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Introduction

1. Endowing a countable group G with a probability measure μ rigs the group with an additional
structure in a sense akin to a Riemannian metric on a smooth manifold. In both situations this
additional structure gives rise to a Markov dynamics on the original state space: this is a Brownian
motion in the manifold case and a random walk in the group case.

In the framework of the general theory of Markov processes, one can then define the Poisson
boundary of the state space. In probabilistic language this is a measure space that describes all
stochastically significant behaviour of the sample paths of the respective Markov process at infinity.
In ergodic terms this is the space of ergodic components of the time shift on the path space, whereas
in analytic terms this is the spectrum of the commutative Banach algebra of bounded harmonic
functions.

It is then natural to ask about a complete description (identification) of the Poisson boundary in
terms of the “observed” limit behaviour of Markov sample paths. This behaviour can be characterized
by their analytic, geometric, algebraic, or combinatorial properties. In the particular case where no
limit behaviour is observed at all, already the question about triviality of the Poisson boundary, i. e.,
about absence of non-constant bounded harmonic functions (the Liouville property), or, equivalently,
about ergodicity of the time shift on the path space, is highly non-trivial (in the same way as the
question about ergodicity of many other dynamical systems).

From a probabilistic point of view, the Liouville property is equivalent to asymptotic vanishing of
the dependence of the one-dimensional distributions of the Markov process on its initial distribution
as time goes to infinity. This is why for random walks on groups, this property can also be formulated
in an entirely analytic language, without relying on any probabilistic interpretations. Namely, an
irreducible probability measure μ on a group G is Liouville if and only if the means on G that
arise by passing to a Banach limit of the sequence of the convolution powers μ∗t are left invariant
(see § 1.D, as well as Remarks 18 and 53).

2. The fact that random walks on groups are homogeneous not only in time, but also in space,
allows one to define the asymptotic entropy h(μ), which makes the aforementioned question about
the Liouville property entirely quantitative: the Poisson boundary ∂μG of a random walk (G,μ) is
trivial if and only if h(μ) = 0 (for the sake of simplicity, we assume, throughout the Introduction,
that the Poisson boundary is endowed with the primary harmonic measure ν that corresponds
to the initial distribution concentrated at the group identity, see § 1.B). There is an analogous
criterion (based on the asymptotic entropy of conditional random walks) for the general problem
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of identification of the Poisson boundary as well. Nonetheless, these criteria only work under the
finiteness assumption on the entropy H(μ) of the step distribution μ.

The asymptotic entropy

h(μ) = lim
H(μ∗t)

t

(where μ∗t denotes the t-fold convolution of the measure μ with itself) was introduced by A. Avez
in 1972 [14] (and a bit later, independently, by A. M. Vershik), and the closely related (as became
clear later) differential entropy of the boundary had been used by H. Furstenberg even earlier [29].
However, the full development of the entropy theory was achieved only on the basis of ergodic
methods related to an analogy between the asymptotic entropy of random walks on groups and the
entropy of dynamical systems. This program was proposed by A.M. Vershik in the 1970s (see [3;
p. 60]) and implemented in his joint works with the author [6], [36], as well as independently (and
using a somewhat different approach) by Y. Derriennic [21]. Subsequently, the entropy theory of
random walks was extended by the author to a much broader class of “stochastically homogeneous”
Markov chains (see Remark 22).

A rather unexpected consequence of the entropy theory was the appearance of the finiteness
condition for the entropy of the step distribution μ in a situation that, at first glance, is completely
unrelated to entropy. The entropy of the reflected measure μ̌(g) = μ(g−1) obviously coincides with
the entropy of the original measure μ, and therefore their asymptotic entropies also coincide. Thus,
both measures μ and μ̌ are either Liouville or non-Liouville simultaneously, i. e., left invariance of
the corresponding limit means on the group is automatically equivalent to their right invariance.
On the other hand, for measures with infinite entropy this is not necessarily the case: already in
1983, the author [7; Theorem 1.4] constructed an example of a measure μ with infinite entropy that
is “one-sided Liouville” (it is Liouville itself, while the reflected measure μ̌ is not Liouville).

3. The aim of the present paper is to exhibit the critical role of entropy finiteness in yet another
situation: for random walks on products of several groups.

Let us consider the product ˜G = G × G′ of two (for simplicity) groups G and G′, with the
random walk defined by a step distribution μ̃. The projections of this walk onto each coordinate are
the random walks on G and G′ determined by the respective marginal distributions μ and μ′ of the
measure μ̃. It is natural to ask about the relationship between the Liouville properties of these three
measures, or, more generally, to ask how the Poisson boundaries of these three walks are related.

The simplest way to obtain a measure with the given marginals μ and μ′ is to take their product
μ̃ = μ⊗ μ′. One can also consider a convex combination

μ̃ = αμ⊗ δe′ + (1 − α)δe ⊗ μ′,

where e and e′ are the identities of the respective groups. In the latter case, the marginals are not
the measures μ, μ′ themselves, but their “lazy” modifications αμ + (1 − α)δe and (1 − α)μ′ + αδe′ ,
which does not really change anything as the Poisson boundaries of the lazy measures are the same
as those of the respective original measures μ, μ′. In both cases the Poisson boundary ∂μ̃

˜G is the
product of the Poisson boundaries of the quotient groups ∂μG and ∂μ′G′ as measure spaces (i. e.,
the primary harmonic measure of the random walk on ˜G is a product measure), and, in particular,
the measure μ̃ is Liouville if and only if both measures μ and μ′ are simultaneously Liouville.

These definitions are not specific to random walks and they can be applied to arbitrary Markov
chains (by a formal replacement of step distributions with Markov operators). The resulting Markov
chains are called, respectively, direct and Cartesian products of the original chains, and the proofs
of the aforementioned properties boil down to verifying that the product of two minimal positive
harmonic functions is also minimal with respect to the product operator [39; p. 146]. Conversely, the
statements about the factorization of minimal positive harmonic functions of the product operator
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(see S.A. Molchanov [8] for direct products, and M. Picardello and W. Woess [48] for Cartesian
products) are much less obvious (in particular, because they require involvement of λ-harmonic
functions with λ �= 1) and their proofs rely on the Martin theory.

In the context of arbitrary Markov chains, there are no other universal methods for obtaining
a Markov chain on the product space whose marginals would be given chains on the spaces-multi-
pliers, but this is not the case for random walks on groups. Here we are talking precisely about
the aforementioned random walks whose step distribution μ̃ has given marginal distributions μ, μ′.
Although this setup is very natural, such walks have not been subject to a systematic study even
though “multicomponent” Poisson boundaries did arise, for example, in the work of the author [40]
for discrete subgroups in the product of several simple Lie groups, or in the work of S. Brofferio and
B. Shapira [19] for groups of rational matrices. The author’s interest in this subject was sparked by
a question posed by R. I. Grigorchuk about random walks on the product of several copies of the
same group, which arise when considering self-similar groups, as such products have a finite index
in the corresponding permutational wreath products [33].

