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Abstract. An analytic semigroup of operators on a Banach space is approximated by a sequence
of positive integer powers of a linear-fractional operator function. It is proved that the order of the
approximation error in the domain of the generating operator equals O(n−2 ln(n)). For a self-adjoint
positive definite operator A decomposed into a sum of self-adjoint positive definite operators, an
approximation of the semigroup exp(−tA) (t � 0) by weighted averages is also considered. It is
proved that the order of the approximation error in the operator norm equals O(n−1/2 ln(n)).
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Introduction

It is well known that important results on approximation of semigroups were obtained by Trot-
ter and Chernoff (see [1]–[3]). Approximation formulas based on results of these papers are called
Trotter–Chernoff formulas. These formulas find applications in solving evolution problems. For ex-
ample, given an evolution problem with operator A which is the generating operator of a strongly
continuous semigroup and equals the sum of operators A1, . . . , Am, also being generating operators
of strongly continuous semigroups, we can construct evolution problems corresponding to the oper-
ators A1, . . . , Am on the basis of Trotter–Chernoff formulas and use solutions of these problems to
approximate a solution of the initial one (see, e.g., [4] and [5]).

Thus, obviously, in the case under consideration, the approximation error of a solution of an
evolution problem is directly related to the approximation error of Trotter–Chernoff formulas.

In this paper, given a self-adjoint positive definite operator (SAPDO) A represented as A =
A1+· · ·+Am, where A1, . . . , Am are SAPDOs as well, we approximate the semigroup {exp(−tA)}t�0

by weighted averages composed either of resolvents or of the semigroups corresponding to the op-
erators A1, . . . , Am. In the author’s opinion, approximation of an operator function by weighted
averages has certain advantages. First, if the argument of an operator function if self-adjoint and
equals a sum of self-adjoint operators, then the corresponding weighted average is self-adjoint as
well, i. e., the approximating operator retains the self-adjointness property. Secondly, the summands
of a weighted average are independent of each other and can be calculated in parallel, which is impor-
tant for practical applications. In modern applications, the parallelization of algorithms for solving
evolution problems, especially those multidimensional in spatial variables, is becoming increasingly
urgent. It is easy to see that the approximation which we propose gives a parallel algorithm for
solving the initial evolution problem.

In this paper we obtain error bounds for the operator-norm approximation of a semigroup by
weighted averages.

A wide range of questions concerning the operator-norm convergence of Trotter–Chernoff formu-
las were considered in [6]–[11]. Error bounds for the operator-norm approximation of these formulas
for self-adjoint positive definite operators were obtained in [6]. In the subsequent papers [7] and
[8] the class of Trotter–Kato product formulas was significantly expanded; moreover, in [8] optimal
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approximation error bounds in a Hilbert space were obtained. It should also be mentioned that
in [8] the symmetric Trotter–Kato product formula was generalized to the case where the main
operator is a SAPDO decomposed into a finite sum of SAPDOs. In [9] an “almost” optimal bound
in the operator norm for the Trotter–Kato product formula was obtained (we say “almost” because
of the presence of a logarithmic factor in the bound). In [10] error bounds for symmetric and asym-
metric Trotter–Kato product formulas were also obtained for the operator-norm approximation of
initial operators depending on fractional powers. Note that such bounds are important for prac-
tical applications of the formulas. In [11] a Chernoff-type approximation theorem was proved for
quasi-sectorial contractions in a Hilbert space in the operator norm. It should be mentioned that
this theorem implies, as a consequence, the convergence of the approximation by the arithmetic
means of resolvents or of semigroups.

The next question considered in the present paper is closely related to those mentioned above
and again concerns approximation of semigroups, but this time, by means of an operator analogue
of linear-fractional functions. To be more precise, we approximate an analytic operator semigroup
on a Banach space by a sequence of positive integer powers of a linear-fractional operator function.
Our purpose is to estimate the approximation error. Note that, in approximating a semigroup, it
would be ideal to obtain an error bound in the operator norm, but this is a nontrivial problem. If
such a bound cannot be obtained, then the next step is obtaining an error bound at least in the
domain of the generating operator. Restricting the approximation domain further is inexpedient,
because in applications initial data for many evolution problems (the solving operators of evolution
problems are semigroups) are far from being smooth. We prove that in the domain of the generating
operator the error bound for the proposed approximation is almost optimal.

Approximation of a semigroup by means of the operator analogue of a linear-fractional function
has certain advantages. The linear-fractional operator function can be reduced to the sum of the
identity operator and a resolvent with constant coefficients by a simple transformation. This is an
important nuance, because we can compute the resolvent in practice by preliminarily approximating
the generating operator in a finite-dimensional space approximating the initial space.

