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Abstract. Let G be a countable ergodic group of automorphisms of a measure space (X,μ)
and N [G] be the normalizer of its full group [G]. Problem: for a pair of measurable partitions ξ
and η of the space X, when does there exist an element g ∈ N [G] such that gξ = η? For a
wide class of measurable partitions, we give a solution to this problem in the case where G is
an approximately finite group with finite invariant measure. As a consequence, we obtain results
concerning the conjugacy of the commutative subalgebras that correspond to ξ and η in the type II1
factor constructed via the orbit partition of the group G.
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Introduction

The orbit theory of dynamical systems, which emerged in the late 1960s, had long been the focus
of A. M. Vershik’s seminar where Anatoly Moiseevich gave a new transparent proof (see [2], [5]) of
H. Dye’s theorem [9] on the orbit isomorphism of ergodic actions of the group Z and other groups.
At the same seminar, the authors of the present paper were introduced to the connection between
orbit theory and the theory of von Neumann algebras.

Let (X,F , μ) be a Lebesgue space and let A(X) be the group of all measurable transformations
of the measurable space (X,F) that leave the measure μ quasi-invariant. According to the general
theory of measurable partitions constructed by V. A. Rokhlin [17], [18], two partitions ξ1 and ξ2
are said to be isomorphic if there exists a measure-preserving automorphism g ∈ A(X) such that
gξ1 = ξ2. In particular, according to his Classification Theorem, any two partitions with continuous
conditional measures and factor measures are isomorphic.

Let G be a countable ergodic subgroup of A(X), [G] be the full group of the group G, and
N [G] = {g ∈ A(X) | g[G] = [G]g} be the normalizer of [G] (the properties of normalizers of the full
group were studied in [1], [4], [10], [14]). We use the notation N [G] even though the full group [G]
(and hence its normalizer) depend only on the orbit partition of the group. The further elaboration
could be reformulated in terms of the corresponding measurable equivalence relation, but this would
lengthen the text.

In this paper, we consider the following problem: when are two measurable partitions ξ1 and ξ2
of the space X conjugate with respect to the group N [G] associated to the orbit partition θ = θ(G)?
That is, when does there exist an element g ∈ N [G] such that gξ1 = ξ2 and gθ = θ? Thus, we replace
the general group A(X) with a narrower special group N [G].

We distinguish a broad class of measurable partitions, which we call properly located with
respect to [G]. For such partitions, we obtain, in a certain sense, a complete solution to this prob-
lem in the case where [G] is an approximately finite (a. f.) type II1 group. Our first main result
(Theorems 3.1 and 3.2) shows that, in the above case, the conjugacy problem for properly located
partitions is equivalent to the general problem of measure-preserving orbit isomorphisms for groups
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of arbitrary type. In the proof given here, we use the technique of connected partitions developed
by A. L. Fedorov [8], [21], [22].

The considered conjugacy problem for countable partitions with respect to the normalizer of
an ergodic group is closely related to the conjugacy problem for some commutative subalgebras in
a factor. Indeed, to each countable ergodic group, by the well-known construction [1], [13], there
corresponds a factorMG coinciding with the crossed product W ∗(G,L∞(X)) if G acts freely.

Let j be a canonical embedding L∞(X) in MG and M0
G = j(L∞(X)). This subalgebra is

a maximal commutative subalgebra in MG and is regular, i. e., together with its normalizer, it
generatesMG. Such subalgebras are usually called Cartan subalgebras.

In the case where the dynamical system (X,μ,G) has a discrete spectrum, Cartan subalgebras
have been studied in detail in [15].

To every measurable partition ξ of the space X, there corresponds a commutative subalgebra
M0

G(ξ) = j(L∞(ξ)), where L∞(ξ) = L∞(X, ξ) is the subalgebra of all ξ-measurable functions
from L∞(X), and j is the canonical embedding of L∞(X) in MG. It is easy to check that if
measurable partitions ξ1 and ξ2 are conjugate with respect to N [G], then the subalgebrasM0

G(ξ1)
and M0

G(ξ2) are conjugate in MG, i. e., there exists an automorphism σ ∈ Aut(MG) such that
σ(M0

G(ξ1)) =M0
G(ξ2).

The main question that arises here is whether the conjugacy of M0
G(ξ1) and M0

G(ξ2) in MG

implies the conjugacy of the partitions ξ1 and ξ2 with respect to N [G]. It is clear that the problem
is, in fact, whether one can choose an automorphism that conjugatesM0

G(ξ1) andM0
G(ξ2) in such

a way that it leaves the Cartan subalgebraM0
G = j(L∞(X)) invariant.

The second main result of the paper is Theorem 4.5. It states that for the considered class of
partitions the above problem is solved in the affirmative.

Whether the same result holds in the general case is unknown to the authors.

Contents. In § 1, we give notation and terminology used hereafter.
In § 2, we study proper pairs of the form (θ, ξ) where θ = θ(G) is the orbit partition of the

group G and the partition ξ is measurable and properly located with respect to [G]. For such pairs,
the factor partition θ/ξ is correctly defined in the factor space X/ξ and also the proper pairs (˜θ, ˜ξ)
obtained by countable multiplication of the pair (θ, ξ) are studied.

Using the Connes–Feldman–Weiss theorem [3], it is shown that for a proper pair (θ, ξ), the
approximate finiteness of the group [θ] (see § 1.1 for its definition) is equivalent to the approximate
finiteness of the partitions θ ∨ ξ and θ/ξ.

In § 3, we consider proper pairs (θ, ξ) where the group [θ] is an a. f. group of type II1 and the
partition ξ is continuous. The classification and existence theorems are proved.

In § 4, the problem of conjugacy of subalgebras of MG(ξ) in the factorMG is considered.
A detailed discussion of various issues concerning orbit theory, equivalence relations, and their

connection with von Neumann factor theory is available in the reviews [7], [16].

1. Preliminary Information

1.1. Full Groups and Orbit Partitions. We use the notation and terminology from [17],
[12].

Let (Xi,Fi,mi), i = 1, 2, be Lebesgue spaces with finite or σ-finite measures. By an isomorphism
S : X1 → X2, we mean an isomorphism of measurable spaces such that the measure Sm1 = m1◦S−1

is equivalent to the measure m2. By A(X) we denote the group of all measurable reversible trans-
formations of the measurable space (X,F), and by A(X,m) its subgroup {S ∈ A(X) | Sm = m}.

Let G be a countable subgroup in A(X) and let θ(G) denote the partition of X into its orbits
Gx = {gx | g ∈ G}, x ∈ X. If θ is some partition of X, then we denote by [θ] the group of all
elements of A(X) that leave θ fixed, i. e., C ∈ θ, S ∈ [θ] =⇒ S(C) = C. If θ = θ(G) for some
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countable subgroup in A(X), then we call θ an orbit partition. We call [θ(G)] the full group of
the group G and denote it by [G]. The element of a partition θ containing an element x ∈ X is
denoted by θ(x); if A ⊂ X, then θ(A) is the smallest θ-set containing A. The relation x θ∼ y means
that θ(x) = θ(y). If ξ, η are two measurable partitions, then their supremum ξ ∨ η is defined by the
relation x

ξ∨η∼ y ⇐⇒ x
ξ∼ y and x

η∼ y, x, y ∈ X, and their intersection ξ ∩ η (non-measurable, in
general) is the smallest enlargement of the partitions ξ and η.

If an ergodic group G admits a finite (respectively, infinite σ-finite) invariant measure, then G,
as well as [G] and θ(G), are said to be of type II1 (type II∞). If no finite G-invariant measure exists,
then G is a group of type III.