4. It is not hard to verify (Proposition 21 and Remark 22) that under the condition of finiteness
of the entropy of the measure μ̃, the Poisson boundary ∂μ̃

˜G is fully described by the behaviour of the
quotient walks on the groups-multipliers, i. e., the mapping ∂μ̃

˜G→ ∂μG× ∂μ′G′ is an isomorphism
of measure spaces. It should be emphasized that although the marginals of the primary harmonic
measure ν̃ are the respective primary harmonic measures ν, ν ′, this by no means implies that ν̃ is
their product. The question of describing the measure ν̃ seems to be quite interesting and it remains
completely open even in the simplest situations; for example, for the measure μ̃ = 1

2(μ⊗μ+diag μ)
in the case when G = G′ is a free group, μ is the uniform distribution on the (symmetric) set of free
generators and diagμ is the corresponding measure on the diagonal of the product G×G. Note that
spatial homogeneity is essential in defining a random walk on G × G with the transition measure
diagμ, and such a “diagonal” Markov operator cannot be defined for an arbitrary Markov chain.

In particular, if the entropy H(μ̃) of the measure μ̃ is finite, then the Liouville property for this
measure is equivalent to its marginals μ and μ′ being Liouville simultaneously (Proposition 21). We
show that if the entropy finiteness condition is dropped, this is no longer necessarily the case by
explicitly constructing the corresponding counterexample (Theorem 54).

This construction is based on using, in a slightly modified form, the aforementioned example of
a one-sided Liouville measure μ on the wreath product L = Z �Z2 (the one-dimensional lamplighter
group), whose projection onto Z has a non-zero mean. The idea is quite transparent and consists in
taking the “semidiagonal” subgroup ˜L0 with a common Z-component in the product ˜L = L×L, and
then considering a measure μ̃ on it whose marginals coincide with μ, and thus are Liouville. On the
other hand, it is easy to choose μ̃ in such a way that it is “almost” (but not completely) diagonal in
the sense that its image on L under the mapping (n, ϕ, ϕ′) → (n, ϕ− ϕ′) has a non-singleton finite
support and is not Liouville, thus ensuring that the measure μ̃ is not Liouville either.

5. With rare exceptions (for example, see the “trunk” criterion of A. Erschler and the author
[24; Proposition 3.8]), the entropy theory (more precisely, the criterion from [40]) remains the only
means of identifying a non-trivial Poisson boundary of random walks on countable groups. Very
recently, the Ultima Thule of the entropy theory has been reached for two classes of groups serving
as the main examples of this kind: Gromov hyperbolic groups (and their various modifications) in
the work of K. Chawla, B. Forghani, J. Frisch, and G. Tiozzo [20], and wreath products in the work
of J. Frisch and E. Silva [27]. Namely, it was shown that in both cases convergence to the “natural”
boundary (the hyperbolic one in the first case and the space of infinite configurations in the second
case) indeed fully describes the Poisson boundary without any additional conditions on the step
distribution other than finiteness of its entropy. It is worth noting, though, that in the hyperbolic
case, convergence to the boundary does not require any assumptions about the step distribution at
all (except for the purely geometric condition of non-elementarity) and the problem of identifying
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the Poisson boundary, for example, for a random walk on a free group, posed by A.M. Vershik and
the author 40 years ago [36; p. 485], still remains completely open (it remains open even for free
semigroups in the absence of cancellations). For a description of the current state of affairs, see [20].
The situation with wreath products is somewhat more complicated, and we refrain from discussing
the preceding very interesting results in this direction, referring the reader instead to the detailed
review given in [27].

In light of this, it should be noted that the example we constructed is, to the best of the author’s
knowledge, the first one in which the Poisson boundary of a random walk with infinite entropy (in
our example described by non-trivial joint behaviour of pairs of configurations) is qualitatively
different from the Poisson boundaries of random walks with finite entropy (described in our case
by separate behaviour of the marginal walks).

The recent breakthrough of J. Frisch, Y. Hartman, O. Tamuz, and P. Vahidi Ferdowsi [26] led
to a complete description of the groups for which both Liouville and non-Liouville measures coexist.
This is precisely the class of amenable groups that are not hyper-FC-central (do not coincide with
their hyper-FC-center), or, equivalently, the amenable groups with an ICC quotient group (i. e., one
in which all non-trivial conjugacy classes are infinite). Soon thereafter, A.V. Alpeev [12] showed that
one-sided Liouville measures exist on any group from this class. After the author had informed him
of the main result of this work, A.V. Alpeev [13] proved that an example with the same properties
can be constructed for the product of arbitrary groups from this class, and moreover, all measures
involved in the construction can be chosen to be symmetric and irreducible.

Finally, it should be noted that it would be wrong to think that “all” measures with infinite
entropy are “pathological.” There is a very general construction described in a joint work with
B. Forghani [25] that allows, starting from a certain fixed step distribution, to build numerous other
measures (in particular, those with infinite entropy) with the same Poisson boundary.

6. The paper is organized as follows. We begin by recalling the main definitions and results
used throughout, while formulating and proving necessary auxiliary statements along the way. In
the first two sections, we discuss the Poisson boundary (§ 1) and the entropy theory of random
walks (§ 2). Then we talk about wreath products of groups (§ 3) and random walks on them (§ 4).
Here we describe the random walks on the groups L and ˜L0 (mentioned in no. 4 above) and
establish conditions under which they are not Liouville (Claims 42, 43 and 46). Finally, in § 5, we
first establish the main technical ingredient (Lemma 47) – the equivalence of the Liouville property
and infiniteness of the step distribution entropy for the considered class of measures on the group L
(which, for this class of measures, is also equivalent to the one-sided Liouville property, Theorem 52).
Then, we obtain our main result: the existence of a non-Liouville measure (as noted in no. 4, it
must have infinite entropy) on the product of two groups, both of whose marginals are Liouville
(Theorem 54). Paying tribute to the constant interest of Anatoly Moiseevich Vershik in the history
of mathematics and its contemporary impact (see [3]–[5] regarding the topics discussed here), we
conclude the article with a brief historical commentary on the origin of the main concepts featured
in its title: Liouville’s property and Shannon’s entropy.

1. Poisson Boundary and Liouville Property

Поэзия, должно быть, состоит
в отсутствии отчетливой границы.
И. Бродский. Post aetatem nostram

1.A. The random walk (G,μ) on a countable group G determined by a probability measure μ
is the Markov chain with the state space G and transition probabilities

p(g, g′) = μ(g−1g′),
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invariant under the left action of the group G on itself. In other words, the Markov transitions

g
h∼μ� g′ = gh (1)

of the random walk (G,μ) consist in right multiplication by a μ-distributed random increment h.
The resulting Markov operator P = Pμ acts on functions on the group G by averaging as

Pf(g) =
∑

h

μ(h)f(gh), (2)

and its dual operator
θ �→ θP = θ ∗ μ (3)

acts on measures by applying the Markov transitions (1), i. e., as the right convolution with the
measure μ.

