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Abstract. For partially ordered sets (X, �), we consider the square matrices MX with rows and
columns indexed by linear extensions of the partial order on X. Each entry (MX)PQ is a formal
variable defined by a pedestal of the linear order Q with respect to linear order P . We show that
all eigenvalues of any such matrix MX are Z-linear combinations of those variables.
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1. The Statement of the Main Result

Let X = {α1, . . . , αn} be a partially ordered set with the partial order �. A linear extension P

of � is a bijection P : X → [1, . . . , n] such that for any pair αi, αj , satisfying αi � αj , we have
P (αi) � P (αj).

Let P,Q be two linear extensions of �. We call the node Q−1(k) ∈ X a (P,Q)-disagreement
node (or descent node, following [9]) iff

P
(
Q−1(k − 1)

)
> P

(
Q−1(k)

)
.

By definition, the node Q−1(1) is a (P,Q)-agreement node. With every pair P,Q, we associate the
function εPQ : {1, . . . , n − 1} → {0, 1}, given by

εPQ(k) =

{
1, if Q−1(k + 1) is a (P,Q)-descent,
0 otherwise.

(1)

Note that for some pairs (P,Q) �= (P,Q′), the functions εPQ, εPQ′ can coincide (see § 4.3).
Let us denote by E = {ε : {1, . . . , n − 1} → {0, 1}} the set of all 2n−1 different ε functions,

and we associate with every ε a corresponding formal variable aε. For any poset X, consider the
square matrix MX , whose matrix elements are indexed by the pairs (P,Q), and are given by
(MX)PQ = aεPQ .

For example, the poset (X,�) with three elements and one relation, X = {{u, v, w}, u < v},
has three linear extensions of �: u < v < w, u < w < v, and w < u < v. Let P be the linear
extension u < v < w and Q – the linear extension u < w < v. We have εPQ = (0, 1), since 2 is not
a descent (u < v in both Q and P ) and 3 is a descent (w < v in Q but not in P ). The matrix MX

is ⎛

⎝
a00 a01 a10

a01 a00 a10

a01 a10 a00

⎞

⎠ . (2)

The eigenvalues of this matrix are a00 − a01 (twice) and a00 + a01 + a10, so they are Z-linear
combinations of the letters entering the matrix. One of us (O.O.) conjectured that this holds (the
eigenvalues are Z-linear combinations of the letters entering the matrix MX) for every poset X.
Below we present the proof of this conjecture.
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Theorem 1. For every poset X , the matrix MX is non-degenerate and all its eigenvalues are
linear combinations of the variables aε with integer coefficients.

Here “non-degenerate” means non-degenerate over the field of rational functions in the matrix
elements.

The matrices MX were introduced in paper [5]. It is proven there that the row sums
∑

Q(MX)PQ

do not depend on the row P , so the matrix MX is “stochastic” (up to scale) and

ΠX({aε}) :=
∑

Q

(MX)PQ

is its main eigenvalue. In [5], the corresponding sums are called the “pedestal polynomials”. They
enter into the expression for the generating functions of the monotone functions f : X → {0, 1,
2, . . . } (e. g., the generating function of the number of plane partitions, spacial partitions, etc.)

∑

monotone f : X→{0,1,2,... }
t
∑

x∈X f(x) = ΠX(t)
n∏

k=1

1
1 − tk

, (3)

where the polynomial ΠX(t) is obtained from ΠX({aε}) by the substitution

aε � t
∑n−1

k=1 kε(k).

We put relevant combinatorial facts about pedestals and pedestal polynomials into § 4.
Our main tool is the filter semigroup of operators MX

F , which we introduce in the next section.
They appeared first in [1], [3], where their spectral properties were studied. In fact, part of the proof
of Theorem 1 can be obtained by following the proof of Theorems 1, 2 in [1]. We give a shorter and
more direct proof.

The next section contains some general facts about posets. It is followed by the section containing
proofs.

2. The Filter Semigroup

At the end of this section we will introduce the filter semigroup. As it is easier to describe
geometrically as the face semigroup of a hyperplane arrangement, we do this first.