By a partial isomorphism of X, we mean an isomorphism V : A→ B where A and B are subsets
in X of positive measure (more precisely, an isomorphism from (A,F ∩A,μ|A) to (B,F ∩B,μ|B)).
The sets A and B are called, respectively, the initial and the final domains of the partial isomorphism
and they are denoted by E(V ) and F (V ). By U(X) we denote the set of all partial isomorphisms
of X. For U and V from U(X), U−1 and U · V in the case where m(F (V ) ∩E(U)) > 0 are defined
in the obvious way.

For a partition θ of the space X, we introduce its normalizer N (θ) as the set {S ∈ A(X) |
Sθ = θ} of transformations leaving the partition θ invariant. We also put

U(θ) =
{

U ∈ U(X) | Ux θ∼ x for almost all x ∈ E(U)
}

,

UN (θ) =
{

U ∈ U(X) | U(θ|E(U)) = θ|F (U)

}

,

and for a countable subgroup G ∈ A(X), we set by definition:

N [G] = N (θ(G)) = {S ∈ A(G) | S[G]S−1 = [G]},
U [G] = U(θ(G)), UN [G] = UN (θ(G)).

For U and Un, n ∈ N, in U(X), we use the notation U =
⊕

n Un in the following situation:

E(U) =
⋃

n

E(Un), F (U) =
⋃

n

F (Un), U |E(Un) = Un,

where the sets E(Un), n ∈ N, and, respectively, F (Un), n ∈ N, are disjoint. Note that a transforma-
tion g is contained in [G] if and only if it admits the representation g = ⊕nun, where un = gn|E(Un)

and gn ∈ G.
If G is an ergodic type II∞ group, m a G-invariant measure, and S ∈ N [G], then there exists a

number modS ∈ (0,+∞) such that for almost all x ∈ X
dm(Sx)
dm(x)

= modS.

By εX and νx we denote, respectively, the partition of X into distinct points and the trivial
partition of X; eX is the identity automorphism of X. The partition into ergodic components of
the group G is denoted by ω(G); we also use the notation ω(θ) if θ = θ(G).

Let ξ be a measurable partition of X and let πξ be the canonical projection of X onto the factor
space X/ξ supplied with the σ-algebra F/ξ = {A ⊂ X/ξ | π−1

ξ A ∈ F}. Since the measure m on X
is not assumed to be finite, the natural measure m0

ξ defined on the factor space (X/ξ,F/ξ) by the
equality m0

ξ(A) = m(π−1
ξ A), A ∈ F/ξ, is not σ-finite in general. Therefore, the factor measure m/ξ

is hereafter understood as any σ-finite measure on (X/ξ,F/ξ) equivalent to the measure m0
ξ .

For each factor measure m/ξ, there exists a unique mod 0 system of conditional measures
C → mC , C ∈ ξ. This means that:
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1) (C,mC) are the Lebesgue spaces for almost all C ∈ ξ;
2) for any A ∈ F

(a) (C ∩A,mC) is m/ξ-measurable for almost all C ∈ ξ,
(b) the function C → mC(A ∩ C) is mC-measurable for almost all C ∈ ξ,
(c) m(A) =

∫

X/ξ mC(A ∩ C) dm/ξ(C).
In the case where the measure m is probabilistic, the measures m/ξ and mC , C ∈ ξ, can

also be chosen to be probabilistic, and in this case the factor measure m/ξ is uniquely defined:
m/ξ(A) = m(π−1

ξ A), A ∈ F/ξ.
The equivalence relation Rθ with measure μ = μθ (measurable equivalence relation) correspond-

ing to the orbit partition θ = θ(G) of the countable subgroup G = A(X) is defined as follows. Let
Γg = {(x, gx) | x ∈ X} be the graph of g ∈ G and Rθ =

⋃

g Γg; the measure μ is uniquely defined by
the property that for any g ∈ G, the set Γg is μ-measurable and the natural projection (x, gx) → x

of the space (Γg, μ|Γg) onto (X,μ) is a measure-preserving isomorphism. It is not difficult to check
that such a definition (Rθ, μθ) is mod 0 correct and does not depend on the choice of the countable
group G having orbit partition θ; thus, x θ∼ y ⇐⇒ (x, y) ∈ Rθ for almost all x, y of X.

The canonical projections r : Rθ → X and s : Rθ → X defined by the equations

s(x, y) = x, r(x, y) = y ((x, y) ∈ Rθ)

are measurable mappings. For the corresponding measurable partitions ξs = s−1εX and ξr = r−1εX ,
the relations ξs ∨ ξr = εRθ

and, in the case where the group G is ergodic, ξs ∧ ξr = νRθ
, hold.

If, under the natural identification of X with Rθ/ξθ
, we take m as a factor measure on Rθ/ξθ

,
then for almost all C ∈ ξs, the conditional measure in C is just the counting measure, i.e., for
measurable subsets A ∈ Rθ,

μθ(A) =
∫

X
|A ∩ ({x}, Gx)| dm(x).

1.2. Connected Pairs of Discrete Measurable Partitions. We will need the following
definitions and results from [8], [21].

Let H be a group of automorphisms of the space X. We call it orbitally discrete if there exists
a countable subgroup G ⊂ H such that H ⊂ [G].

Proposition 1.1. Every subgroup of an orbitally discrete group is itself orbitally discrete.

If the group H is orbitally discrete, then we can define its orbit partition by assuming θ(H) =
θ(G) where the group G is countable and G ⊂ H ⊂ [G]. It is not hard to check that this definition
is mod 0 correct and does not depend on the choice of the group G; by definition, [H] = [G].

Proposition 1.2. Let ξ be a measurable partition and θ = θ(G) be an orbit partition of the
countable group G. Then the group [ξ] ∩ [G] is orbitally discrete, and its orbit partition coincides
with θ ∨ ξ .

A measurable partition ξ is called conditionally discrete if almost all its elements have atomic
conditional measures.

Proposition 1.3. If ξ and η are two measurable conditionally discrete partitions, then the
group [ξ] ∩N (η) is orbitally discrete.

To shorten the notation, we denote the group [ξ] ∩ N (η) by G(ξ, η) and its orbit partition by
θ(ξ|η).

A pair of conditionally discrete measurable partitions (ξ, η) is called connected if ξ ∨ η = ε and
θ(ξ|η) = ξ.
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Proposition 1.4. For a connected pair of measurable conditionally discrete partitions ξ and η ,
their non-measurable intersection ξ ∩ η , and hence the factor partitions ξ ∩ η/ξ and ξ ∩ η/η , are
correctly defined and these partitions are orbit partitions of suitable countable groups of automor-
phisms.

Theorem 1.5. If, for a connected pair of measurable conditionally discrete partitions ξ and η ,
the partitions ξ ∩ η/ξ and ξ ∩ η/η are of infinite type, then there exists a measurable subset A ⊂ X
such that ξ(A) = η(A) = X .

We introduce some more concepts. A polymorphism (more precisely, a polymorphism with
quasi-invariant measure) (see [6]) is a diagram Π = Π(μ) of the form

(X1, m1)
πX1←− (X1 ×X2, μ)

πX2−→ (X2, μ2),

in which (X1 × X2, μ) and (Xi, μi), i = 1, 2, are Lebesgue spaces and the natural projections
πXi : X1 × X2 → Xi are measurable. Thus, the partitions ξi = π−1

Xi
εXi of the space X1 × X2 are

measurable, ξ1 ∨ ξ2 = εX1×X2 , and the measures mi are factor measures for μ when (X1 ×X2)/ξi
are naturally identified with Xi. The systems of conditional measures corresponding to these factor
measures are denoted by {μx1

1 | x1 ∈ X1} and {μx2
2 | x2 ∈ X2}.