Any initial distribution θ (not necessarily a probability one) determines the associated Markov
measure Pθ on the space GZ+ of sample paths g = (g0, g1, g2, . . . ), where

gt = g0h1h2 . . . ht ∀ t ∈ Z+,

and (ht) is a sequence of independent μ-distributed increments of the random walk. Thus, the
one-dimensional distribution of the measure Pθ at time t is θP t = θ ∗ μ∗t, where μ∗t denotes the
t-fold convolution of the measure μ with itself. Since the space of sample paths is endowed with
a natural coordinate-wise action of the group G

gg = (gg0, gg1, gg2, . . . ) ∀ g ∈ G, g = (g0, g1, g2, . . . ) ∈ GZ+ , (4)

and the mapping θ �→ Pθ is equivariant due to the spatial homogeneity of the transition proba-
bilities, the measure Pθ is the convolution of the initial distribution θ with the measure P = Pδe ,
corresponding to the initial distribution concentrated at the identity e of the group G, namely,

Pθ = θ ∗ P =
∑

g

μ(g)gP,

where gP = Pg = Pδg is the measure on the space of sample paths issued from a point g ∈ G.
The counting measure # on the group G is preserved by the transition operator (3) of the random
walk, and therefore the corresponding σ-finite measure P# on the space of sample paths is invariant
under the shift

T : (g0, g1, g2, . . . ) �→ (g1, g2, g3, . . . ). (5)

1.B. Two sample paths g = (g0, g1, . . . ) and g′ = (g′0, g′1, . . . ) are called (asynchronously)
asymptotically equivalent if they coincide from some moment onwards (specific to each sample
path), i. e., if there exist integers t, t′ � 0 such that gt+i = g′t′+i for all i � 0. In other words, this is
the orbital equivalence relation of the shift (5): sample paths g and g′ are equivalent if T tg = T t′g′

for some t, t′. The measurable hull E of this equivalence relation, i. e., the σ–algebra of all measurable
subsets of the space (GZ+ ,P#) that are unions of equivalence classes (P# − mod 0), is called the
exit σ-algebra of the random walk (G,μ). Equivalently, E is the completion of the σ-algebra of
T -invariant subsets of the space of sample paths GZ+ with respect to the measure P#. The arising
quotient of the space of sample paths (GZ+ ,P#), i. e., the space of ergodic components of the shift T
with respect to the invariant measure P#, is called the Poisson boundary ∂μG of the random walk
(G,μ), and we denote by

bnd: GZ+ → ∂μG
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the corresponding canonical projection. The harmonic measure of an initial distribution θ is the
image

νθ = bndPθ

(which is well defined because the corresponding measure Pθ on the space of sample paths is
absolutely continuous with respect to P#). We denote by ν the harmonic measure class on ∂μG,
i. e., the common class of the harmonic measures νθ corresponding to the initial distributions θ
with full support supp θ = G. Note that the image bndP# of the measure P# itself is trivially
infinite, which is why we have to introduce the harmonic measure class (alternatively, one could fix
a reference measure from this class). The harmonic measure νθ determined by any initial probability
distribution θ is, of course, a probability one, and it is dominated by the class ν, i. e., it is absolutely
continuous with respect to ν.

Since the action (4) of the group G on the space of sample paths GZ+ commutes with the
shift (5), it descends to the Poisson boundary, and the harmonic measure class ν is quasi-invariant
under this action. We denote by

ν = bndP (6)

the primary harmonic measure determined by the single-point initial distribution concentrated at
the identity of the group. Then

νg = bndPg = gν

for any initial point g ∈ G, and νθ = θ ∗ ν for any initial distribution θ. The primary harmonic
measure ν is μ-stationary in the sense that

ν = bndP = bnd(TP) = bndPμ =
∑

g

μ(g)gν = μ ∗ ν. (7)

As we have already noted, the measure ν is dominated by the harmonic measure class ν. If the step
distribution μ is non-degenerate in the sense that the semigroup sgrμ, generated by its support
suppμ, coincides with the whole group G, then, as follows from (7), the measure ν is quasi-invariant
and belongs to the class ν. In general, even if the measure μ is irreducible (the group grμ generated
by its support coincides with G), this domination can be strict (which leads to non-trivial questions,
see the discussion in the paper by A. Erschler and the author [24; § 5.D]). It is worth adding that
the irreducibility condition (unlike non-degeneracy) is not restrictive as it can always be satisfied
by passing to the smaller group grμ.

The image of the random walk (G,μ) under a group epimorphism π : G �→ G is the random walk
on the quotient group G with the step distribution μ = π(μ), and therefore the Poisson boundary
∂μG is a quotient of the Poisson boundary ∂μG (more precisely, the space of ergodic components of
the action of the normal subgroup kerπ). In particular, if the quotient measure μ is not Liouville,
then the original measure μ is not Liouville either.

1.C. A function f on a group G is called μ-harmonic if Pf = f for the Markov operator P (2).
Because of the μ-stationarity of the primary harmonic measure ν, any function ̂f ∈ L∞(∂μG,ν)
gives rise to the μ-harmonic function

f(g) = 〈 ̂f, gν〉. (8)

Furthermore, the Poisson formula (8) establishes an isometric isomorphism between the space
L∞(∂μG,ν) and the Banach space H∞(G,μ) of bounded μ-harmonic functions on G endowed with
the sup-norm. In this sense, the correspondence (8) is an analogue of the classical Poisson formula
for harmonic functions on the unit disk of the complex plane. In particular, the Poisson boundary
∂μG is trivial (i. e., is a singleton) if and only if there are no non-constant bounded μ-harmonic
functions on the group G (the Liouville property).
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We call a measure μ on a group G Liouville if the primary harmonic measure ν is a delta
measure, which is equivalent to the absence of non-constant bounded μ-harmonic functions on the
semigroup sgrμ, i. e., on the set of points attainable by the random walk issued from the group
identity. It is clear that the same is then true for any initial point. In probabilistic terms (see
the Introduction), this means that there is no non-trivial stochastically significant behaviour of
the random walk at infinity for an arbitrary one-point initial distribution. The convenience of this
definition of the Liouville property is that it allows one to drop the irreducibility assumption on
the measure μ. It is easy to see (e.g., using the Poisson formula) that the Liouville property for the
measure μ implies the absence of non-constant bounded μ-harmonic functions on the group grμ as
well, and therefore triviality of the Poisson boundary ∂μG is equivalent to the combination of the
Liouville property for the measure μ with its irreducibility. In the general case, the Poisson boundary
of a Liouville measure μ is just the homogeneous space of the left cosets of the subgroup grμ.

1.D. In more analytical terms, the Liouville property of the measure μ is equivalent to strong
convergence of the Cesàro averages

σt =
1
t
(μ+ μ∗2 + · · · + μ∗t) (9)

of convolutions of the measure μ to left invariance on the group grμ, i. e., to the left asymptotic
invariance of the sequence σt:

‖gσt − σt‖ → 0 ∀ g ∈ grμ (10)

(here ‖·‖ denotes the total variation, or in other words, the �1-norm). In particular, if the measure μ
is Liouville, then the group grμ is amenable. Instead of the Cesàro averages, one can also consider
the measures obtained by averaging the convolutions μ∗t with the help of any other asymptotically
invariant sequence of measures on Z+, for example, the binomial distributions

(

1
2(δ0+δ1)

)∗t, i. e., the
sequence of one-dimensional distributions μ̊∗t of the “lazy” random walk with the transition measure
μ̊ = 1

2(δe + μ), which is the half-sum of the initial measure μ and the delta measure at the identity
element (see [39; Theorem 2.3]). By passing from asymptotically invariant sequences of measures to
invariant means, one can then say that the Liouville property of the measure μ is equivalent to the
fact that some (≡ any) Banach limit of the sequence of its convolutions is a left-invariant mean on
the group grμ.