The reader may ask the quite natural question of why we use a linear-fractional approxima-
tion rather than a higher-order rational approximation. As mentioned, our purpose is to obtain a
bound, as close to optimal as possible, for the norm of the approximation error in the domain of
the generating operator. If estimating the approximation error requires the D(A2) smoothness (−A
is the generating operator of the semigroup), then, in applications, additional boundary conditions
must be imposed, which is highly undesirable. We will show that, in the case under consideration,
a bound is of order O(n−2 ln(n)) in D(A) (the optimal bound is of order O(n−2)). Obviously, it is
possible to construct a rational approximation of higher order, e.g., a Padé approximant, but this
requires the D(A2) or even higher smoothness (you win some, you lose some).

In relation to the question considered in this paper, we mention the papers [12]–[14]. In [12]
a general method was proposed for constructing an approximation of a semigroup and estimating
the approximation error in the domain of fractional powers of the generating operator, and the
optimality of the obtained bounds was investigated. Both cases of C0 semigroups and of analytic
semigroups were considered, and a survey of results on semigroup approximation was presented. In
[13] the class of quasi-sectorial operators was introduced and the properties of such operators were
studied in detail. For semigroups generated by quasi-sectorial operators, an optimal bound for the
Euler approximation was obtained. In [14] an optimal bound for the Euler approximation was also
obtained in the case where the given operator generates an analytic semigroup. In the conclusion of
the introduction, we cannot help but mention the well-known monograph [15] by Hille and Phillips.
Probably, there is not a single mathematician working on the application of semigroup theory who
has not read this book or has not found useful information in it.
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1. Linear-Fractional Approximation

Consider the linear-fractional function (1−x/2)(1+x/2)−1. It is easy to see that it approximates
the function e−x in a neighborhood of the point x = 0. In particular, e−x − (1− x/2)(1 + x/2)−1 =
O(x3). It is also obvious that this function is a Padé approximant.

Our purpose is to approximate an analytic semigroup by using an operator analogue of powers
of a linear-fractional function, namely, of the functions ((1− x

2n)(1 +
x
2n)

−1)n.
The following theorem holds.
Theorem 1.1. Let A be a linear densely defined closed operator on a Banach space X . Suppose

that the sector Θ = {z : | arg(z)| < ϕ0, 0 < ϕ0 < π/2} contains entirely the spectrum of A and, for
any z (�= 0) not belonging to Θ, ‖(zI −A)−1‖ � c0|z|−1 (c0 = const > 0). Then

∥
∥
∥
∥

[

exp(−tA)−
((

I − t

2n
A

)(

I +
t

2n
A

)−1)n]

u

∥
∥
∥
∥
� ct

n2
ln(ne)‖Au‖, u ∈ D(A), (1.1)

where exp(−tA) (t � 0) is the analytic semigroup generated by the operator −A, n is a positive
integer, c is a positive constant not depending on t and n, and ‖ · ‖ is the norm of X .

Below we formulate auxiliary facts used in the proof of Theorem 1.1 as lemmas and remarks.
The following lemma is valid (throughout the paper c denotes a positive constant).
Lemma 1.2. Suppose that an operator A satisfies the assumptions of Theorem 1.1. Then

‖τA(I − τA)k(I + τA)−(k+j+1)‖ � c1(λ)

k + j
, (1.2)

where k and j are positive integers, τ > 0, c1(λ) = c/λ3 , λ = cosϕ, ϕ0 � ϕ < π/2, and c =
const > 0.

Proof. Applying the Dunford–Taylor integral (see [17; Ch. VII]), we obtain

τA(I − τA)k(I + τA)−(k+j+1) =
1

2πi

∫

Γ

z(1− z)k

(1 + z)k+j+1
(zI − τA)−1 dz, (1.3)

where Γ is the boundary of the sector | arg(z)| < ϕ, ϕ0 � ϕ < π/2 (the integral is taken in the
direction from infinity with arg(z) = ϕ to infinity with arg(z) = −ϕ).