It is clear that any pair of measurable partitions (ξ, η) of the Lebesgue space (X,m) for which
ξ ∨ η = εX corresponds to a polymorphism

(X/ξ,m/ξ)
πξ←− (X,m)

πη−→ (X/η, μ/η),

where X is identified with (X/ξ×X/η), since ξ ∨ η = εX , and m/ξ,m/η are some factor measures.
Let θ = θ(G) be the orbit partition of the countable subgroup G ⊂ A(X) and (Rθ, μθ) be the

corresponding measurable equivalence relation. Then it can be considered as a polymorphism

Πθ : (X,m) πs←− (X ×X,μθ)
πr−→ (X,m),

where πs(x, y) = x and πr(x, y) = y for (x, y) ∈ X ×X (the measure μθ is a continuation from Rθ

to X ×X such that μθ((X ×X) \ Rθ) = 0). The partitions ξs = π−1
s (εX) and ξr = π−1

r (εX) form
a connected pair of partitions of the space (X ×X,μθ), and

ξs ∩ ξr/ξs = θ, ξs ∩ ξr/ξr = θ

under the natural identification of (X ×X)/ξs and (X ×X)/ξr with X.
1.3. Von Neumann Algebra of a Connected Pair. We denote by B(Hm) the algebra of

all bounded linear operators acting in the Hilbert space Hm = L2(X,m). To each transformation
g ∈ A(X), there corresponds a unitary operator Ug in Hm defined by the equality

(Ugf)(x) = f(g−1x)
(

d(gm)
dm

(x)
)1/2

, x ∈ X, f ∈ Hm.

For ϕ ∈ L∞(X,m), consider the multiplier Aϕ defined by

(Aϕf)(x) = ϕ(x)f(x), x ∈ X, f ∈ Hm.

Then g → Ug, g ∈ A(X), is a unitary representation of the group A(X) in the Hilbert space Hm

and ϕ → Aϕ, ϕ ∈ L∞(X,m), is an isomorphism of the algebra L∞(X,m) into B(Hm).
Now consider any pair of measurable partitions (ξ, η) in the space X. By L∞(ξ) denote the

subalgebra in L∞(X,m) consisting of all ξ-measurable functions from L∞(X,m), and let G(ξ, η) =
[ξ] ∩ N (η). We denote by M(ξ, η) the von Neumann algebra in B(Hm) generated by two families
of operators:

Ug, g ∈ G(ξ, η), Aϕ, ϕ ∈ L∞(η).
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Theorem 1.6. If (ξ, η) is a connected pair of measurable conditionally discrete partitions, then
M(ξ, η)′ =M(η, ξ). Moreover, if ξ ∧ η = νX , then M(ξ, η) is a factor and M0(ξ, η) = {Aϕ | ϕ ∈
L∞(ξ)}′ is a Cartan subalgebra inM(ξ, η) (that is, an abelian regular subalgebra which is the image
of some normal conditional expectation).

Now consider the polymorphism

Π(μ) : (X1,m1)
πs←− (X1 ×X2, μ) πr−→ (X2,m2),

for which (ξs, ξr) is a connected pair of conditionally discrete partitions. In this situation, the algebra
M(ξs, ξr) can be described as follows.

Due to the connectedness condition, the partitions θs = (ξs ∩ ξr)/ξs and θr = (ξs ∩ ξr)/ξr are
orbit partitions of some countable automorphism groups. A partition ξs consists of elements of the
form Xx

2 = {x} × θr(x), x ∈ X1. The space Hμ = L2(X1 ×X2, μ) decomposes into a direct integral

Hμ =
∫ ⊕

X1

Hx dm1(x)

of Hilbert spaces Hx = L2(Xx
2 , μ

x), x ∈ X1, where {μx, x ∈ X1} is a system of conditional measures
of the partition ξs. If x θs∼ y, then the equality

(Vx,yf)(z) =
(

dμx

dμy

)1/2

(z)f(z), f ∈ Hy, z ∈ Xx
2 ,

defines the linear isometry Vx,y : Hx →Hy.

Theorem 1.7 (see [21]). If (ξs, ξr) is a connected pair of conditionally discrete measurable
partitions of the space (X1 ×X2, μ) defined by the polymorphism Π(μ), then the algebra M(ξs, ξr)
coincides with the set of all decomposable operators A =

∫

X1
Ax dm1(x) in

∫ ⊕
X1
Hx dm1(x) such that

Ay = V (x, y)AxV (y, x) if x
θs∼ y, x, y ∈ X1.

Let G be a countable ergodic subgroup in A(X) and let θ = θ(G) be its orbit partition. The
measurable equivalence relation (Rθ, μθ) can be considered as a polymorphism

Π(μθ) : (X,m) πs←− (X ×X,μθ)
πr−→ (X,m).

The pair (ξs, ξr) is a connected pair of measurable conditionally discrete partitions with ξs ∨ ξr =
εX×X and θs = θr = θ. Thus, to each countable ergodic group G, there corresponds a factor
M(ξs, ξr), which we will denote by MG. SinceMG is independent of the choice of group G with a
given orbit partition θ, we also use the notation Mθ forMG.

The above construction of the factor MG is equivalent to Krieger’s construction in [13], [11].
The factor MG coincides with the crossed product of L∞(X,m) and G in the case where G acts
freely on X.

The canonical embedding j : L∞(X,m) → MG is defined by the equality j(ϕ) = Aϕ, where
ϕ(x, y) = ϕ(y), (x, y) ∈ X ×X. We denote the image j(L∞(X,m)) by M0

G.
The measure μ = μθ was chosen such that the conditional measures μx, x ∈ X, of the partition

ξs corresponding to the factor measure μ/ξs = m were counting measures in Xx = {x} × θ(x).
Therefore, in the Hilbert space Hx = L2(Xx, μx), we can define a natural orthonormalized basis
{exy , y ∈ θ(x)} where

exy((x, z)) =

{

1, if y = z,

0, if y �= z,
(x, z) ∈ Xx.

Here we can assume that Hx = Hy at x θ∼ y, i.e., the operators Vx,y are identities.
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For each g ∈ [G], we define g ∈ A(X × X, μθ) by setting g(x, y) = (x, gy), (x, y) ∈ X × X.
Obviously, the mapping g → Tg = Ug, g ∈ [G], is an isomorphism of the group [G] into the group of
unitary operators fromMG; moreover, the operators Tg are elements of the normalizer

NMG
(M0

G) = {U ∈MG | UM0
GU

∗ =M0
G, U unitary}

of the algebraM0
G; ((NMG

(M0
G))′′ =MG and

j(ϕ ◦ g) = T ∗
g j(ϕ)Tg, g ∈ [G], ϕ ∈ L∞(X,m).

The next result, obtained earlier in [13], follows from Theorem 1.7.

Theorem 1.8. For a countable ergodic group G ∈ A(X), the algebra M0
G is a Cartan subalge-

bra in the factor MG . Given a natural representation of the Hilbert space Hμ as a direct integral
∫ ⊕
X Hx dm(x), the factor MG consists exactly of all decomposable operators A =

∫

Ax dm(x) such

that Ax = Ay if x θ∼ y , and the subalgebraM0
G consists of all operators of the above form for which

the operators Ax are diagonal in the basis {exy | y ∈ θ(x)} for almost all x.
The type of factor MG is the same as the type of the group G.

2. Proper Pairs

2.1. Orbit Partition of a System of Partial Isometries.

Lemma 2.1. Let U be a countable subset of U(X) and R0 ⊂ X × X be a binary relation
defined by the relation (x, y) ∈ R0 ⇐⇒ ux = vy for some u, v ∈ U ∪ {eX}. Further, let θ be
the finest partition of the space X for which Rθ ⊃ R0 . Then there exists a countable subgroup
G ⊂ A(X) such that Rθ = RG ([θ] = [G]).