Remark 11. It would be interesting to understand the structure of the set of means on a given
group G arising as the Banach limits of the sequences of convolutions μ∗t of a certain irreducible
measure μ. This question is of interest even in the situation when the measure μ is not Liouville (in
particular, when the group G is non-amenable), see the work of A. Fisher and the author [42]. In
the latter case, the corresponding means are not invariant but only μ-stationary (for this class, see
the work of H. Furstenberg and E. Glasner [30]).

In the opposite direction, the existence of an irreducible Liouville measure on any amenable
group was established by A.M. Vershik and the author [6], [36] and independently by J. Rosen-
blatt [51]. On the other hand, the characterization of the groups on which every measure is Liouville
(these are the groups that coincide with their hyper-FC-center) was recently completed by J. Frisch,
Y. Hartman, O. Tamuz, and P Vahidi Ferdowsi [26], who proved the existence of non-Liouville
non-degenerate measures on all groups without this property (for further results in this direction
see the work of A. Erschler and the author [24]).

1.E. Let us note for further reference another property of Liouville measures, directly derived
from their characterization in terms of asymptotic invariance (10).

Claim 12. The Liouville property for the product measure μ ⊗ μ′ on the product of groups
G×G′ is equivalent to both measures-multipliers μ and μ′ being Liouville simultaneously.
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Remark 13. This statement is a special case of the fact that for the product (G×G′, μ⊗ μ′)
of the random walks (G,μ) and (G′, μ′), the primary harmonic measure is the product ν⊗ ν ′ of the
primary harmonic measures of each multiplier, which in turn follows from the general result that the
tail boundary of the product of two Markov chains is the product of their tail boundaries. Regarding
the Poisson boundaries (which are endowed with the harmonic measure classes determined by initial
distributions with full support), in general,

∂μ⊗μ′(G×G′) ∼= ∂μG× ∂μ′G′

only if all measures μ, μ′, μ⊗μ′ are non-degenerate. A detailed discussion of the relationship between
the Poisson boundary and the tail boundary for general Markov chains and their triviality can be
found in [39]; their coincidence with respect to a single point initial distribution for random walks
on groups is a cornerstone of the entropy theory of random walks (see § 2).

For further information on the Poisson boundary of random walks on groups and of general
Markov chains with discrete state spaces, we refer to the papers by A.M. Vershik and the author
[36], [39], [40] and the literature cited therein, as well as to more recent surveys by A. Furman [28],
A. Erschler [22] and T. Zheng [56].

2. Entropy of Random Walks

Все проходит. Все не вечно.
Энтропия, друг ты мой!

Т. Кибиров. Л.С. Рубинштейну

2.A. Let us now consider the situation where the step distribution μ of a random walk on the
group G has finite entropy

H(μ) = −
∑

g

μ(g) log μ(g).

In this case, the entropies of convolutions of the measure μ with itself are also finite and their
sequence is subadditive. The resulting limit

h(μ) = lim
t→∞

H(μ∗t)
t

is called the asymptotic entropy of the measure μ.

Theorem 14 (A.M. Vershik, V.A. Kaimanovich [6], [36], Y. Derriennic [21]). A measure μ
with finite entropy H(μ) is Liouville if and only if h(μ) = 0.

2.B. Let us recall that the opposite (reflected, reversed) measure μ̌ is the image of a measure μ
on a group G under the operation of group inversion:

μ̌(g) = μ(g−1) ∀ g ∈ G. (15)

The random walk (G, μ̌) is the reversal of the original random walk with respect to the invariant
counting measure #. Obviously, the entropies H(μ) and H(μ̌) of the original and of the reversed
measures always coincide. Furthermore, since the inversion μ �→ μ̌ is an anti-automorphism of the
group �1-algebra, the entropies of the respective convolutions are also the same, and therefore, the
asymptotic entropies h(μ) and h(μ̌) coincide as well. Thus, Theorem 14 leads to a rather unexpected
property.

Proposition 16 (see [7], [36]). If H(μ) < ∞, then the measure μ and the reflected measure μ̌
are either both Liouville or both non-Liouville.
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In light of the discussion in § 1, the Liouville property of the reflected measure μ̌ is equivalent
to the left asymptotic invariance of the Cesàro averages of the convolutions μ̌∗t with respect to the
group gr μ̌ = grμ, or equivalently, to the right asymptotic invariance of the Cesàro averages σt (9)
of the convolutions of the original measure μ. Thus, we have the following.

Corollary 17 (see [7], [36]). If H(μ) < ∞, then the following properties of asymptotic invari-
ance of the Cesàro averages of the convolution powers of the measure μ with respect to the action
of the group grμ are equivalent:
(i) left asymptotic invariance;
(ii) right asymptotic invariance;
(iii) bilateral (i.e., both left and right) asymptotic invariance.

Remark 18. This statement can also be reformulated directly in terms of the means on the
group grμ, obtained by applying Banach limits to the sequence of convolutions μ∗t (see § 1.D): if
H(μ) <∞, then any such mean is either invariant on both sides or not invariant on either side.

2.C. Another interesting consequence of the entropy theory is related to random walks on
group products (cf. Claim 12). Let μ̃ be a probability measure on the product ˜G = G ×G′ of two
countable groups (for simplicity, we consider the case of two multipliers only). Denote by μ and μ′

its marginal distributions, i. e., the results of applying to the measure μ̃ the coordinate projections
onto the groups G and G′, respectively. Then, as is well known (for example, see V.A. Rokhlin’s
article [10; § 4.3 and § 4.8]),

H(μ),H(μ′) � H(μ̃) � H(μ) +H(μ′), (19)

and the same inequalities hold for the corresponding convolution powers as well. Consequently,

h(G,μ), h(G′, μ′) � h( ˜G, μ̃) � h(G,μ) + h(G′, μ′). (20)

By the entropy criterion from Theorem 14, we then have the following result.
Proposition 21. If a probability measure μ̃ on the product ˜G = G × G′ of two groups G

and G′ has finite entropy H(μ̃), then it is Liouville if and only if both its marginal distributions are
Liouville.

Remark 22. This proposition (essentially with the same proof) holds in all other situations
where the entropy theory is applicable, namely when there is a natural probability measure preserv-
ing transformation on the corresponding path space. This is the case, for example, for random walks
in random environment [37], on equivalence relations [43], or in the most general setting of invariant
Markov chains with a finite stationary measure on groupoids with countable orbits [41]. By con-
sidering conditional random walks or Poisson extensions (bundles) of the corresponding groupoids
[41; § 5.A], it follows that, assuming finiteness of the entropy of the measure μ̃, the Poisson bound-
ary ∂μ̃

˜G is fully described by the boundary behaviour of the two quotient walks (G,μ) and (G′, μ′).
The latter result can also be obtained by a direct application of the author’s entropy criterion
for identification of the Poisson boundary [40], as was done by A. Erschler and J. Frisch in [23;
Claim 4.1].