Passing to norms in (1.3) and taking into account the assumption of Theorem 1.1, we obtain

‖τA(I − τA)k(I + τA)−(k+j+1)‖ � c

∫ +∞

0

|1− z|k
|1 + z|k+j+1

dρ = c

∫ +∞

0
ψ(ρ) dρ, (1.4)

where z = ρ(cosϕ+ i sinϕ) and ψ(ρ) = (1− 2λρ+ ρ2)k/2(1 + 2λρ+ ρ2)−(k+j+1)/2.
Let us estimate the improper integral in (1.4). We represent it as the sum of three integrals:

∫ +∞

0
ψ(ρ) dρ =

∫ 2λ

0
+

∫ k+1

2λ
+

∫ +∞

k+1
. (1.5)

Obviously, we have 1 + 2λρ+ ρ2 � (1 + λρ)2 and 1− 2λρ+ ρ2 � 1 for 0 � ρ � 2λ. Taking into
account these inequalities, we obtain the following estimate for the first integral on the right-hand
side of (1.5):

∫ 2λ

0
ψ(ρ) dρ �

∫ +∞

0

dρ

(1 + λρ)k+j+1
=

1

λ(k + j)
. (1.6)

Let us estimate the second integral on the right-hand side of (1.5). For any j � 1, we have
∫ k+1

2λ
ψ(ρ) dρ � 1

2λ

∫ k+1

2λ
ζ(ρ) dρ, (1.7)
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where ζ(ρ) = χ(ρ)(1− χ(ρ))m(ρ(1 + χ(ρ))m+1)−1, m = k/2, and χ(ρ) = 2λρ(1 + ρ2)−1.
Since 0 � χ(ρ) < 1 for 2λ � ρ < +∞, it follows that

χ(ρ)(1− χ(ρ))m � 1

2(m+ 1)
. (1.8)

According to Bernoulli’s inequality, for ρ � 2λ, we have

ρ(1 + χ(ρ))m+1 � ρ+ λλ0(k + 2), λ0 = 4λ2(1 + 4λ2)−1. (1.9)

Therefore, for j � 1, we obtain the following inequality from (1.7) with (1.8) and (1.9) taken into
account: ∫ k+1

2λ
ψ(ρ) dρ � 1

λ(k + 2)
ln

9

4λ3
. (1.10)

Let us show that, for any j > 2, we have
∫ k+1

2λ
ψ(ρ) dρ � 1

4λ3(k + j + 2)
. (1.11)

By virtue of Bernoulli’s inequality, for j > 2, we have (1 + 2λρ+ ρ2)(j−1)/2 � 1 + (j − 1)ρ2/2. This
inequality, together with (1.8), implies

∫ k+1

2λ
ψ(ρ) dρ � 2

λ(k + 2)

∫ +∞

2λ

dρ

ρ(2 + (j − 1)ρ2)
� 1

4λ3(k + j + 2)
.

This proves (1.11).
We proceed to the third integral on the right-hand side of (1.5). As in the case of the second

integral, we have
∫ +∞

k+1
ψ(ρ) dρ � 1

2
√

λ(k + 1)

∫ +∞

k+1

1

ρ(2j+1)/2
dρ � 1√

λ(k + j)
. (1.12)

The desired estimate follows from (1.5) and (1.4) with (1.6) and (1.10)–(1.12) taken into
account. �

Remark 1.3. If an operator A satisfies the assumptions of Theorem 1.1, then

‖(τA)(I + τA)−k‖ � c/k, (1.13)

where τ > 0, k is a positive integer, and c = const > 0.
For k = 1, estimate (1.13) is obvious, and for k > 1, it is easily proved by using the Dunford–Tay-

lor integral.
From the point of view of the practical application of Theorem 1.1, it is important to estimate the

norms of the positive integer powers of the operator analogue of a linear-fractional approximation.
The following lemma is valid.
Lemma 1.4. Suppose that an operator A satisfies the assumptions of Theorem 1.1. Then,

for any positive integer k , the inequality ‖Lk‖ � c ln(ke) holds, where L = (I − τ
2A)S for S =

(I + τ
2A)

−1 and τ > 0 and c = const > 0.
Proof. Note that the operator L admits the representation L = 2S − I. It follows that L2 =

2S(L − I) + I and L3 = 2S(L2 − L + I) − I. Obviously, for any positive integer k, we have Lk =
2S(Lk−1−Lk−2+· · ·+(−1)k+1I)+(−1)kI, which implies L2m = −2τAS2(L2m−2+L2m−4+· · ·+I)+I.
Therefore, according to Lemma 1.2 and Remark 1.3, we have ‖Lk‖ � c ln(ke) for an even power.
For an odd power, the estimate ‖Lk‖ � c ln(ke) is proved in a similar way. �
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Remark 1.5. As is known, under the assumptions of Theorem 1.1, the operator −A generates
the analytic semigroup U(t) = exp(−tA) (t � 0), which is defined by using the Dunford–Taylor
integral (see, e.g., [16; Ch. IX]), and the function u(t) = U(t)u0 is a solution of the Cauchy problem

u′(t) +Au(t) = 0, t > 0, u(0) = u0

for u0 ∈ D(A).
Remark 1.6. If an operator A satisfies the assumptions of Theorem 1.1, then (see, e.g., [16])