Proof. Consider the space X × U ′ with measure m × λ, where U ′ = U ∪ {eX} and λ is the
counting measure on U ′. On the set A = {(x, u) ∈ X × U ′ | x ∈ E(U)}, we define the partitions ξ
and η by the relations

(x, u)
ξ∼ (y, v) ⇐⇒ x = y,

(x, u)
η∼ (y, v) ⇐⇒ ux = vy

for (x, u), (y, v) in A. These partitions are measurable, since the mappings (x, u) → x and (x, u) →
ux from A to X are measurable. Then the partition θ under consideration coincides with the
partition ξ ∩ η|X×{eX} where X × {eX} is naturally identified with X. The partition ξ ∩ η is an
orbit partition of a countable group of automorphisms, so the partition ξ ∩ η|X×{eX} = θ also has
this property.

�
The partition θ described in Lemma 2.1 will be called the orbit partition of a countable system of

partial isomorphisms of U and [θ] = [G] its full group. We denote them by θ(U) and [U ], respectively.
2.2. Piecewise invariant partitions. A measurable partition ξ of space X is called piecewise

invariant with respect to the groupG ⊂ A(X) if every transformation g ofG admits a decomposition
g =

⊕

n un where un ∈ UN (ξ), i. e.,

un = g|E(un),
⋃

n

E(un) =
⋃

n

gE(un) = X, un(ξ|E(un)) = ξ|F (un).

Any invariant partition is obviously piecewise invariant. If ξ is piecewise invariant with respect
to G, then it is piecewise invariant with respect to [G].
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If G is a countable subgroup in A(X), θ = θ(G), and the measurable partition ξ is piecewise
invariant with respect to [G], then we can correctly define the factor partition θξ in the factor space
Xξ as follows. For each g ∈ G, we choose some its representation in the form g =

⊕

n ug,n, where
un ∈ UN (ξ), and consider a countable family of partial isomorphisms U = {ug,n | g ∈ G, n ∈ N}.
Then, the orbit partition θ(U) coincides with θ and for each u ∈ U , a factor isomorphism uξ ∈ U(Xξ)
is defined. We will call the orbit partition θξ of the countable system of partial isomorphisms
Uξ = {uξ | u ∈ U} the factor partition of θ over ξ. It is clear that this definition is mod 0 correct
and does not depend on the choice of the countable group G for which θ = θ(G), as well as on the
choice of the countable set of partial isomorphisms corresponding to G. Moreover, for any g ∈ [G]
and for almost all points x of X

ξ(gx)
θξ∼ ξ(x).

If the partition θ is ergodic, then θξ is also ergodic.
Piecewise invariant partitions usually occur in the following situation. Let ˜ξ be a measurable

partition of the space ˜X and X ⊂ ˜X be a subset of positive measure such that the smallest
measurable ˜ξ-set ˜ξ(X) containing X coincides with ˜X. Consider the restriction ξ = ˜ξX of the
partition ˜ξ of X and let ˜G be a countable subgroup in N (˜ξ), and θ = ˜θ|X be the restriction of its
orbit partition ˜θ = θ( ˜G) on X. Then the partition ξ is piecewise invariant with respect to [θ] and
the factor partition θξ coincides with the orbit partition θ( ˜G

˜ξ
), where ˜G

˜ξ
= {g̃

˜ξ
| g̃ ∈ ˜G}, with the

natural identification of ˜X/˜ξ and X/ξ.
Simple examples of piecewise invariant partitions arise when one considers measurable subpar-

titions. Namely, every measurable subpartition ξ of an orbit partition θ(G) of a countable group of
automorphisms of G is piecewise invariant with respect to G. Indeed, in this case, for each g ∈ [G],
one can choose a decomposition g =

⊕

n un such that E(un) and F (un) are one-layer with respect
to ξ. Then ξ|E(un) = ε|E(un) and ξ|F (un) = ε|F (un), and hence un ∈ UN (ξ). The factor partition θξ

defined above coincides in this case with the usual factor partition.
2.3. Proper Pairs. Let θ = θ(G) be the orbit partition of a countable group of automorphisms

G ⊂ A(X). We will say that a measurable partition ξ is properly located with respect to θ if the
measure m/ξ is continuous, ω[θ ∨ ξ] = ξ, and ξ is piecewise invariant with respect to [θ]. The pair
(θ, ξ) will be called a proper pair.

We will show that every proper pair (θ, ξ) can be obtained in the way described in Subsection
2.2 from a pair (˜θ, ˜ξ) by taking some embedding X in ˜X where ˜θ = θ( ˜G), G is a countable subgroup
of N (˜ξ), θ = ˜θ|X , and ξ = ˜ξ|X .

For ˜X, ˜θ, ˜ξ we take the countable multiplications of X, θ, ξ. Namely, let I be a countable set and
let λ be the counting measure on I. On the space ˜X = X × I, consider the measure m× λ and the
partitions ˜θ = θ × νI and ˜ξ = ξ × νξ defined by the relations

(x, i)
˜θ∼ (y, j) ⇐⇒ x

θ∼ y,

(x, i)
˜ξ∼ (y, j) ⇐⇒ x

ξ∼ y

for x, y ∈ X and i, j ∈ I.
We fix some element i0 ∈ I and define an embedding ϕ0 of the space X into ˜X as follows:

x → (x, i0). Let ξ0 = ϕ0(ξ) and θ0 = ϕ0(θ). Then ξ0 = ˜ξ|X0 and θ0 = ˜θ|X0 , where X0 = ϕ0(X) =
X × {i0}. The factor spaces ˜X/˜ξ and X0/ξ0 are identified.

Since ξ is piecewise invariant with respect to [θ], the partitions ξ0 and ˜ξ are piecewise invariant
with respect to [θ0] and [˜θ], respectively, and the factor partitions ˜θ/˜ξ and θ0/ξ0 coincide.

The condition ω[θ ∨ ξ] = ξ implies that ω[θ0 ∨ ξ0] = ξ0 and ω[˜θ ∨ ˜ξ] = ˜ξ, so the pairs (˜θ, ˜ξ) and
(θ0, ξ0) are proper pairs.
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Proposition 2.2. Let (θ, ξ) be a proper pair, (˜θ, ˜ξ) be its countable multiplication, and H be a
countable subgroup of A( ˜X/˜ξ) such that θ(H) = ˜θ/˜ξ . Then, for every automorphism h ∈ H , there
exists an automorphism ˜h ∈ [˜θ] ∩ N (˜ξ) such that h coincides with the factor automorphism ˜h/˜ξ .
Thus, if for some countable set ˜F the relation [ ˜F ] = [˜θ ∨ ˜ξ] holds, then [ ˜F ∪ {˜h | h ∈ H}] = [˜θ].

Proof. Since the pair (θ, ξ) is proper, the pairs (θ0, ξ0) and (˜θ, ˜ξ) are also proper. Every partial
isomorphism u of the set X0 from U(θ0) ∩ UN (ξ0) admits an extension ũ ∈ U( ˜X) such that ũ ∈
U(˜θ) ∩ UN (ξ0), E(ũ) = ˜ξ(E(u)), and F (ũ) = ˜ξ(F (u)). Indeed, due to the condition ω[˜θ ∨ ˜ξ] = ˜ξ,
we can find a sequence of partial isomorphisms {gn}∞n=0 and {g′n}∞n=0 of U [˜θ ∨ ˜ξ] such that

E(hn) = E(u), E(h′n) = F (u), n ∈ N,
∞
⋃

n=0

E(hn) = ˜ξ(E(u)),
∞
⋃

n=0

F (h′n) = ˜ξ(F (u)), h0 = eE(u), h′0 = eF (u),

where {F (hn), n = 0, 1, 2, . . . } and {F (h′n), n = 0, 1, 2, . . . } form systems of pairwise non-inter-
secting sets. Then, taking ũ =

⊕∞
n=0 h

′
nuhn, we obtain the required extension of the partial isomor-

phism u.
Now take any h ∈ H. By definition of the partition θ(H) = ˜θ/˜ξ, there exist a decomposition

h =
⊕

n vn and partial isomorphisms un ∈ U [˜θ] ∩ UN [˜θ] such that vn = un/˜ξ. Moreover, without
loss of generality, one can assume that E(un) and F (un) are contained in X0. We extend, as above,
each un to a partial isometry ũn ∈ U(˜θ) ∩ UN (˜ξ) in such a way that

E(ũn) = ˜ξ(E(un)) = π−1
˜ξ
E(vn), F (ũn) = ˜ξ(F (un)) = π−1

˜ξ
(vn).

