Geophys. Geosyst., 9 (12), 1–27 (2008).
- X. H. Li, Z. G. Ren, S. Z. Li, Z. G. Zeng, H. X. Yang, and L. Zhang, "Geochemical and lead isotope compositions of olivine-hosted melt inclusions from the Yaeyama Graben in the Okinawa Trough: Implications for slab subduction and magmatic processes," Lithos 398– 399, 106263 (2021).
- V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, "Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings," Geochem. Int. 42 (10), 977–987 (2004).
- V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, "Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks," Geochem. Int. 48 (12), 1185–1207 (2010).
- V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. A. Kovalenker, "Concentration of ore elements in

magmatic melts and natural fluids as deduced from data on inclusions in minerals," Geol. Ore Deposits **58**, 327–343 (2016).

- V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. A. Kovalenker, "Volatile, trace, and ore elemets in magmatic melts and natural fluids: Evidence from mineral-hosted inclusions. I. Mean concentrations of 45 elements in the main geodynamic settings of the Earth," Geochem. Int. 60, 325–344 (2022).
- R. L. Rudnick and S. Gao, "Composition of the continental crust," Treatise on Geochemistry **3**, 1–64 (2003).
- S. S. Sun and W. F. McDonough, "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes," In: *Magmatism in the Ocean Basins*, Ed. by A. D. Saunders and M. J. Norry, Eds. Geol Soc. London, Spec. Publ. 42, 313–345 (1989).
- J. Wittenbrink, B. Lehmann, M. Wiedenbeck, A. Wallianos, A. Dietrich, and C. Palacios, "Boron isotope composition of melt inclusions from porphyry systems of the Central Andes: a reconnaissance study," Terra Nova. 21, 111–118 (2009).

Translated by E. Kurdyukov

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.