‖AkU(t)‖ � c(k)

tk
, (1.14)

where t > 0, k is a positive integer, and c(k) = const > 0.
Remark 1.7. It is easy to note that, for t � τ > 0, estimate (1.14) implies

‖(I + τA)AkU(t)‖ � c

tk
, c = const > 0. (1.15)

We have prepared the ground for the proof of Theorem 1.1, to which we now proceed.
Proof of Theorem 1.1. We introduce the following notation: τ = t/n, tk = kτ , tk−1/2 =

tk − τ/2 (where k and n are positive integers),

L =
(

I − τ

2
A
)(

I +
τ

2
A
)−1

, and S =
(

I +
τ

2
A
)−1

.

Since the function u(t) = U(t)u0, where u0 ∈ D(A), satisfies the equation u′(t)+Au(t) = 0 (see
Remark 1.5), it follows that

u(tk) = Lu(tk−1) + τSϕk, k = 1, . . . , n, (1.16)

where

ϕk =

(
1

τ
(u(tk)− u(tk−1))− u′(tk−1/2)

)

+

(
1

2
A(u(tk) + u(tk−1))−Au(tk−1/2)

)

.

The recurrence relation (1.16) implies

u(tk) = Lku0 + τ
k∑

i=1

SLk−iϕi. (1.17)

Substituting u(tk) = U(tk)u0 into (1.17), replacing the vector ϕi by A−1Aϕi, and taking Lku0
to the left-hand side, we obtain

(U(tk)− Lk)u0 = τ

k∑

i=1

Gk−i(A
−1ϕi), Gk−i = ASLk−i. (1.18)

According to Remark 1.5, we have u′(t) − u′(ti−1/2) = A(U(ti−1/2) − U(t))u0. This equation and
the formula (see, e.g., [16; Ch. IX])

A

∫ t

r
U(s) ds = U(r)− U(t), 0 � r � t, (1.19)

imply
τGk−i(A

−1ϕi) = g
(1)
i + g

(2)
i + g

(3)
i + g

(4)
i , (1.20)
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where

g
(1)
i = −Gk−i

∫ ti

ti−1/2

∫ t

ti−1/2

Zi(s)Au0 ds dt,

g
(2)
i = Gk−i

∫ ti−1/2

ti−1

∫ ti−1/2

t
Zi(s)Au0 ds dt, g

(3)
i =

τ

2
Gk−i

∫ ti

ti−1/2

Zi(t)Au0 dt,

g
(4)
i = −τ

2
Gk−i

∫ ti−1/2

ti−1

Zi(t)Au0 dt, Zi(t) = U(ti−1/2)− U(t).

Next, we show that

k∑

i=1

‖g(j)i ‖ � cτ

k + 1
ln(ek)‖Au0‖, j = 1, 2, 3, 4. (1.21)

Let us estimate the term g
(1)
i on the right-hand side of (1.20). Transforming the operator Zi(s)

in the expression for the vector g(1)i by formula (1.19), we obtain

g
(1)
i = −Gk−iS

∫ ti

ti−1/2

∫ t

ti−1/2

∫ s

ti−1/2

V (ξ)Au0 dξ ds dt, (1.22)

where V (ξ) = (I + τ
2A)AU(ξ).

According to Lemma 1.2, we have

‖Gk−iS‖ = ‖τAS2Lk−i‖ � c

k − i+ 1
. (1.23)

Passing to norms and taking into account estimates (1.15) and (1.23) in the expression (1.22), we
obtain the inequality

‖g(1)i ‖ � ‖Au0‖ c

(k − i+ 1)τ

∫ ti

ti−1/2

∫ t

ti−1/2

∫ s

ti−1/2

1

ξ
dξ ds dt � cτ

(k − i+ 1)i
‖Au0‖. (1.24)

This yields (1.21) for j = 1.
The proof of estimate (1.21) for j = 2, 3 is similar.
Let us estimate the vector g(4)i . For i > 1, as in the case of g(1)i , we easily obtain

‖g(4)i ‖ � cτ

(k − i+ 1)i
‖Au0‖. (1.25)

Consider the case of i = 1 separately. Let us represent g(4)1 in the form g
(4)
1 = g + g̃, where

g = −τ
2
Gk−1

∫ τk

0
Z1(t)Au0 dt,

g̃ =
1

2
Gk−1S

∫ τ/2

τk

∫ τ/2

t
V (s)Au0 ds dt, τk =

τ

2(k + 1)
.