Then, taking ˜h =
⊕

n ũn, we get an element of [˜θ] ∩ N (˜ξ) for which ˜h/˜ξ = h.
We put ˜H = {˜h | h ∈ H} and check that [ ˜F ∪ ˜H] = [˜θ]. The inclusion [ ˜F ∪ ˜H] ⊂ [˜θ] is true by

construction. Let g̃ ∈ [˜θ]. It follows from the definition of the partition ˜θ/˜ξ that ˜ξ(x̃) H∼ ˜ξ(g̃x̃) for
almost all x̃ ∈ ˜X. Therefore, there exist elements hn ∈ H and a decomposition g̃ =

⊕

n ũn such
that ũn ∈ UN [˜ξ] and ũn/˜ξ = hn|E(ũn/ξ̃). Since the partial isomorphisms ˜h−1

n g|E(un) are in U [˜θ], ˜ξ]

and [˜θ ∨ ˜ξ] = [ ˜F ], it follows that g̃ is in [ ˜F ∪ ˜H]. �
Thus, for every proper pair (θ, ξ) in X, there exist such a proper pair (˜θ, ˜ξ) in the space ˜X and an

embedding ϕ0 : X → X0 ⊂ ˜X such that ˜ξ(X0) = ˜X, ˜θ|X0 = ϕ0(θ), ˜ξ|X0 = ϕ0(ξ), and we can choose
countable transformation groups ˜F and ˜H for which [ ˜F ] = [˜θ ∨ ˜ξ], ˜H ⊂ N (˜ξ) ∩ [˜θ], [ ˜F ∪ ˜H] = [˜θ],
and the factor partition ˜θ/˜ξ coincides with the orbit partition of the group ˜H/˜ξ = {˜h/˜ξ | ˜h ∈ ˜H}.

If (θ, ξ) is a proper pair, θ = θ(G), and the group G is ergodic, then there are only the following
two possibilities for the partition ξ:

(a) for almost all elements of C ∈ ξ, the conditional measures of m are atomic;
(b) for almost all elements of C ∈ ξ, the conditional measures of m are continuous.
Indeed, consider a measurable set A = {x ∈ X | mξ(x)({x}) = 0}. If the set A has positive

measure, then, due to the piecewise invariance of ξ with respect to G, it follows that A is G-invariant
and hence m(X \A) = 0, since the group G is ergodic.

In the case (a), it follows from the condition ω[θ ∨ ξ] = ξ that θ ∨ ξ = θ[θ ∨ ξ] = ξ, i. e, ξ � θ

(the latter means that ξ is a measurable subpartition of θ).
2.4. Approximate Finiteness Conditions. Recall that a group G is called approximately

finite (a. f.), or hyperfinite, if there exists an element g ∈ A(X) such that [G] = [g]. It is known
that [G] is a. f. if and only if the partition θ = θ(G) is tame, i.e., there exists a decreasing sequence
of measurable partitions θn whose non-measurable intersection

⋂

n θn coincides with θ (i. e., θ(x) =
⋃

n θn(x) for almost all x ∈ X).
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Another condition equivalent to hyperfiniteness, the amenability of the equivalence relation Rθ,
is obtained by A. Connes, J. Feldman and B. Weiss [3] as follows.

An invariant (more precisely, left invariant) mean on (Rθ,mθ) is a positive mapping

P : L∞(Rθ,mθ)→ L∞(X,m)

such that
P (1) = 1 and P (f ◦ u) = (Pf) ◦ u, u ∈ U(X),

where for f ∈ L∞(Rθ,mθ),

(f ◦ u)(x, y) =

{

f(u−1x, y), (x, y) ∈ Rθ ∩ (F (u)×X),
0 otherwise

and for f ∈ L∞(X,m),

(f ◦ u)(x, y) =

{

f(u−1x), x ∈ F (u),
0 otherwise.

An equivalence relation Rθ is called amenable if it admits an invariant mean.
Theorem 2.3 (see [3]). The group [θ] = [G] is approximately finite if and only if the relation Rθ

is amenable.
Corollary 2.4 (see [3]). If the group [G] is approximately finite and h ∈ N [G], then the group

[G ∪ {h}] is also approximately finite.
We use these important results to prove the following theorem.
Theorem 2.5. Let (θ, ξ) be a proper pair. Then the group [θ] is approximately finite if and only

if the groups [θ ∨ ξ] and [θ/ξ] are approximately finite.
Lemma 2.6. Let H and G be countable subgroups in A(X), θ = θ[G ∪ H], ξ = ω(G) and

H ⊂ N (ξ). If [θ] is a. f., then [Hξ] is a. f., where Hξ = {h/ξ, h ∈ H}.
Proof. Without loss of generality, we can assume that mX = 1 and consider a factor measure

m/ξ on X/ξ. Let θ0 = θ(Hξ) and mθ,mθ0 be the measures on the equivalence relations Rθ and Rθ0

corresponding to the measures m and m/ξ.
Since [θ] is a. f., the relationRθ is amenable, so there exists an invariant mean P : L∞(Rθ,mθ)→

L∞(X,m). The natural projection πξ : X → X/ξ defines an embedding αξ : ϕ → ϕ ◦ πξ, ϕ ∈
L∞(X/ξ), of the space L∞(X/ξ,m/ξ) into L∞(X,m). As for almost all (x, y) it follows from
(x, y) ∈ Rθ that (πξx, πξy) ∈ Rθ0 , the equality (βξψ)(x, y) = ψ(πξx, πξy) defines an embedding

βξ : L∞(Rθ0 ,mθ0)→ L∞(Rθ,mθ).

Since G ⊂ [ξ] and P is an invariant mean on Rθ, we have for any g ∈ H and ψ ∈ L∞(Rθ0 ,mθ0) that
(βξψ) ◦ g = βξψ and P (βξψ) ◦ g = P ((βξψ) ◦ g) = P (βξψ), i. e., the function P (βξψ) is G-invariant.
Since ω(G) = ξ, this function is ξ-measurable and hence it belongs to αξ(L∞(x/ξ,m/ξ).

Let Pψ = α−1
ξ (P (βξψ)). Then the mapping

P : L∞(Rθ0 ,mθ0)→ L∞(x/ξ,m/ξ)

is an invariant mean on Rθ0 . Indeed, P is positive and P (1) = 1. We represent every partial
isomorphism u0 ∈ U(θ0) as u0 =

⊕

n u
0
n, where u0

n = (gn/ξ)|E(u0
n) and gn ∈ G. The operator

u =
⊕

n gn|πξ−1E(u0
n) is a partial isomorphism from U(θ) ∩ UN (ξ), u/ξ = u0, and E(u) and F (u)

are ξ-measurable sets. If ψ ∈ L∞(Rθ0 ,mθ0), then

(Pψ) ◦ u0 = α−1
ξ (P (βξψ)) ◦ u0 = α−1

ξ ((P (βξψ) ◦ u)
= α−1

ξ (P ((βξψ) ◦ u)) = α−1
ξ (P (βξ(ψ ◦ u0))) = P (ψ ◦ u0).
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Thus, P is an invariant mean, that is, the relation Rθ0 is amenable and the group [θ0] is approxi-
mately finite. �

Note that under the conditions of Lemma 2.6, the pair (θ, ξ) is proper and θ/ξ = θ0.
Proof of Theorem 2.5. Consider a countable multiplication (˜θ, ˜ξ) of a pair (θ, ξ). Then

[θ] is a. f. ⇐⇒ [˜θ] is a. f.,

[θ ∨ ξ] is a. f. ⇐⇒ [˜θ ∨ ˜ξ] is a. f.,

[θ/ξ] is a. f. ⇐⇒ [˜θ/˜ξ] is a. f.