2.1. Faces. Consider the central real hyperplane arrangement An consisting of hyperplanes

{Hij : 1 � i < j � n}

in R
n, defined by:

Hij = {(x1, . . . , xn) : xi = xj}.
Every open connected component of the complement

R
n \

{⋃
Hij

}

is called a chamber. A cone is any union of closures of chambers which is convex. Let us introduce
the (finite) set O(n) of all different cones thus obtained.

Let X be a poset of n elements with a binary relation �. To every pair

i, j ∈ X, i � j,
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there corresponds a half-space

Kij = {xi � xj} ⊂ R
n

(here we assume that X is identified with {1, 2, . . . , n} as a plain set, ignoring the order). Consider
the cone

A(X,�) =
{ ⋂

i,j : i�j

Kij

}
∈ O(n),

where the intersection is taken over all pairs i, j such that i � j.
The following statements are well known (and easy to prove), see [2], [4], [6], [9].

Claim 2. The above defined correspondence

(X,�) → A(X,�)

is a one-to-one correspondence between the set of all partial orders on {1, 2, . . . , n} and the set of
all cones O(n).

We present an illustration of this claim for n = 4 (see Fig. 1).

Fig. 1. The central real hyperplane arrangement A4 in R
4, projected to R

3 along the line
x = y = z = t and intersected with the sphere S

2 ⊂ R
3. It is a partition of S

2 into 24 equal
triangles, each with angles (π/2, π/3, π/3). The types of convex unions of the triangles are:
the sphere, the hemisphere, the region between two great semicircles, an elementary triangle –
or e-triangle, a pair of e-triangles with a common side, a triangle made from three e-triangles,
a “square” formed by four e-triangles with a common π/2-vertex, a triangle made from a “square”
and a fifth adjacent e-triangle, a triangle formed by six e-triangles with a common π/3-vertex.
The number of the corresponding convex shapes are: 1, 12, 60, 24, 36, 48, 6, 24, 8, with the total
being 219. This is precisely the number of partial orders on the set of four distinct elements
(see sequence A001035 in OEIS [8]).

Let f ′, f ′′ be two faces in A(X) = A(X,�). (We allow that one or both of them are, in fact,
chambers, i. e., faces of highest dimension). Define the face f = f ′′(f ′) ∈ A(X) – or the face-product
f ′′f ′ – by the following procedure: choose points x′ ∈ f ′, x′′ ∈ f ′′ in general position and let
sx′x′′ : [0, 1] → R

n be a linear segment, sx′x′′(0) = x′, sx′x′′(1) = x′′. Consider the face f ∈ A(X)
which contains all the points sx′x′′(1 − ε) of our segment for ε > 0 small enough. Such a face does
exist due to the convexity of A(X). By definition, f ′′(f ′) = f . Note that if f ′′ is a chamber then
f ′′f ′ = f ′′.
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The face-product is associative. We mention for completeness that the semigroups A(X,�) are
what have been called left-regular bands (see [6]).

Claim 3. For every choice of faces f, g, h ∈ A(X,�), we have

f(gh) = (fg)h,

ff = f, fgf = fg.

We do not give the proofs here as we are not using these relations.

2.2. Filters. Let F be a filter on X of rank k, i. e., a surjective map F : X → {1, . . . , k}
preserving the partial order, and let

{b1, . . . , bj1}, {bj1+1, . . . , bj2}, . . . , {bjk−1+1, . . . , bjk
} ⊂ X

be its “floors”:

{bjr−1+1, . . . , bjr} = F−1(r), r = 1, . . . , k.

Consider the face fF ∈ A(X,�) defined by the equations

xbjr−1+1 = · · · = xbjr
, r = 1, . . . , k,

and inequalities

xbj1
< xbj2

< · · · < xbjk
.

(More precisely, we write an equation for every floor of F which contains at least two elements
of X.) This is a one-to-one correspondence between faces and filters. The filters of the highest
rank n, i. e., the linear extensions of �, correspond to the chambers.

The corresponding filter-product looks as follows. For F ′, F ′′ – two filters of X, the filter F =
F ′′F ′ on X is uniquely defined by the following properties:

• for u, v with F ′′(u) < F ′′(v), we have F (u) < F (v);
• for u, v with F ′′(u) = F ′′(v), we have F (u) < F (v) iff F ′(u) < F ′(v).