Remark 23. It is well known (for example, see [10; § 4.8]) that the right-hand side inequality
in (19) holds as an equality if and only if the measure μ̃ is the product μ ⊗ μ′ of its marginals. It
is natural to ask the same question about the additivity of the asymptotic entropy, i. e., about the
conditions under which the right-hand side inequality in (20) becomes an equality:

h( ˜G, μ̃) = h(G,μ) + h(G′, μ′).

It is reasonable to assume that this property should be related to the possibility of decomposing the
primary harmonic measure of the random walk ( ˜G, μ̃) (or, in a weaker form, its measure class) into
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the product of the primary harmonic measures of the quotient random walks (G,μ) and (G′, μ′)
(respectively, of their measure classes).

Our goal is to present examples showing that Propositions 16 and 21 are no longer valid when
the entropy finiteness assumption is dropped.

3. Wreath Products, Dynamical Configurations, Etc.

Послушайте!
Ведь, если звезды зажигают –
значит – это кому-нибудь нужно?

В. Маяковский. Послушайте!
3.A. Let us denote by

Φ =
∞

⊕

−∞
Z2 = fun(Z,Z2)

the countable direct sum of copies of the two-element group Z2 = {0, 1} (addition mod 2), indexed
by integers, i. e., the group of functions (configurations) ϕ : Z → Z2 with finite support

suppϕ = ϕ−1(1)

with respect to the pointwise addition operation. The group Φ is generated by the one-point con-
figurations (“δ-functions”) εn, concentrated at the points n ∈ Z, and its identity is the empty
configuration θ, i. e., the function identically equal to zero. The shifts

(Tnϕ)(z) = ϕ(z − n), n ∈ Z, (24)

are automorphisms of Φ, and
Tnεm = εn+m ∀n,m ∈ Z.

Of course, the support of the configuration Tnϕ is the shift of the support of ϕ:

suppTnϕ = n+ suppϕ ∀n ∈ Z, ϕ ∈ Φ. (25)

The resulting semidirect product

L = Z � Φ = Z � Z2 (26)

is called the direct (restricted) wreath product of the active group Z with the passive group Z2 (in
contrast to the group-theoretic custom, in our notation the active group stands on the left). The
group operation in L is

(n1, ϕ1)(n2, ϕ2) = (n1 + n2, ϕ1 + Tn1ϕ2).

We will assume that the groups Z and Φ are embedded into L by means of the mappings

n �→ (n,θ), ϕ �→ (0, ϕ).

Thus, the representation (n, ϕ) of elements of the group L determines its unique decomposition into
the product ΦZ, the subgroup Φ is a normal subgroup of L, and the resulting quotient homomor-
phism takes the form

L → Z ∼= L/Φ, (n, ϕ) �→ n.

It is also worth noting that the group L is generated by the generator of the group Z and the
singleton configuration at 0

ε = ε0 ∈ Φ. (27)
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Remark 28. The history of wreath products dates back almost a hundred years (see the survey
of C. Wells [55; § 16]), and the modern terminology and notation originate from P. Hall [34; § 1.4].
As for functional and stochastic analysis on groups, the idea of using wreath products was first
suggested by A.M. Vershik, who considered in [2] the growth of Følner sets for the group Z �Z. The
family of wreath products Z

d � Z2 was then used by A. M. Vershik and the author [6], [7], [36] to
construct a number of new examples in the theory of random walks on groups. Although the “lamp”
interpretation of wreath products with the passive group Z2 was on numerous occasions mentioned
by A.M. Vershik at that time, a more formal name group of dynamic configurations was chosen
in [36]. Starting from the 1990s, the concise and expressive term lamplighter groups has been used
in the English language literature (apparently, for the first time by R. Lyons, R. Pemantle, and
Y. Peres [45]): the components n ∈ Z and ϕ ∈ Φ of the element (n, ϕ) of the group L describe,
respectively, the position of the lamplighter and the configuration of the lit lamps on the integer
line Z. The Russian terminology has not stabilized; among the proposed options are are лампочная
группа, группа мигающих лампочек and группа фонарщика (cf. the somewhat cumbersome
French term groupes de l’allumeur de réverbères).

3.B. Let us denote by
˜L = L × L

the product of the group L by itself. Below we will need the “semi-diagonal” subgroup of ˜L with
a common Z–component, i. e., the semidirect product

˜L0 = Z � (Φ × Φ), (29)

determined by the diagonal action of the group Z on Φ × Φ by shifts (24). The elements of the
group ˜L0 are triples (n, ϕ, ϕ′), and the group operation takes the form

(n1, ϕ1, ϕ
′
1)(n2, ϕ2, ϕ

′
2) = (n1 + n2, ϕ1 + Tn1ϕ2, ϕ

′
1 + Tn1ϕ′

2).

In addition to the natural “coordinate” homomorphisms

π : ˜L0 → L, π(n, ϕ, ϕ′) = (n, ϕ), (30)

π′ : ˜L0 → L, π(n, ϕ, ϕ′) = (n, ϕ′), (31)

there is also a “combined” or “difference” homomorphism

π : ˜L0 → L, π(n, ϕ, ϕ′) = (n, ϕ+ ϕ′) (32)

(we recall that all elements of the group Φ have order 2, so that ϕ + ϕ′ = ϕ − ϕ′ for any two
configurations ϕ,ϕ′ ∈ Φ).

4. Random Walks on the Group L
Мы люди неплохие,
Как вечер, мы в пути,
Фонарщики лихие,
Волшебники почти.

Б. Окуджава. Песня фонарщиков

4.A. Let us denote by
Φm

n = 〈εi〉mi=n
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the finite subgroup of the group Φ that consists of those configurations whose support is contained
in the integer interval [n ..m]. We define the sequence

Kn = Φn
0 \ Φn−1

0 = εn + Φn−1
0

= {ϕ ∈ Φ: suppϕ ⊂ [0 .. n] and ϕ(n) = 1}, n � 1, (33)

of pairwise disjoint finite subsets of Φ, and note that

Φn
0 = 2n+1, |Kn| = 2n. (34)

Let us denote by
κn = Unif(Kn) (35)

the corresponding uniform probability measures on the sets Kn ⊂ Φ. Now, let us fix a probability
measure

α = (αn)n�1 (36)

on the set of positive integers; it gives rise to the probability measure

λ = λα =
∞

∑

n=1

αnκn (37)

on Φ, which is the weighted average of the measures κn with weights αn. Finally, we define the
probability measure

μ = μα = δ−1 ⊗ λ (38)

on the group L.
By definition of the measure μ, the sample paths g = (gt) of the random walk (L, μ) issued

from the group identity have the form

gt = h1h2 . . . ht = (−1, ϕ1)(−1, ϕ2) . . . (−1, ϕt) = (−t, ψt), (39)

where ht = (−1, ϕt) are independent μ-distributed increments of the random walk, i. e., (ϕt) is
a sequence of independent λ-distributed Φ-valued random variables, and

ψt = ϕ1 + T−1ϕ2 + · · · + T−(t−1)ϕt. (40)