So we can, without loss of generality, consider the pair (˜θ, ˜ξ) instead of (θ, ξ).
Due to Proposition 2.2, we can choose countable subgroups G and H in ˜θ such that [G] = [˜θ∨ ˜ξ],

H ⊂ N [˜ξ], [G ∪H] = [˜θ], and [H
˜θ/ξ̃

] = [θ̃/ξ̃], where Hξ̃ = {h/˜ξ | h ∈ H}. Thus, the conditions of

Lemma 2.6 are satisfied and hence [˜θ/˜ξ] is approximately finite if ˜θ is a. f. Thus, [˜θ ∨ ˜ξ] is a. f. as a
subgroup of the a. f. group [˜θ].

Conversely, let [˜θ∨˜ξ] and [˜θ/˜ξ] be a. f. groups. Then there exists h0 ∈ [˜θ/˜ξ] for which [h0] = [˜θ/˜ξ].
By Proposition 2.2, there is an h ∈ N [˜ξ] ∩ [˜θ] ⊂ N [˜θ ∨ ˜ξ] for which h/˜ξ = h0 and [G ∪ {h}] = ˜θ,
where G is a countable group such that [G] = [˜θ ∨ ˜ξ]. Applying Corollary 2.4, we obtain that [˜θ] is
a. f. �

3. Conjugacy of Measurable Partitions

In this section, we consider proper pairs (θ, ξ) in the case where θ = θ(G) is the orbit partition
of an ergodic a. f. type II1 group G and the measurable partition ξ has continuous conditional
measures.

As noted above, if ξ has discrete conditional measures, then it follows from the properness con-
dition that ξ � θ. The description of measurable subpartitions of orbit partitions is straightforward
and we omit it.

3.1. Classification Theorem. Let G be a countable ergodic type II1 automorphism group of
the space X and m be a G-invariant measure on X, mX = 1, θ = θ(G).

If ξ is properly located with respect to [G], i. e., (θ, ξ) is a proper pair, then there is a correctly
defined factor partition θ/ξ on the factor space X/ξ. Due to the ergodicity of G, the invariant
probability measure m is unique and hence the factor measure m/ξ is uniquely determined by
(θ, ξ). Thus, in this case, isomorphic pairs (θ, ξ) correspond to isomorphic triples (X/ξ, θ/ξ,m/ξ).

Under the approximate finiteness condition, all countable ergodic groups of type II1 are orbitally
isomorphic to each other. Therefore, the problem of classifying proper pairs in this case is reduced
to the problem of conjugacy of measurable partitions with respect to the normalizer N (θ).

Theorem 3.1. Let G be an ergodic a. f. group of measure-preserving automorphisms of the
space (X,m), mX = 1, and ξ1, ξ2 be properly located with respect to [G] measurable partitions with
continuous conditional measures. Then the following conditions are equivalent:

1) there exists an element g ∈ N [G] such that gξ1 = ξ2 ;
2) there exists an isomorphism g0 : X/ξ1 → X/ξ2 such that g0(m/ξ1) = m/ξ2 and g0(θ/ξ1) =

θ/ξ2 , where θ = θ(G).
Proof. Suppose condition 1) is satisfied. It follows from the uniqueness of the invariant measure

for an ergodic group of type II1 that gm = m. Therefore, if we take the factor isomorphism X/ξ1 →
X/ξ2 as g0, then g0(θ/ξ1) = θ/ξ2.

Now we check the implication 2) =⇒ 1).
Since almost all conditional measures of partitions ξi (i = 1, 2) are continuous, there exist

isomorphisms ϕi : (X,m)→ (X/ξi × Y, m/ξi × μ) such that ϕi(ξi) = εi × νY , where (Y, μ) is some
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Lebesgue space with continuous probability measure μ and εi are the partitions X/ξi into points.
Then the automorphism ϕ = ϕ2 ◦ (g0 × eY ) ◦ ϕ−1

1 translates ξ1 onto ξ2, preserves the measure m,
and the factor isomorphism (X/ξ1,m/ξ1)→ (X/ξ2,m/ξ2) induced by ϕ translates θ/ξ1 onto θ/ξ2.
Let θ1 = ϕ−1(θ), then θ1/ξ1 = θ/ξ1 and the pair (θ1, ξ1) is isomorphic to the pair (θ, ξ2).

We can assume that (X,m) = (X/ξ1 × Y, m/ξ1 × μ) and ξ1 = ε1 × νY . Consider the countable
multiplications (˜θ, ˜ξ1) and (˜θ1, ˜ξ1) of the pairs (θ, ξ1) and (θ1, ξ1) in the space ( ˜X, m̃) = (X×Y × I,
m×μ×λ) where (I, λ) is a countable set with the counting measure. Here the space X is identified
with the subset X/ξ1×A, where A is a subset of full measure of the space (˜Y , μ̃) = (Y × I, μ×λ),
ξ = ˜ξ|X , and θ1 = ˜θ1|X, with ˜ξ1 = ε1 × ν˜Y .

Let S be an ergodic measure-preserving automorphism of the space (˜Y , μ̃), then ˜S = S ×
e
˜Y
∈ A( ˜X, m̃) and ω(˜S) = ˜ξ1. The subgroups [˜θ ∨ ˜ξ1] and [˜θ1 ∨ ˜ξ1] of the group A( ˜X, m̃) are

approximately finite and have the same ergodic decomposition as [˜S] with ergodic components
ω[˜θ ∨ ˜ξ1] = ω[˜θ1 ∨ ˜ξ1] = ˜ξ1, since the pairs (˜θ, ˜ξ1) and (˜θ1, ˜ξ1) are proper. From the results of part 2
of W. Krieger’s paper [14], it follows that there exist automorphisms ψ and ψ1 of A( ˜X, m̃) leaving
the partition ˜ξ fixed and such that ψ(˜θ ∨ ˜ξ1) = θ(˜S), ψ1(˜θ1 ∨ ˜ξ1) = θ(˜S), and ψ(X) = ψ1(X) = X.
Therefore, we can, without loss of generality, assume that [˜θ ∨ ˜ξ1] = [˜θ1 ∨ ˜ξ1] = [˜S].

Since the groups [˜θ] and [˜θ1] are a. f., then, by Theorem 2 of [12], the group [˜θ/˜ξ1] = [˜θ1/˜ξ1] is
also a. f. Choose an automorphism R ∈ [˜θ/˜ξ1] such that θ(R) = ˜θ/˜ξ1. Using Proposition 1.4, we see
that [ ˜R, ˜S] = [˜θ] and [ ˜R1, ˜S] = [˜θ1]. Since ˜R and ˜R1 are in N [˜S] and ˜R/˜ξ1 = ˜R1/˜ξ1 = R, they are
of the form

˜R(x0, ỹ) = (Rx0, V (x0)ỹ), ˜R1(x0, ỹ) = (Rx0, V1(x0)ỹ),

(x0, ỹ) ∈ X/˜ξ1 × ˜Y = ˜X,

where x0 → V (x0) ∈ N [S] and x0 → V1(x0) ∈ N [S] are measurable fields of automorphisms on
X/ξ1.