Indeed, let f ′, f ′′ be the two faces corresponding to the filters F ′, F ′′, and let the general position
points x′, x′′ belong to corresponding faces.

The fact that F ′′(u) < F ′′(v) means that x′′
u < x′′

v . But the point sx′x′′(1 − ε) is close to the
point x′′; therefore, [sx′x′′(1 − ε)]u < [sx′x′′(1 − ε)]v for all ε small enough.

If F ′′(u) = F ′′(v) and F ′(u) < F ′(v), then x′′
u = x′′

v , x′
u < x′

v. Since the map sx′x′′ : [0, 1] → R
n

is linear, for all t < 1, we have [sx′x′′(t)]u < [sx′x′′(t)]v.
Let F be a filter on X and P be some filter of rank n, i.e., a linear order on X. Then the filter

FP is again a filter of rank n. Consider the square matrix MX
F = ‖(MX

F )P,Q‖ where P,Q are linear
orders on X:

(MX
F )P,Q =

{
1 if Q = FP,

0 if Q �= FP.

The operators MX
F play a central role in our proof.

Examples of the operators MX
F are given in § 4.3.
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3. Proof of the Main Result

The plan of the proof is the following.
1) We will show that the matrix MX can be written as a linear combination of MX

F -s with
integer monomial coefficients.

2) We will show that all MX
F -s can be made upper-triangular via conjugation with the same

matrix, and the resulting upper-triangular matrices have integer entries on the diagonal.
3.1. The Filter Decomposition. Let us rewrite MX as the sum over all 2n−1 functions

ε : {1, . . . , n − 1} → {0, 1}:
MX =

∑

ε

aεBX,ε, (4)

where the entries of each matrix BX,ε are 0 or 1.
For every function ε, we define the number r(ε) = 1 +

∑n−1
j=1 ε(j) and we partition the segment

{1, . . . , n} into r(ε) consecutive segments

{1, . . . , n} = {1, . . . , c1} ∪ {c1 + 1, . . . , c1 + c2}
∪ {c1 + c2 + 1, . . . , c1 + c2 + c3} ∪ · · · ∪ {c1 + · · · + cr(ε) + 1, . . . , n},

where the values c1 + 1, c1 + c2 + 1, . . . , c1 + · · ·+ cr(ε) + 1 – are all the points where the function ε

takes the value 1.
For c1, . . . , cr – integers summing up to n, we denote by Fc1,...,cr the set of all filters F : X →

[1, 2, . . . , r] such that |F−1(i)| = ci for all i = 1, . . . , r.

Lemma 4. Suppose that the matrix BX,ε and the function ε have the parameters r and c1,

. . . , cr . Then the following inclusion-exclusion identity holds:

BX,ε =
∑

F∈Fc1,...,cr

MX
F −

[ ∑

F∈Fc1+c2,c3,...,cr
∪Fc1,c2+c3,...,cr∪···

MX
F

]

+
[ ∑

F∈Fc1+c2+c3,c4,...,cr
∪Fc1+c2,c3+c4,...,cr∪···

MX
F

]
− · · · , (5)

where the sums are taken over all possible mergers of neighboring indices ci , and the signs are
(−1)#mergers .

Proof. Indeed, if we take an order Q from the row P which appears on the lhs, then it agrees
with P over the first c1 − 1 locations, then it disagrees once, then it agrees again over next c2 − 1
locations, then disagrees once again, etc. But an order Q from the row P which appears on the rhs
and corresponds to the first sum in (5) agrees with P over the first c1−1 locations, then it agrees or
disagrees once, then it agrees again over next c2 − 1 locations, then agrees or disagrees once again,
etc. Therefore we have to remove all these Q-s which agree with P over the first c1 − 1 locations,
then agree once again, then agree also over next c2 − 1 locations, etc.

See § 4.3 for some MX
F operators. �

3.2. Conjugation of MX
F -s to Upper-Triangular. Let X = {α1, . . . , αn} be a poset with

the partial order �. We denote by TotX the set of all total orders extending �. Our matrices MX
F

are of the size |TotX | × |TotX |. Let us now abolish all order relations on X, getting the poset X

with |TotX | = n!. Of course, MX
F is a submatrix of MX

F . Imagine (after reindexing) that it is an
upper-left submatrix. We claim that to the right of this submatrix all matrix elements of MX

F are
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zero, and so MX
F is a block of MX

F . Indeed, each row of MX
F has exactly one 1, and the rest are 0-s.