In other words, the movement of the lamplighter himself (i. e., of the Z–component of the
random walk) is deterministic, and at time t his position is −t, while the configuration of the
lamps (the Φ-component ψt of the random walk) is random. Namely, when passing from time t to
time t+ 1, the lamplighter samples a random configuration ϕt+1 (or equivalently, a random subset
suppϕt+1 ⊂ Z) according to the distribution λ, and then changes the states of the lamps around
him at the points whose coordinates relative to lamplighter’s position lie in suppϕt+1 (i. e., at the
points whose absolute positions are described by the shift T−tϕt+1), so that

ψt+1 = ψt + T−tϕt+1, (41)

after which the lamplighter himself moves by −1 and transitions from point −t to point −t− 1.
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4.B. Now let us look at the Liouville property for the measures described above.
Claim 42. If the measure α (36) has finite support, then the corresponding measure μ (38) on

the group L is non-Liouville.
Proof. Since the supports of all configurations ϕt in formula (40) are contained in the finite

interval [0 ..M ] for some integer M > 0, one can apply to the random walk (L, μ) an argument
stemming from the work of A.M. Vershik and the author [6], [7], [36] (it connects the transience of
the projection of the random walk onto the active group of the wreath product with the non-triviality
of the Poisson boundary). Indeed, according to (25), in this case,

suppT−tϕt+1 ⊂ [−t .. − t+M ] ∀ t � 0,

and therefore the values ψt(z) of the configurations ψt (40) at any point z ∈ Z stabilize as t → ∞.
It is easy to verify that the resulting (infinite) configuration ψ∞ = limt ψt is random (see [38;
Theorem 3.3]), and hence the primary harmonic measure of the random walk (L, μ) is non-trivial.

�
This reasoning does not hold in the case where the support suppα is infinite. Below we will

see that in this situation the measure μ (38) may also be Liouville, and in Lemma 47 we establish
a simple necessary and sufficient condition for this. But before that, keeping in mind our goal of
constructing counterexamples to Propositions 16 and 21 in the case of infinite entropy, let us have
a look at two other closely related random walks.

4.C. The first one is the random walk on the same group L, determined by the reflection μ̌ (15)
of the measure μ.

Claim 43. The reflected measure μ̌ is non-Liouville for any measure α (36) from the defini-
tion (38).

Proof. Since inversion in the group L is given by

(n, ϕ)−1 = (−n, T−nϕ) ∀ (n, ϕ) ∈ L,

one has
μ̌ = δ1 ⊗ Tλ,

where the shift Tλ of the measure λ (37) only charges the configurations concentrated on the positive
ray [1 ..∞) ⊂ Z. Therefore, the same reasoning as in the proof of Claim 42 applies without any
restrictions on the measure α.

�
4.D. The state space of the second random walk is the group ˜L0 (29). To define its step

distribution, let us first take a sequence of probability measures κ̃n on the squares Kn × Kn of
the sets Kn (33) such that their marginal distributions (i. e., the images under the projections onto
each of the copies of Kn) coincide with the corresponding measures κn (35). In other words, since
the distributions κn are uniform, the measures κ̃n are exactly the result of normalizing bistochastic
matrices parameterized by the sets Kn.

We are interested in the images
κn = ω(κ̃n)

of the measures κ̃n under the action of the group operation in Φ

ω : (ϕ,ϕ′) �→ ϕ+ ϕ′, ϕ, ϕ′ ∈ Φ. (44)

It is clear that κn = δθ (we recall that the trivial “empty” configuration θ is the identity of the
group Φ) if and only if the measure κ̃n is concentrated on the diagonal of the product Kn ×Kn.
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Of course, there are other measures on Kn × Kn with the prescribed marginals κn; according to
the Birkhoff–von Neumann Theorem, all of them are convex combinations of the extreme measures
corresponding to permutations of the sets Kn. In particular, for n = 1, the set K1 consists of two
configurations ε1 and ε0 + ε1, and we can take for κ̃1 the uniform distribution on the antidiagonal
in K1 ×K1

κ̃1 = Unif{(ε1, ε0 + ε1), (ε0 + ε1, ε1)}
that corresponds to the transposition of ε1 and ε0 + ε1. With this choice, κ1 = ω(κ̃1) is the delta
measure concentrated on the configuration ε = ε0 (27).

In general, it is obvious that

supp κn ⊂ Kn +Kn = Φn−1
0 ,

and it can be easily seen that for any prescribed measure ρ on Φn−1
0 , we can choose a measure κ̃n

on the product Kn × Kn in such a way that its marginal distributions coincide with κn, and the
image κn under the action of the mapping (44) is ρ. For instance, using the fact that the uniform
distribution m = Unif(Φn−1

0 ) on Φn−1
0 is preserved under convolution with any measure on this

subgroup, we can take the image of the product measure m⊗ ρ under the mapping

(ϕ0, ϕ) �→ (ϕ0 + εn, ϕ0 + ϕ+ εn).

Now, let us take the weighted average

˜λ =
∞

∑

n=1

αnκ̃n

with the same weights αn as in the definition (37) of the measure λ, and finally set

μ̃ = δ−1 ⊗ ˜λ. (45)

Claim 46. If the support of the distribution α (36) is infinite and the set of indices n ∈ suppα
for which κ̃n �= diag κn , is non-empty and finite, then the measure μ̃ is non-Liouville.

Proof. By definition, the image of the random walk ( ˜L0, μ̃) under the homomorphism (32) is
the random walk on the group L with the step distribution

μ = δ−1 ⊗ λ,

where

λ =
∞

∑

n=1

αnκn.

Thus, to prove that the measure μ̃ is not Liouville, it suffices to establish that the quotient measure μ
is not Liouville. By assumption, the support of the measure λ is finite and contains at least one
configuration other than the empty configuration θ (since supp κn = {θ} if and only if κ̃n = diag κn);
therefore, the measure μ is non-Liouville for the same reasons as in the proof of Claim 42. �

5. Infinite Entropy

. . . so ist das Endliche nur als das,
worüber hinausgegangen werden muß,
die Negation seiner an ihm selbst,
welche die Unendlichkeit ist.
G.W.F. Hegel. Wissenschaft der Logik

5.A. The key technical result is the following.
Lemma 47. The measure μ (38) on the group L (26) is Liouville if and only if the entropy

H(μ) is infinite.
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Proof. Since the reflected measure μ̌ is always non-Liouville (Claim 43), if the entropy H(μ)
is finite, then by Proposition 16 the measure μ itself is also non-Liouville.

Now, let us consider the situation when the entropy H(μ) is infinite and show that in this case
the measure μ is Liouville. First of all, note that since |Kn| = 2n, the entropy of the measure μ is

H(μ) = H(α) + (log 2)|α|,

where
|α| =

∑

n

nαn

denotes the first moment of the measure α (36). On the other hand, H(α) � (log 2)|α| as a result
of applying the Gibbs inequality to the measures α and ξ = (ξn)n�1 where ξn = 2−n. Thus, the
entropy H(μ) is infinite if and only if the first moment |α| of the measure α is infinite.