Since the group [θ] preserves the measure m̃,

L =
dm̃( ˜R(x0, ỹ))
dm̃(x0, ỹ)

=
dm/ξ1(Rx0)
dm/ξ1(x0)

·modV (x0)

for almost all (x0, ỹ) ∈ ˜X and exactly the same equality is true for ˜R1 and V1. Hence, modV (x0) =
modV1(x0) a. e. in X/ξ1. From the results of Part 4 of W. Krieger’s paper [14], it follows that there
exists an automorphism ˜P ∈ N [˜S] such that ˜P ˜R ˜P−1 ∈ [˜S] and ˜P preserves the measure m̃ and
leaves the partition ˜ξ fixed. The relations ˜P [˜θ] ˜P−1 = ˜P [ ˜R, ˜S] ˜P−1 = [ ˜R1, ˜S] = [˜θ1] are valid, i.e.,
˜P ˜θ = ˜θ1.

The sets X and ˜PX in the space ˜X have the same conditional measure equal to 1 in almost
all elements of the partition ˜ξ, so there exists an automorphism ˜S1 ∈ [S] such that ˜S1

˜PX = X. So
(˜S1

˜P )|Xθ = θ1 and ˜S ˜P |Xξ1 = ξ1, that is, the pairs (θ, ξ1) and (θ1, ξ1), and hence the original pairs
(θ, ξ1) and (θ1, ξ2), are isomorphic. Thus, condition 2) is satisfied. �

3.2. Existence Theorem.

Theorem 3.2. Let (X0,m0) be a Lebesgue space with continuous measure and m(X0) = 1. For
every ergodic a. f. group [H] of automorphisms of the space (X0,m0), there exist an ergodic a. f.
group G of measure-preserving automorphisms of the space (X,m), mX = 1, and a measurable
partition ξ of X with continuous conditional measures such that the pair (θ, ξ), with θ = θ(G), is
proper, X0 = X/ξ , m0 = m/ξ , and θ/ξ = θ(H).

Proof. Let (X0,m0) be a Lebesgue space with continuous measure, m0X0 = 1, and (Y, ν)
be a Lebesgue space with infinite continuous measure. We take arbitrary ergodic automorphisms
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Q ∈ A(X0) and S ∈ A(Y, λ). Again using Part 4 of paper [14], we can find a measurable field
V : x0 → V (x0) ∈ N [S] such that

dm0(Qx0)
dm0(x0)

= (modV (x0))−1 for almost all x0 ∈ X0.

Consider the automorphisms ˜S and ˜Q of the space (X0 × Y,m0 × λ) defined by the equations

˜S(x0, y) = (x0, Sy), ˜Q(x0, y) = (Qx0, V (x0)y),

(x0, y) ∈ X0 × Y,

and the full group [˜S, ˜Q] ⊂ A(X0 × Y ) generated by the automorphisms ˜S and ˜Q. We denote by ˜θ

the orbit partition of this group, choose some subset A ⊂ Y of measure 1 and put

X = X0 ×A, m = m0 × λ|A, ξ = ˜ξ|X ,

where ξ = π−1
X0
εX0 .

The automorphism ˜Q preserves the measure m0 × λ, since

d(m0 × λ)( ˜Q(x0, y))
d(m0 × λ)(x0, y0)

=
dm0(Qx0)
dm0(x0)

·modV (x0) = 1.

The automorphism ˜S also preserves measure, so [ ˜Q, ˜S] ⊂ A(X0×Y,m0×λ) and hence [θ] preserves
the measure m.

Since S is ergodic, ω(˜S) = εX0 × λY = ˜ξ. On the other hand, ˜θ ∈ N (˜ξ) and the factor
automorphism ˜Q/˜ξ = Q is ergodic. Hence, the groups [˜θ] and [θ] = [˜θ]|X are ergodic.

Let ˜G0 be the group of automorphisms generated by ˜S and ˜Q. For any g ∈ [˜θ], there is a
g̃ ∈ [˜θ] such that g̃|X = g. Since [ ˜G0] = [˜θ], the automorphism g̃ admits a representation of the form
g̃ =

⊕

n g̃n| ˜An
, g̃n ∈ ˜G0, ˜An ⊂ X0 × Y , and therefore g =

⊕

n g̃n| ˜An∩X
. Since g̃n ∈ ˜G0 ⊂ N (˜ξ),

the partial isomorphisms g̃n| ˜An∩X
are in UN (ξ). Thus, the partition ξ is piecewise invariant with

respect to [θ]. Furthermore,

ω[θ ∨ ξ] = ω[˜θ ∨ ˜ξ]|X = ω(˜S)|X = ˜ξ|X = ξ.

So the pair (θ, ξ) is a proper one.
By construction,

X/ξ = X0 × Y/˜ξ = X0, m/ξ = m, θ/ξ = ˜θ/˜ξ = θ(Q),

and since the measure λ is continuous, the conditional measures of the partition ξ are also continuous.
The group [˜S] is approximately finite and ˜Q ∈ N [˜S]. By Corollary 2.4, the group [˜θ] = [˜S, ˜Q] is

also approximately finite. �
Corollary 3.3. From Theorems 3.1 and 3.2, it follows that the next two problems are equivalent.
1) The conjugacy problem of measurable partitions ξ with continuous conditional measures with

respect to N [G], where G is an ergodic a. f. group of type II1 and ξ is properly located with respect
to [G].

2) The classification problem of ergodic a. f. groups with respect to a measure-preserving orbit
isomorphism.

Note that the second problem was considered in [19], [20].
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4. Classification of Subalgebras MG(ξ)

4.1. Calculation of Relative Commutants. Let G be a countable ergodic subgroup in
A(X), θ = θ(G), and MG be the corresponding factor in the Hilbert space Hμ = L2(X × X),
μ = μθ. To every measurable partition ξ of the spaceX, there corresponds a commutative subalgebra
MG(ξ) = j(L∞(ξ)), where j is an isomorphism of L∞(X,m) onto the Cartan subalgebraM0

G, and
L∞(ξ) is the subalgebra of all ξ-measurable functions from L∞(X,m).

For each subgroup H ⊂ [G], consider the subalgebra MG,H of MG generated by M0
G and the

operators Tg, g ∈ H, where g → Tg is the canonical isomorphism of the group [G] to the normalizer
NMG

(M0
G) of the subalgebraM0

G.
By Proposition 1.1, the group H is orbitally discrete. Let θ1 = θ(H) be its orbit partition, which

is a subpartition of θ = θ(G).
Consider the space H as a direct integral H =

∫ ⊕
X Hx dm(x), where Hx = L2(Xx, μx), Xx =

{x} × θ(x), and {μx | x ∈ X} is a system of conditional measures of the partition π−1
s εX (cf. § 1).

The groupH corresponds to the groupH = {h | h ∈ H} ⊂ A(X×X,μ), where h(x, y) = (x, hy).
The partition ζ1 = θ(H) is measurable, discrete, and is a subpartition of ζs = π−1

sX
εX = θ(G):

(x, y)
ζ1∼ (x, z) ⇐⇒ y

θ1∼ z, (x, y), (x, z) ∈ Xx.

For each x ∈ X, denote by Kx = KH
x the subalgebra in B(Hx) that consists of all operators

Ax ∈ B(Hx) satisfying the relation

(Axey, ez) = 0 if y
θ1
� z.

Let BG.H be the subalgebra of B(H) consisting of all decomposable operators A =
∫

Ax dm(x) from
MG for which Ax ∈ KH

x for almost all x ∈ X.

Lemma 4.1. MG,H = BG,H .

Proof. The partitions ζ1 and ζr, where ζr = π−1
r εX , form a connected pair of measurable

conditionally discrete partitions of the space (X × X, m̃). Let {m̃C | C ∈ ζ1} be the system of
conditional measures of partition ζ1 corresponding to some factor measure m̃/ζ1 on X ×X/ζ1 and
HC = L2(C, m̃C), C ∈ ζ1. Then

H =
∫ ⊕

X
Hx dm(x) =

∫ ⊕

X

(

⊕

C∈ζ1, C∈Xx

HC

)

dm(x) =
∫

X×X/ζ1

HC dm̃/ζ1(C).