But each row of MX
F already has one 1. So it is sufficient to know that the spectrum of MX

F consists
of integers.

In what follows, the initial poset X will not appear any more and we will deal only with the
“totally unordered” poset X̄. The fact that the matrices M X̄

F can be conjugated simultaneously to
upper-triangular ones can be deduced from the results of papers [1], [3]. We give a shorter and more
direct proof.

Let us consider an even bigger matrix NX
F of size 2n(n−1)/2. Here F is a filter on X, while the

rows and columns of NX
F are indexed by the tournaments between the n entries of X. A tournament

is an assignment of an order � to each pair i �= j of elements of the set X, independently for each
pair.

If we have a tournament � and a filter F on X, then we define a new tournament �F by the
rule:

1) if F (i) = F (j), then i �F j iff i � j;
2) if F (i) < F (j), then i �F j.
We define NX

F by

(NX
F )��′ =

{
1 if �′= �F ,

0 if �′ �= �F .

Any linear order defines a tournament in an obvious way, so our matrices MX
F are blocks of

NX
F , and it is sufficient to study only them.

The key observation now is the fact that NX
F is a tensor product of n(n − 1)/2 two-by-two

matrices, corresponding to all pairs (i, j), since the tournament orders � can be assigned to the
pairs independently. And since the tensor product of upper-triangular matrices is upper-triangular,
it is sufficient to check our claim just for the filters and tournaments in the case n = |X| = 2.

The two-element no-order set X = {1, 2} carries three different filters and has two possible
tournaments. The three two-by-two matrices NX

F -s are

N1 :=
(

1 0
1 0

)
, N2 :=

(
1 0
0 1

)
, N3 :=

(
0 1
0 1

)
.

Conjugating them by the discrete Fourier transform matrix

U =
1√
2

(
1 1
1 −1

)
,

brings them to the triple of upper-triangular matrices:

UN1U
−1 =

(
1 1
0 0

)
, UN2U

−1 =
(

1 0
0 1

)
, UN3U

−1 =
(

1 −1
0 0

)
.

Extending the conjugation through the tensor product finishes the proof. �
Remark 5. Recall the definition (4) of matrices BX,ε: for a poset X, matrices {BX,ε}, where

ε ∈ {0, 1}{1,...,n−1}, are defined by MX =
∑

ε aεBX,ε. Let L(X) be the Lie algebra generated by the
matrices {BX,ε}. The proof shows that the Lie algebra L(X) is solvable.

Remark 6. Let us denote by ΦT the algebra of functions on the set TourX of tournaments
considered as the set of vertices of the n(n − 1)/2-dimensional cube in R

n(n−1)/2. This algebra
carries an increasing filtration by subspaces

0 ⊂ Φ�0
T ⊂ Φ�1

T ⊂ · · · ⊂ Φ�n(n−1)/2
T = ΦT
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consisting of restrictions of polynomials of degree � 0,� 1, . . . to the vertices of the cube. This
filtration is strictly multiplicative in the sense that

Φ�k
T = Φ�1

T · · ·Φ�1
T︸ ︷︷ ︸

k

.

Our considerations imply that all operators NX
F preserve this filtration and commute with each

other on the associated graded space
⊕

k Φ�k
T /Φ�k−1

T .
Restricting functions from ΦT to the subset TotX ⊂ TourX , we again obtain a strictly multi-

plicative filtration on the algebra ΦX := R
TotX of functions on TotX , preserved by all operators

MX
F where F runs through filters on the poset X.

4. Appendices

4.1. Pedestals. Let X again be a finite poset with the partial order �, and let P,Q be a pair
of linear orders on X consistent with �. We define the function qPQ on X by

qPQ(Q−1(k)) = #{l : l � k, Q−1(l) is a (P,Q)-descent node}. (6)

Clearly, the function qPQ is non-decreasing on X and qPQ(Q−1(1)) = 0. It is called the pedestal
of Q with respect to P .