An immediate consequence of this fact is the following observation. Let us denote by

|ϕ| = max{|n| : n ∈ suppϕ}

the “range” of the configuration ϕ ∈ Φ, also putting |θ| = 0 for the empty configuration θ. In
particular, |ϕ| = n for all configurations ϕ from any set Kn (33), and therefore the first moment |α|
is exactly the expectation of the ranges |ϕn| of the increments of the random walk (39). If it is
infinite, then a routine application of the Borel–Cantelli Lemma implies that almost surely

lim sup
t→∞

(|ϕt| − t) = ∞. (48)

By the definition of the measure μ, its convolutions (i. e., the one-dimensional distributions of
the associated random walk) have the form

μ∗t = δ−t ⊗ λt,

where λt are the probability measures on the group Φ representing the distributions of the compo-
nent ψt (40) of the random walk. In other words, they are the convolutions

λt = λ ∗ T−1λ ∗ · · · ∗ T−t+1λ

of the shifts of the measure λ (37) on the commutative group Φ, and in particular

λt+1 = λ ∗ T−1λt ∀ t � 1.

Therefore, as follows from the characterization of the Liouville property in terms of the asymp-
totic invariance of the Cesàro means (10), for proving the Liouville property of the measure μ, it is
sufficient to verify the asymptotic invariance of the sequence of measures (λt) with respect to the
action of the group Φ, namely

‖ϕλt − λt‖ −−−→
t→∞ 0 ∀ϕ ∈ Φ. (49)

The idea behind the proof of the convergence (49) is to replace one of the increments ϕτ of each
sample path g (39) with

ϕ′
τ = ϕτ + T τ−1ϕ,

while leaving the other increments unchanged. As follows from formula (40), for the resulting new
sample paths,

ψ′
t = ψt + T−τ+1(ϕ′

τ − ϕτ ) = ψt + ϕ ∀ t � τ. (50)
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If this replacement preserves the measure on the space of sample paths, or equivalently, on
the space of sequences of independent increments (ϕt) with a common distribution λ (37), then
the corresponding one-dimensional distributions λt will have the desired property of asymptotic
invariance (49).

To implement this idea, let us fix a non-empty configuration ϕ ∈ Φ, and, by using the fact that
the limit (48) is infinite, for almost every sample path g put

τ = τ(g) = min{t > |ϕ| : |ϕt| − t > |ϕ|}. (51)

Now let us define the transformation

U = Uϕ : (ϕt) �→ (ϕ′
t)

on the space of sequences of independent λ-distributed increments (ϕt) by putting

ϕ′
t =

{

ϕt + T τ−1ϕ, t = τ,

ϕt, t �= τ.

The conditional distribution of ϕτ , given the value τ = t0, is a convex combination of the mea-
sures κn (35) with the weights obtained by normalizing the restriction of the distribution α (36) to
the ray (|ϕ|+ t0 ..∞), and therefore it is invariant under the action of the subgroup Φ|ϕ|+t0

0 . On the
other hand, the support of the configuration ϕ is contained in the interval [−|ϕ| .. |ϕ|] by definition
of the range |ϕ|, and therefore, due to the inequalities from definition (51), the support of the shift
T t0−1ϕ is contained in the interval [0 .. |ϕ| + τ0], implying that T t0−1ϕ ∈ Φ|ϕ|+t0

0 .
As follows from formula (50), for any t0 > 0,

‖ϕλt − λt‖ � 2P{τ > t0} ∀ t � t0,

which implies the convergence (49) and completes the proof. �
5.B. Lemma 47 makes it easy to proceed with the presentation of our main examples.
Theorem 52. If the measure μ (38) on the group L (26) has infinite entropy H(μ), then the

reflected measure μ̌ is non-Liouville, while the measure μ itself is Liouville.
Proof. This is a combination of Claim 43 and Lemma 47. �
Remark 53. In light of Remark 18, Theorem 52 implies that if the entropy of the measure μ

is infinite, then all means on the group grμ obtained as Banach limits of the sequence of con-
volutions μ∗t, are left-invariant but not right-invariant. Further elaborating on the question from
Remark 11, it would be interesting to understand the structure of the set of the strictly one-sided
means that arise in this way from convolutions of an irreducible measure μ on an arbitrary amenable
group G (let us denote this set by S(G)).

The question of describing the class of groups on which all invariant means (not just those
arising from convolutions) are two-sided was first posed by G.M. Adelson-Velsky and Yu.A. Shreider
[1; Theorem 7] (we note in parentheses that they were not familiar with any of the works on
invariant means that appeared after the publication of the Banach – Tarski paradox, including von
Neumann’s 1929 paper), who, however, erroneously claimed that all groups of locally subexponential
growth belong to this class. This error was discovered by A. Paterson [47], who proved that, in
fact, this class is much smaller and consists (if we restrict ourselves to discrete groups only) of
FC-central groups, i. e., those in which all conjugacy classes are finite (see also further works by
P. Milnes [46], J. Rosenblatt–M. Talagrand [52], and J. Hopfensperger [35]). Thus, for all groups G
that are hyper-FC-central (see the discussion in § 1), but not FC-central, the set S(G) is empty. On
the other hand, a recent result of A.V. Alpeev [12] implies that S(G) is non-empty for all other
amenable groups G.
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Theorem 54. If the measure μ̃ (45) on the group ˜L0 ⊂ L × L (29) has the property that the
measure α (36) has infinite first moment, and the set of indices n ∈ suppα with κ̃n �= diag κn is
non-empty and finite, then the measure μ̃ is non-Liouville, while both coordinate projections of the
measure μ̃ onto the multipliers of the product L × L are Liouville.

Proof. This is a combination of Claim 46 and Lemma 47. �

6. Appendix. “Liouville’s Theorem” and “Shannon’s Theorem”

Нет уж извините, не допущу
пройти позади такому приятному,
образованному гостю.

Н. Гоголь. Мертвые души

6.A. The events related to the emergence of what is now called Liouville’s theorem on the
absence of non-constant bounded analytic (as well as harmonic) functions on the complex plane are
very well documented in the reports (Comptes Rendus) of the meetings of l’Académie des sciences
for the years 1844 and 1851, and even in a brief account they are quite interesting (we omit numerous
even more picturesque details, which we hope to return to on another occasion).

At the meeting on December 9, 1844, Liouville, in his remarks on a memoir on elliptic func-
tions presented that day by Chasles, announces, among other things, his result on the absence of
non-constant bounded doubly periodic analytic functions on the complex plane (referred to by him
as a “principle” because, according to Liouville, it “parâıt imprimer à l’étude de ces fonctions un
caractère d’unité et de simplicité tout particulier”). Already at the next meeting on December 16
(exactly a week later), Cauchy asserts that Liouville’s principle is a special case of his own results,
published as early as in 1827, and presents a complete (by the standards of that time) proof without
any assumptions of periodicity (this is what we currently know as “Liouville’s theorem”). A week
later (December 23), Cauchy presents another proof, and altogether, according to U. Bottazzini’s
count [17; p. 165], publishes five different proofs in less than a year.