Applying Theorem 1.7 to the polymorphism

(

X ×X/ζ1, m̃/ζ1
) πζ1←− (

X ×X, m̃) πζr−→ (X,m),

we get the required result. �
Lemma 4.2. The relative commutantMc

G,H =MG∩M′
G,H of the algebraMG,H in the factor

MG coincides with MG(ω(H)).

Proof. The equality follows from the maximality of the subalgebraM0
G inMG and the relation

j(ϕ ◦ g) = T ∗
g (j(ϕ))Tg, g ∈ [G], ϕ ∈ L∞(X,m). �

Lemma 4.3. For any measurable partition ξ of the space X ,

(MG(ξ))c =MG,[ξ∨θ].
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Proof. By Proposition 1.2, the group [ξ] ∩ [G] is orbitally discrete and θ([ξ] ∩ [G]) = ξ ∨ θ.
Let ϕ be the function from L∞(ξ) that separates the elements of the partition ξ. It corresponds
to the operator j(ϕ) = B =

∫

Bx dm(x), where for almost all x ∈ X, the operators Bx ∈ B(Hx)

are diagonal in the basis {exy | y ∈ θ(x)}, with Bxe
x
y �= Bxe

x
z if y ξ

� z. If A ∈ (MG(ξ))c, then
A =

∫

Ax dm(x) and for almost all x, the operators Ax and Bx commute. Hence, Ax ∈ K[ξ∨θ]
x for

almost all x and, by Lemma 4.1, A ∈MG,[ξ∨θ], i. e., (MG(ξ))c ⊂MG,[ξ∨θ]. �
Corollary 4.4. If ω[θ ∨ ξ] = ξ , then MG(ξ) and MG,[θ∨ξ] are relative commutants of each

other in MG and MG(ξ) is the center of MG,[θ∨ξ] .

4.2. Classification Theorem.

Theorem 4.5. Let G be an ergodic a. f. group of type II1 and let ξi , i = 1, 2, be measurable par-
titions with continuous conditional measures, properly located with respect to [G]. Then the following
conditions are equivalent.

1) The partitions ξ1 and ξ2 are conjugate with respect to N [G].
2) The subalgebras MG(ξ1) and MG(ξ2) are conjugate in MG .

Lemma 4.6. Let G be a countable ergodic subgroup of A(X) and let H be a countable subgroup
in [G] of infinite type. Then for any U in the normalizer NMG

(MG,H), there exists an automorphism
g ∈ [G] ∩N [H] such that UT ∗

g ∈MG,H .

Proof. Let ϕ ∈ L∞(X,m) be a function separating the points of X, and let B = j(ϕ) ∈
M0

G. Then UBU∗ ∈ MG,H and UTgU
∗ ∈ MG,H , g ∈ H. By Lemma 4.1, MG,H consists of all

operators A =
∫

Ax dm(x) of MG for which Ax ∈ KH
x for almost all x. For the decompositions

B =
∫

Bx dm(x), Tg =
∫

(Tg)x dm(x) and U =
∫

Ux dm(x), the inclusions U∗
xBxUx ∈ KH

x and
U∗

x(Tg)xUx ∈ KH
x are valid for almost all x. Since the countable family {B, Tg | g ∈ H} generates

the algebraMG,H , we conclude that U∗
xKH

x Ux = KH
x for almost all x.

The center ZH
x of the algebra KH

x obviously consists of all operators Cx ∈ B(Hx) that are
diagonal in the basis {exy | y ∈ θ(x)} and such that Cxe

x
y = Cxe

x
z if y θ1∼ z (here θ1 = θ(H)). Since

U∗
xZ

H
x Ux = ZH

x , for almost all x, a permutation γx of the set {C | C ⊂ θ(x), C ∈ θ1} is defined
such that (Uxey, ez) = 0 if z /∈ γxθ1(y). Since U ∈ MG, it follows that Ux = Uy and hence γx = γy

if x θ∼ y.
Consider the subset R0 =

⋃

x{x} × γxθ1(x) ⊂ Rθ ⊂ X × X. This subset is m̃-measurable.
Indeed, the functions ϕg, g ∈ H, defined by the equations

ϕg(x, y) = (Ux(Tg)xex, ey), (x, y) ∈ Rθ,

are measurable and R0 =
⋃

g∈H{ϕg > 0}.
Consider the restrictions ηs = ξs|R0 and ηr = ξr|R0 to R0 of the measurable partitions ξs =

π−1
s εX and ξr = π−1

r εX . The partitions ηs and ηr are measurable, conditionally discrete and, as
can be seen from the definition of the set R0, form a connected pair. In addition, by construction,
ηs ∩ ηr/ηs = θ1 and ηs ∩ ηr/ηr = θ1. Since [θ1] = [H] is a group of infinite type, Theorem 1.5 can be
applied to the pair (ηs, ηr). Choose a measurable subset A ⊂ R0 such that ηs|A = ηr|A = εA and
ηs(A) = ηr(A) = R0. These conditions mean that A is the graph of some automorphism g0 ∈ A(X).
It follows from the inclusion A ⊂ Rθ that g0 ∈ [G], and since A ⊂ R0, we see that g0 ∈ N [H] and

(x, g0θ1(x)) = (x, γxθ1(x)) for almost all x ∈ X.

Hence Ux(T ∗
g0

)x ∈ KH
x for almost all x, and so UT ∗

g0
∈MG,H . �

Corollary 4.7. Let (˜θ, ˜ξ) be a proper pair in the space ˜X , and let ˜G and ˜H be countable
subgroups of A( ˜X) such that ˜θ = θ( ˜G), θ( ˜H) = ˜θ ∨ ˜ξ , and [G] is generated by the groups [ ˜H] and
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[ ˜G] ∩ N (˜ξ), while the group [ ˜H] is of infinite type. Then the action of the group [ ˜G] ∩ N (˜ξ) on
L∞(˜ξ)is translated, under the canonical isomorphism j : L∞(˜ξ) → M

˜G
(˜ξ) ⊂ M

˜G
, into an action

induced by the normalizer NM
˜G
(M

˜G
(˜ξ)) in M

˜G
(˜ξ).

Proof. By Corollary 4.4, the algebrasM
˜G, ˜H

andM
˜G
(˜ξ) are relative commutants of each other;

therefore, NM
˜G
(M

˜G, ˜H
) = NM

˜G
(M

˜G
(˜ξ)). Applying lemma 4.3, we obtain the required result. �

Proof of Theorem 4.5. If (θ, ξ), with θ = θ(G), is a proper pair, then, applying Corollary 4.7
to the countable multiplication (˜θ, ˜ξ) of the pair (θ, ξ), we see that the factor partition θ/ξ = ˜θ/˜ξ

is uniquely determined by the pair (MG,MG(ξ)). If G is a type II1 group and m is its invariant
measure, thenMG is a type II1 factor and the restriction of the trace onMG toMG(ξ) determines
the factor measure m/ξ in X/ξ. Thus, from the conjugacy of MG(ξ1) and MG(ξ2) in MG, the
isomorphism of the triples (X/ξi, θ/ξi, m/ξi), i = 1, 2, follows. If G is approximately finite, then
we obtain from Theorem 3.1 that 2) =⇒ 1). The converse is obvious. �

Remark 4.8. It is easy to verify that the statement of Theorem 4.5 is also true for partitions ξi
with discrete conditional measures.

Finally, we conclude with a simple statement that follows directly from Corollary 4.4.

Proposition 4.9. Let θ be an orbit partition of the group G and let ξi be such measurable
partitions that θ∨ ξi = ε. Then ξ1 and ξ2 are conjugate with respect to N (G) if and only ifMG(ξ1)
and MG(ξ2) are conjugate in MG .

It suffices to notice that (MG(ξi))c =M0
G. �
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