For example, let X be a 3 × 2 Young diagram and

P =
[
1 2 3
4 5 6

]
, Q =

[
1 2 5
3 4 6

]

be the two standard tableaux. Then,

qPQ =
[
0 0 1
0 0 1

]
.

Let EP denote the set of all pedestals qPQ. The correspondence

Q → qPQ ∈ EP

is a one-to-one map, as explained below.
Clearly, there is a map EP → E , where every pedestal qPQ corresponds to its “discrete derivative”

εPQ.
Pedestals were introduced in [7] in the following context. Consider the set P = PX of all

non-negative integer-valued non-decreasing functions p on X. Denote by v(p) the “volume” of p

v(p) =
∑

α∈X

p(α),

and let G be the following generating function:

GX(t) =
∑

k�0

gkt
k =

∑

p∈PX

tv(p),

i. e., gk is the number of non-decreasing p-s with v(p) = k. For example, if the poset X is, in fact,
the set Xn = [1, 2, . . . , n] ordered linearly, then

GXn(t) =
n∏

l=1

1
1 − tl
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is the generating function of the sequence gk of the number of partitions π of the integer k into at
most n parts:

k = π(1) + π(2) + · · · + π(n),

with π(i) � 0, π(i) � π(i + 1). Let Yn denote the set of all such partitions π (i.e. Young diagrams).
In order to write a formula for GX for an arbitrary poset X, one needs pedestals. Namely, let

us fix some ordering P of X, consider all pedestals qPQ, and let

ΠP (t) =
∑

Q

tv(qPQ) (7)

be the generating function (in fact, generating polynomial) of the sequence of the number of pedestals
with a given volume. Then we have the following identity:

GX(t) = ΠP (t)GXn(t) ≡ ΠP (t)
n∏

l=1

1
1 − tl

(8)

(compare with (3)). In particular, it follows from (8) that the polynomial ΠP (t) does not depend
on P , and thus can be denoted by ΠX(t). The reason that (8) holds is the existence of the bijection
b : PX → EP ×Yn between the set PX of non-decreasing functions and the direct product EP ×Yn,
respecting the volumes. Namely, to each pedestal qPQ and each partition π, it associates the following
function p on X:

p(Q−1(k)) = qPQ(Q−1(k)) + π(k), k = 1, . . . , n.

Clearly, the function thus defined is non-decreasing on X. To check that b is a one-to-one correspon-
dence, see [7], relation (46) and the construction of the inverse map b−1 given there. The bijectivity
of b implies, in particular, that for each P , all the pedestals qPQ are distinct.

In the case when X is a (2D) Young diagram, the functions p ∈ PX are called “reverse plane
partitions”. The generating function GX for these is also given by the famous Stanley [9] formula

GX(t) =
∏

α∈X

1
1 − th(α)

,

where h(α) is the hook length of the cell α ∈ X. When X is a rectangle, this is the MacMahon
formula. That means that in the case where X is a Young diagram, nice cancellations happen on
the rhs of (8). One can check that for some 3D Young diagram X, no cancellations happen in (8),
and this is the reason why the analog of the MacMahon formula in the 3D case does not exist.

4.2. Pedestal Polynomials. That the function ΠP (t) (see (7)) does not depend on the order
P on X, but only on X, has the following generalization. Instead of characterizing the pedestal qPQ

just by its volume, let us associate with it the monomial

mPQ(x1, x2, x3, . . . ) = xl1−1
1 xl2−l1

2 · · ·xlr−lr−1
r xn−lr+1

r+1 ,

where r is the number of (P,Q)-descent nodes, and l1, . . . , lr are their locations (see (6)). Note that

mPQ(1, t, t2, . . . ) = tv(qPQ).