In the expression for g̃ we have transformed the operator Z1(t) by formula (1.19).
Estimate (1.23) and Remark 1.6 imply the inequality

‖g̃‖ � c

k

(∫ τ/2

0

∫ τ/2

t

1

s
ds dt+ τ

∫ τ/2

τk

∫ τ/2

t

1

s2
ds dt

)

‖Au0‖ � cτ

k + 1
ln(ek)‖Au0‖. (1.26)
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Since U(t) is uniformly bounded (see, e.g., [16]) and ‖τGk−1‖ = ‖τAS‖ ‖Lk‖ � c ln(ke) (see
Lemma 1.4), it follows that

‖g‖ � ‖τGk−1‖
∫ τk

0
‖Z1(t)‖ dt ‖Au0‖ � cτ

k + 1
ln(ek)‖Au0‖. (1.27)

Now it is clear that, in view of (1.26) and (1.27), the following estimate for the vector g(4)1 holds:

‖g(4)1 ‖ � cτ

k + 1
ln(ek)‖Au0‖ . (1.28)

Therefore, by virtue of (1.28) and (1.25), inequality (1.21) is valid for j = 4.
Finally, from (1.18) with (1.21) taken into account we obtain

‖(U(tk)− Lk)u0‖ � ct

n(k + 1)
ln(ek)‖Au0‖, u0 ∈ D(A). (1.29)

Inequality (1.29) with k = n implies estimate (1.1). �

2. Semigroup Approximation Using Weighted Averages

In this section our purpose is to obtain an operator-norm estimate for the error of an approxi-
mation of the semigroup exp(−tA) (t � 0) by weighted averages in the case where A is a SAPDO
represented as a finite sum of SAPDOs (the case of two terms was considered in the author’s
paper [6]).

The following theorem holds.
Theorem 2.1. Let A1, . . . , Am (m > 1) be SAPDOs on a Hilbert space H , i.e., Aj = A∗

j �
αjI , where αj = const > 0 (here j = 1, . . . ,m and I is the identity operator). Suppose that
A = A1 + · · · + Am is a self-adjoint operator with domain D(A) =

⋂m
j=1D(Aj) and ηj > 0,

j = 1, . . . ,m, are numbers satisfying the condition η1 + · · ·+ ηm = 1. Then

‖ exp(−tA)− (S(t/n))n‖ � (c2 + c1 ln(n))
1√

2n+ 1
, (2.1)

where S(t) = η1S1(t) + · · · + ηmSm(t), Sj(t) = (I + tη−1
j Aj)

−1 for j = 1, . . . ,m and t > 0, n is a
positive integer, and c2 and c1 are positive constants.

For practical applications of Theorem 2.1, it is important to know precise expressions for the
constants c2 and c1. They are c2 = 3(c1 + 2c4) + 4/3

√
3c4, where c4 = m+ c3, c3 = η

−1/2
1 a1 + · · ·+

η
−1/2
m am, and c1 = η

−3/2
1 (η−1

1 a1 +1)+ · · ·+ η
−3/2
m (η−1

m am +1) with aj = ‖AjA
−1‖ for j = 1, . . . ,m.

Below we give auxiliary facts used to prove Theorems 2.1 and 2.9 (the latter is similar to
Theorem 2.1).

Remark 2.2. If the assumptions of Theorem 2.1 hold, then the AjA
−1 (j = 1, . . . ,m) are

closed operators (this is easy to prove) which are defined on the whole space and bounded (by the
closed graph theorem), i. e., aj = ‖AjA

−1‖ <∞.
Remark 2.3. Let A and B be SAPDOs such thatD(A) ⊂ D(B) and B � A ((Bu, u) � (Au, u)

for any u ∈ D(A)). Then
(a) 0 � A−1 � B−1, i. e., 0 � (A−1u, u) � (B−1u, u) for any u ∈ H (see [16; Theorem VI.2.21]);
(b) D(A1/2) ⊂ D(B1/2) and ‖B1/2u‖ � ‖A1/2u‖ for any u ∈ D(A1/2).
Note that (b) follows from (a) (see [16; Theorem VI.2.30]).
Remark 2.4. Let A and B be SAPDOs such that D(A) ⊂ D(B) and ‖Bu‖ � ‖Au‖ for

u ∈ D(A). Then ‖A−1u‖ � ‖B−1u‖ for u ∈ H.