The second act takes place on March 31, 1851. As the chairman of a special ad hoc committee,
Cauchy presents to the Academy a report on a memoir by Hermite on doubly periodic functions.
At the very end of this report, Liouville’s announcement is mentioned (the proof still has not been
published). Liouville immediately states that a complete proof is contained in the notes of lectures
he himself gave in 1847 to two German mathematicians and were recorded by one of them, Borchardt
(or j’ai chez moi, et je pourrai déposer sur le bureau, avant la fin de la séance, une pièce manuscrite
qui parâıtra concluante à cet égard), and indeed manages to present this manuscript before the end
of the session (it was published by Borchardt much later, only in 1879). The table of contents
of these lecture notes reproduced in Comptes Rendus begins with the theorem on the absence of
non-constant bounded doubly periodic functions. But the last word on this day belongs to Cauchy,
who once again asserts his priority by referring not only to the note of 1844, but also to his earlier
works.

The presentation of Liouville’s theorem in “A Course of Modern Analysis” by Whittaker and
Watson is accompanied with a note (starting from the second edition of 1915): “This theorem, which
is really due to Cauchy, was given this name by Borchardt, who heard it in Liouville’s lectures
in 1847.” This story has been discussed many times by mathematical historians (in addition to
the aforementioned book [17], see also detailed analyses by J. Lützen [44; §§XIII.9–17, 21] and
U. Bottazzini–J. Gray [18; §§ 3.5.6, 4.2.4]), who ultimately tend to give priority to Liouville ([44;
pp. 543, 544] and [18; pp. 231, 232], respectively), referring to, among other things, the note found in
his records in the summer of 1844 mentioning how the general case can be obtained from the doubly
periodic case. And yet, as for the general case, Cauchy’s reasoning appears much more conceptual
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from a modern point of view (since in modern terms the doubly periodic case is “just” an exercise
in applying the maximum principle . . . ).

Ever since Bernhard Riemann “virtually put equality signs between two-dimensional potential
theory and complex function theory” (to quote L. Ahlfors [11]), the statement about the absence
of non-constant bounded harmonic functions on the plane has also been called Liouville’s theorem.
We will continue the story of the Liouville property for harmonic functions elsewhere.

6.B. The definition of the entropy

H(p) = −
∑

pi log pi (55)

of a discrete probability distribution p = (pi) is usually associated with Claude Shannon. However,
in his seminal paper “A Mathematical Theory of Communication”, he explicitly writes that “entropy
appears in the same form in certain formulations of statistical mechanics” [53; § 6]. There is a widely
circulated, albeit unconfirmed by Shannon himself, anecdote about his conversation with John von
Neumann, who allegedly suggested using the term “entropy”, saying: “You should call it entropy,
for two reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name. In the second place, and more importantly, no one knows what entropy really is,
so in a debate you will always have the advantage” (for instance, see O. Rioul [50; § 12]).

When discussing the genesis of entropy (55) from statistical mechanics, the first names that
come to mind are Ludwig Boltzmann and Josiah Willard Gibbs (for entropy in classical and quan-
tum mechanics, see the very informative survey by S. Goldstein, J. Lebowitz, R. Tumulka, and
N. Zanghi [32]). Boltzmann provided a probabilistic interpretation of Clausius’ thermodynamic
entropy as the negative logarithm of the “probability” that the system is in a given state. The use of
quotation marks is explained by the fact that in reality this quantity (the measure of permutability,
Permutabilitätsmaß according to Boltzmann [15; p. 192]; in modern terms, this is the differential
entropy of a distribution on the phase space) arises as a result of some limiting procedure based
on combinatorial calculations with infinitesimal regions, and therefore it is defined (even without
demanding excessive rigor from the limiting process) up to an additive constant. Boltzmann himself
repeatedly emphasized that the discretization he used “is nothing more than an artificial device,
Hilfsmittel, that helps to calculate physical processes”, explicitly calling it “mathematical fiction”
[16; p. 348].

Although the sums of the form (55) often appear in the works of Boltzmann and (slightly
later) Gibbs, their appearance always serves as an auxiliary step towards the differential entropy
(“all the infinite in nature means nothing other than some limiting procedure”, as Boltzmann says
[15; p. 167]), and the normalization condition for the weights

∑

pi = 1 is never imposed. For
example, the proof of Theorem VIII in Gibbs’ “Elementary Principles in Statistical Mechanics” [31]
essentially boils down to establishing what is now called the Gibbs inequality (the non-negativity of
the Kullback – Leibler divergence in the discrete case), but Gibbs does not feel any need to consider
it as a property of probability distributions.

Max Planck poses and solves the problem of the physical meaning of Boltzmann’s limiting pro-
cedure, which leads him to the understanding that quantization is a physical reality. He vividly
recalls in his Nobel lecture of 1920 [9] how, following the discovery of the law of black-body radia-
tion, the necessity arose to give it a conceptual interpretation: “But even if this radiation formula
should prove to be absolutely accurate it would after all be only an interpolation formula found
by happy guesswork, and would thus leave one rather unsatisfied. I was, therefore, from the day of
its origination, occupied with the task of giving it a real physical meaning, and this question led
me, along Boltzmann’s line of thought, to the consideration of the relation between entropy and
probability; until after some weeks of the most intense work of my life clearness began to dawn upon
me, and an unexpected view revealed itself in the distance.”
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The perspective that opened up was nothing other than the first glimpse of quantum theory.
Later in the same lecture, Planck explains in detail why the new theory implies that the physical
entropy (not just its increments) has an “absolute value”, i. e., in modern terms, it is a function and
not an additive cocycle. In an expanded form, this explanation is given at the beginning (§§ 113–131)
of the section “Entropy and Probability” of his book “The Theory of Heat Radiation” (starting from
the second edition in 1913 [49]). As he writes in the preface, “the entropy of a state has a quite
definite, positive value, which, as a minimum, becomes zero, while in contrast therewith the entropy
may, according to the classical thermodynamics, decrease without limit to minus infinity. For the
present, I would consider this proposition as the very quintessence of the hypothesis of quanta.”
Formula (173) in § 124 of Planck’s book

S = −kN
∑

wn logwn,

where S is the physical entropy, k is the Boltzmann constant introduced by Planck, and N is the
number of molecules, is apparently the first appearance of the “mathematical” entropy (55) with
probability weights wn.

Let us now return to von Neumann. It is precisely this aforementioned formula (and, of course,
with an explicit use of the fact that the weights in it are normalized; in the quantum setup this
means that the trace of the corresponding state is one) that he quotes when defining the quantum
“von Neumann entropy” [54].

In conclusion, it should be emphasized that all of the above applies only to the entropy of a single
discrete probability distribution. Shannon introduced into consideration sequences of distributions
the entropies of which are subadditive, making it possible to talk about the arising asymptotic
entropy, i. e., the rate of linear growth of these entropies. The additional structure used in this case
is a stationary sequence of symbols, and the resulting sequence of measures is its finite dimensional
distributions. Another example is the sequence of convolutions described in § 2; it is generated by
a group structure on a countable set of states (and it is precisely Shannon’s asymptotic entropy
that served as a model for defining the asymptotic entropy of random walks by A. Avez). The
question of a unified approach to these two situations was raised back in the 1970s by A.M. Vershik;
later [3; p. 64], he proposed to use Poisson boundary polymorphisms for this purpose. As for the
Boltzmann–Planck–von Neumann entropy in statistical physics, as recently noted by Vershik [4;
p. 49], its connection with Shannon’s theory remains problematic.
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