It was shown in [5] that the polynomial

hP (x1, x2, x3, . . . ) =
∑

Q∈TotX

mPQ(x1, x2, x3, . . . )
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is also independent of P , so it can be denoted by hX(x1, x2, x3, . . . ). Another way of expressing this
is to say that the matrix M̃X (of size |TotX | × |TotX |) with entries

(M̃X)PQ = mPQ(x1, x2, x3, . . . )

is stochastic: the vector (1, 1, . . . , 1)� is the right eigenvector with the eigenvalue hX(x1, x2, x3, . . . ).
By replacing the monomials mPQ(x1, x2, x3, . . . ) with variables aεPQ , one obtains from M̃X our

matrix MX .
Remark 7. As we just said, we know from [5] that the rows of the matrix MX consist of the

same matrix elements permuted. So it is tempting to consider the set of permutations πPP ′ ∈ S|TotX |
which permute the elements of row P to those of row P ′. Unfortunately, rows of the matrix MX

can contain repeated elements, so the permutations πPP ′ are not uniquely defined.
4.3. Examples. Here we present several examples in which our posets X correspond to par-

titions; we first list the linear orders, that is, the standard Young tableaux of a given shape, and
then present the pedestal matrix with lines and columns labelled by the standard Young tableaux
in the listed order.

In all examples we considered, the pedestal matrix is diagonalisable in the generic point. How-
ever, for special values of variables, the pedestal matrix might have non-trivial Jordan blocks. We
give a minimal example - partition (3, 1). It is essentially the same example as the one before the
main theorem, with the pedestal matrix (2), because the box (1, 1) comes first in any linear order
and can be omitted.

Here it is enough to take a partial evaluation a10 
→ −2a01. Then the Jordan form is
⎛

⎝
a00 − a01 1 0

0 a00 − a01 0
0 0 a00 + 2a01

⎞

⎠ .

It would be interesting to understand the regimes in which the pedestal matrix is not diagonal-
isable.

A. Partition (3, 2). The standard tableaux are:

The pedestal matrix M̃X is x2
1A(3,2), where

A(3,2) =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎝

x3
1 x3

2 x2
1x2 x2

2x3 x1x
2
2

x3
2 x3

1 x2
2x3 x2

1x2 x1x
2
2

x2
1x2 x2

2x3 x3
1 x3

2 x1x
2
2

x2
2x3 x2

1x2 x3
2 x3

1 x1x
2
2

x2
2x3 x2

1x2 x3
2 x1x

2
2 x3

1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎠

.

After a replacement
φ : (x3

1, x
2
1x2, x1x

2
2, x

3
2, x

2
2x3) → (a1, a2, a3, a4, a5), (9)

we have

Aφ
(3,2) =

⎛

⎜⎜
⎜
⎜
⎝

a1 a4 a2 a5 a3

a4 a1 a5 a2 a3

a2 a5 a1 a4 a3

a5 a2 a4 a1 a3

a5 a2 a4 a3 a1

⎞

⎟⎟
⎟
⎟
⎠

.
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The eigenvalues of Aφ
(3,2) are:

a1 − a3, a1 + a2 − a4 − a5, a1 − a2 + a4 − a5,

a1 − a2 − a4 + a5, a1 + a2 + a3 + a4 + a5.

B. Partition (3, 1, 1). The standard tableaux are:

The pedestal matrix is x2
1A(3,1,1), where

A(3,1,1) =

⎛

⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

x3
1 x1x

2
2 x3

2 x2
1x2 x2

2x3 x1x
2
2

x1x
2
2 x3

1 x3
2 x2

1x2 x2
2x3 x1x

2
2

x1x
2
2 x3

2 x3
1 x2

2x3 x2
1x

2
2 x1x

2
2

x1x
2
2 x2

1x2 x2
2x3 x3

1 x3
2 x1x

2
2

x1x
2
2 x2

2x3 x2
1x2 x3

2 x3
1 x1x

2
2

x1x
2
2 x2

2x3 x2
1x2 x3

2 x1x
2
2 x3

1

⎞

⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

.

After the same replacement (9) (the matrices A(3,1,1) and A(3,2) contain the same monomials), we
have

Aφ
(3,1,1) =

⎛

⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

a1 a3 a4 a2 a5 a3

a3 a1 a4 a2 a5 a3

a3 a4 a1 a5 a2 a3

a3 a2 a5 a1 a4 a3

a3 a5 a2 a4 a1 a3

a3 a5 a2 a4 a3 a1

⎞

⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

.