122



Indeed, since A−1B ⊂ (BA−1)∗ and ‖BA−1‖ � 1, it follows that ‖A−1Bu‖ = ‖(BA−1)∗u‖ �
‖u‖ for u ∈ D(B). Therefore, ‖A−1u‖ = ‖(A−1B)B−1u‖ � ‖B−1u‖.

Remark 2.5. It is well known that if an operator if bounded and self-adjoint, then the norm
of the corresponding operator function is less than or equal to the norm of the corresponding scalar
function on the spectrum (see, e.g., [18; Ch. IX, Sec. 5]).

Lemma 2.6. Let A be a SAPDO on a Hilbert space H . Then

‖Aα(I + sA)−1 exp(−tA)‖ � (s+ t)−α, 0 < α � 1, (2.2)

‖((I + tA)−1 − exp(−tA))ϕ‖ � c1(α)t
α‖Aα(I + tA)−1ϕ‖, 0 < α � 2, (2.3)

where ϕ ∈ D(A), s � 0, t > 0, c1(α) = 2/α for 0 < α < 1, and c1(α) = 1 for 1 � α � 2.
Proof. Let us prove estimate (2.2). We have (see, e.g., [16]) limn→∞ Vn(t)ϕ = exp(−tA)ϕ for

ϕ ∈ H, where Vn(t) = (I + t
nA)

−n; therefore, it suffices to prove the inequality

‖Aα(I + sA)−1Vn(t)‖ � (s+ t)−α.

By the definition of a fractional power of an operator, we have (see, e.g., [16])

Aαu =
sin(πα)

π

∫ ∞

0
λα−1(A+ λI)−1Audλ, u ∈ D(A), 0 < α < 1. (2.4)

Substituting the vector u = (I + sA)−1Vn(t)ϕ (ϕ ∈ H) into (2.4), passing to norms, and taking
into account Remark 2.5, we obtain

‖Aα(I + sA)−1Vn(t)ϕ‖

� max
x�0

(
sin(πα)

π

∫ ∞

0
λα−1(x+ λ)−1x(1 + sx)−1

(

1 +
t

n
x

)−n

dλ

)

‖ϕ‖

= max
x�0

(

xα(1 + sx)−1

(

1 +
t

n
x

)−n)

‖ϕ‖

� max
x�0

(xα(1 + sx)−1(1 + tx)−1)‖ϕ‖ � (s+ t)−α‖ϕ‖. (2.5)

Obviously, for α = 1, relation (2.5) without the integral term holds. Therefore,

‖Aα(I + sA)−1Vn(t)ϕ‖ � (s+ t)−α‖ϕ‖, 0 < α � 1. (2.6)

Inequality (2.6) implies (2.2).
Let us prove estimate (2.3). For an integer k, we obviously have

‖AkVn(t)‖ � 1

tk
(kk)

(

1 +
k

n− k

)k−n

, n > k. (2.7)

For a noninteger k, separating out the fractional part (k = [k] + α, 0 < α < 1) and applying
representation (2.4), we obtain the same relation as for an integer k, i. e., (2.7).

By virtue of (2.7), for n � 4, we have

‖AαVn(t)‖ � 1

tα
, 1 < α < 2. (2.8)

Taking into account (2.8), we obtain

‖Aα(I + sA)−1Vn(t)‖ � ‖A(I + sA)−1(I + tA)−1‖‖(I + tA)Aα−1Vn(t)‖
� (s+ t)−1(‖Aα−1Vn(t)‖+ t‖AαVn(t)‖)
� 2t1−α(s+ t)−1, 1 < α < 2. (2.9)
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The following representation holds (see [16; Ch. IX]):

(L(t)− Vn(t))u =

∫ t

0

(

s− t− s

n

)(

I +
t− s

n
A

)−1

Vn(t− s)AL2(s)Ads, u∈D(A), (2.10)

where L(t) = (I + tA)−1.
Let us reduce (2.10) to the form

(L(t)− Vn(t))u =

∫ t

0
(A2−αL(s)Vn(t− s))K(s, t)(AαL(t)u) ds,

where

K(s, t) =

(

s− t− s

n

)

(I + tA)

(

I +
t− s

n
A

)−1

L(s).

Since
(s1 + s2)‖(I + tA)(I + s1A)

−1(I + s2A)
−1‖ � t

for s1 � 0, s2 � 0, s1 + s2 > 0, and t � s1 + s2, it follows that ‖K(s, t)‖ � t, and (2.10) implies

‖(L(t)− Vn(t))u‖ � t

∫ t

0
‖A2−αL(s)Vn(t− s)‖ ‖AαL(t)u‖ ds, 0 < α � 2. (2.11)

Using estimate (2.6) for 1 � α < 2 and estimate (2.9) for 0 < α < 1, we obtain the desired
bound from inequality (2.11). In view of the inequality ‖L(s)Vn(t− s)‖ � 1, for α = 2, (2.3) follows
directly from (2.11). �

Lemma 2.7. Let A and B be SAPDOs with domains D(A) ⊂ D(B). If ‖Bu‖ � ‖Au‖ for
u ∈ D(A), then

‖B(I + sB)−1u‖ � ‖A(I + qtA)−1u‖, u ∈ H, (2.12)

where 0 < q � 1 and s � t > 0.

Proof. By Remark 2.4 we have ‖A−1u‖ � ‖B−1u‖ for u ∈ H. This, together with Theo-
rem V.4.12 of [16], implies (A−1u, u) � (B−1u, u). Taking into account these inequalities, we obtain

‖(qtI +A−1)u‖2 = q2t2‖u‖2 + 2qt(A−1u, u) + ‖A−1u‖2
� s2‖u‖2 + 2s(B−1u, u) + ‖B−1u‖2 = ‖(sI +B−1)u‖2.

Again applying Remark 2.4, we see that

‖(sI +B−1)−1u‖ � ‖(qtI +A−1)−1u‖, u ∈ H.

This is the required inequality. �
Corollary 2.8. Let A and B be SAPDOs with domains D(A) ⊂ D(B). If ‖Bu‖ � b0‖Au‖ for

u ∈ D(A), then
‖B(I + sB)−1u‖ � b1‖A(I + tA)−1u‖, u ∈ H,

where s � t > 0 and b1 = max(1, b0).

For b0 � 1, it suffices to substitute q = 1 into inequality (2.12), and for b0 > 1, to substitute
q = 1/b0 and replace the operator A by b0A.

Now we can proceed to the proof of Theorem 2.1.
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Proof of Theorem 2.1. We introduce the following notation: U(t) = exp(−tA), u(t) = U(t)u0
with u0 ∈ D(A), τ = t/n, and tk = kτ , where k and n are positive integers. Since the function
u(t) = U(t)u0 with u0 ∈ D(A) satisfies the equation u′(t) +Au(t) = 0 (see Remark 1.5), we have

u(tk) = L(τ)u(tk−1) + τL(τ)ϕk, k = 1, . . . , n, (2.13)

where L(τ) = (I + τA)−1 and ϕk = (u(tk)− u(tk−1))/τ − u′(tk).
Equation (2.13) gives (for brevity, we will write S and L instead of S(τ) and L(τ), respectively)

u(tk) = Su(tk−1) + gk, where gk = (L− S)u(tk−1) + τLϕk. This implies

u(tk) = Sku0 +
k∑

i=1

Sk−igi. (2.14)

Substituting u(tk) = U(tk)u0 into (2.14), replacing the vector ϕi by (I − S)1/2(I − S)−1/2ϕi,
and taking Sku0 to the left-hand side, we obtain

(U(tk)− Sk)u0 =

k∑

i=1

Sk−i(I − S)1/2S0gi, S0 = (I − S)−1/2. (2.15)

Since S(t) is a self-adjoint operator and the spectrum σ(S(t)) lies in the interval [0, 1] for any
t � 0, it follows from Remark 2.5 that

‖Sk(I − S)1/2‖ � max
0�λ�1

[λk(1− λ)1/2] � (2k + 1)−1/2. (2.16)

Equation (2.15), together with (2.16), yields the inequality

‖(U(tk)− Sk)u0‖ �
k∑

i=1

(2(k − i) + 1)−1/2(‖S0(L− S)u(ti−1)‖+ τ‖S0Lϕi‖). (2.17)

In what follows, we need the estimates

‖S0(τ)AL(τ)f‖ � τ−α(m‖AαLf‖+ c3‖AαLαf‖), (2.18)
‖S0(τ)L(τ)Aϕ‖ � τ−αc4‖Aαϕ‖, (2.19)

‖S0(τ)(S(τ)− L(τ))f‖ � τc1‖ALf‖, S0(τ) = (I − S(τ))−1/2, (2.20)

where α = 1/2, ϕ ∈ D(A), f ∈ H, and c4 = m+ c3.
Let us prove (2.18). Since I − S � ηj(I − Sj) = τAjSj > 0, we have