The eigenvalues of Aφ
(3,1,1) are:

(a1 − a3)2, a1 + a2 − a4 − a5, a1 − a2 + a4 − a5,

a1 − a2 − a4 + a5, a1 + a2 + 2a3 + a4 + a5,

where the notation (y)k indicates that the multiplicity of the eigenvalue y is k.
Example (3, 1, 1) shows degeneration: the letter a3 appears twice in every row of Aφ

(3,1,1). The
corresponding monomial is x3

1x
2
2, so when writing down the decomposition of the matrix Ba3 , we

need filters from F3,2. There are three of them in F3,2 (as with matrix notation, element (i, j) is in
the intersection of row i and column j):

• F1 – Floor 1 contains cells (1, 1), (1, 2) and (2, 1);
• F2 – Floor 1 contains cells (1, 1), (1, 2) and (1, 3);
• F3 – Floor 1 contains cells (1, 1), (2, 1) and (3, 1).

The matrices of the action of these filters on the linear orders are

MF1 =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

, MF2 =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

,
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MF3 =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

.

The family F5 contains one filter, which acts as the identity I. The matrix Ba3 is thus

Ba3 =

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

0 1 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 1 0

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

= MF1 + MF2 + MF3 − I

as dictated by the inclusion-exclusion formula.

C. Partition (3, 2, 1). In this example, to save space, we write down the pedestal matrix in which
the replacement

(x6
1, x

5
1x2, x

4
1x

2
2, x

4
1x2x3, x

3
1x

3
2, x

3
1x

2
2x3, x

2
1x

4
2, x

2
1x

3
2x3, x

2
1x

2
2x

2
3, x

2
1x

2
2x3x4)

→ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)

is already made.

The standard tableaux are:
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The matrix Aφ
(3,2,1) is

Aφ
(3,2,1) =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

a1 a5 a7 a3 a9 a2 a6 a8 a3 a9 a5 a2 a8 a4 a10 a6

a5 a1 a7 a3 a9 a6 a2 a8 a3 a9 a5 a2 a8 a4 a10 a6

a5 a7 a1 a9 a3 a6 a8 a2 a9 a3 a5 a8 a2 a10 a4 a6

a5 a3 a9 a1 a7 a6 a2 a8 a4 a10 a6 a2 a8 a3 a9 a5

a5 a9 a3 a7 a1 a6 a8 a2 a10 a4 a6 a8 a2 a9 a3 a5

a2 a6 a8 a3 a9 a1 a5 a7 a3 a9 a5 a4 a10 a2 a8 a6

a6 a2 a8 a3 a9 a5 a1 a7 a3 a9 a5 a4 a10 a2 a8 a6

a6 a8 a2 a9 a3 a5 a7 a1 a9 a3 a5 a10 a4 a8 a2 a6

a6 a2 a8 a4 a10 a5 a3 a9 a1 a7 a5 a3 a9 a2 a8 a6

a6 a8 a2 a10 a4 a5 a9 a3 a7 a1 a5 a9 a3 a8 a2 a6

a6 a8 a2 a10 a4 a5 a9 a3 a7 a5 a1 a9 a3 a8 a6 a2

a5 a3 a9 a2 a8 a6 a4 a10 a2 a8 a6 a1 a7 a3 a9 a5

a5 a9 a3 a8 a2 a6 a10 a4 a8 a2 a6 a7 a1 a9 a3 a5

a6 a4 a10 a2 a8 a5 a3 a9 a2 a8 a6 a3 a9 a1 a7 a5

a6 a10 a4 a8 a2 a5 a9 a3 a9 a2 a6 a9 a3 a7 a1 a5

a6 a10 a4 a8 a2 a5 a9 a3 a8 a6 a2 a9 a3 a7 a5 a1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

.

The eigenvalues of Aφ
(3,2,1) are:

(a1 − a4 − a7 + a10)3, a1 − a4 + a7 − a10, (a1 + a2 − a5 − a6)2,

(a1 − a2 − a5 + a6)2, (a1 − a2 − a3 + a4 + a7 − a8 − a9 + a10)2,

(a1 − a2 − a3 + a4 − a7 + a8 + a9 − a10)2, (a1 − a4 + a5 − a6 + a7 − a10)2,

a1 + 2a2 + 2a3 + a4 − a7 − 2a8 − 2a9 − a10,

a1 + 2a2 + 2a3 + 2a5 + 2a6 + a7 + 2a8 + 2a9 + a10.
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