(I − S)−1 � η−1
j (I − Sj)

−1 = τ−1A−1
j + η−1

j I � (τ−αA−α
j + η−α

j I)2, α = 1/2 (2.21)

(see Remark 2.3(a)). Therefore,

‖S0f‖ = ‖(I − S)−αf‖ � τ−α‖A−α
j f‖+ η−α

j ‖f‖, f ∈ H. (2.22)

Applying inequality (2.22), we obtain (in what follows, it is always assumed that α = 1/2)

‖S0ALf‖ = ‖S0(A1 + · · ·+Am)Lf‖ � τ−α
m∑

j=1

(‖Aα
j Lf‖+ ταη−α

j ‖AjLf‖). (2.23)

According to Remark 2.3(b), we have ‖Aα
j Lf‖ � ‖AαLf‖, and according to Remark 2.2, we

have ‖AjLf‖ � ‖AjA
−1‖‖ALf‖ = aj‖ALf‖. Taking into account these inequalities, we see that
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(2.23) implies ‖S0ALf‖ � mτ−α‖AαLf‖ + c3‖ALf‖. This inequality, together with ‖ALf‖ �
τ−α‖AαLαf‖, gives (2.18).

Let us prove (2.20). By virtue of (2.21) we have ‖S0h‖ � η−α
j ‖(I − Sj)

−αh‖ for h ∈ H. Substi-
tuting the vector h = (I − Sj)f , we obtain

‖S0(I − Sj)f‖ � η−α
j ‖(I − Sj)

αf‖ � η−α
j ‖f‖. (2.24)

We have

S − L = τ

m∑

j=1

η−1
j (I − Sj)(η

−1
j AjA

−1 − I)AL. (2.25)

Relations (2.24) and (2.25) imply the inequality

‖S0(S − L)f‖ � τ

m∑

j=1

η
−3/2
j ‖(η−1

j AjA
−1 − I)ALf‖ � τc1‖ALf‖.

Inequality (2.19) follows from (2.18).
Using (2.20) and the equation u(t) = U(t)u0, we obtain

‖S0(L− S)u(ti)‖ � τc4‖ALU(ti)‖‖u0‖.

By virtue of (2.2), we also have ‖AL(τ)U(t)‖ � (t+ τ)−1. Therefore,

‖S0(L− S)u(ti−1)‖ � c1
i
‖u0‖. (2.26)

Representing τϕi as the integral of u′(t)− u′(ti) from ti−1 to ti, transforming the difference by
the formula u′(t) = −Au(t) = −AU(t)u0 (see Remark 1.5), and substituting the result for f in the
inequality ‖S0Lf‖ � τ−1/2c5‖A−1/2f‖ (this inequality follows from (2.19)), we obtain

τ‖S0Lϕi‖ � τ−1/2c4

∫ ti

ti−1

‖A1/2(U(t)− U(ti))‖ dt‖u0‖. (2.27)

By virtue of (2.7) we have

‖A3/2U(t)‖ � 1

t3/2
, t > 0. (2.28)

Let us transform the integrand in (2.27) by formula (1.19) and take into account (2.28). As a
result, we obtain

τ‖S0Lϕi‖ � c4τ
−1/2

∫ ti

ti−1

∫ ti

t
‖A3/2U(s)‖ ds dt‖u0‖

� 2c5τ
−1/2[2(t

1/2
i − t

1/2
i−1)− τt

−1/2
i ]‖u0‖ 2c4√

i(
√
i+

√
i− 1)2

‖u0‖. (2.29)

The substitution of (2.26) and (2.29) into (2.17) and simple calculations yield

‖(U(tk)− Sk)u0‖ � (c2 + c1 ln k)
1√

2k + 1
‖u0‖. (2.30)

Obviously, (2.30) implies (2.1). �
The following theorem is proved in a similar way.
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Theorem 2.9. Suppose that the assumptions of Theorem 2.1 hold. Then
∥
∥
∥
∥
exp(−tA)−

(

U0

(
t

n

))n∥∥
∥
∥
� (c6 + c5 lnn)

1√
2n+ 1

, (2.31)

where U0(t) = η1U1(t) + · · · + ηmUm(t) and Uj(t) = exp(−tη−1
j Aj) (j = 1, . . . ,m) for t > 0, n is

a positive integer, c6 and c5 are positive constants, c5 = m + c3 + c1 + c0 , c0 = b1η
1/2
1 (η

1/2
1 + 1) +

· · · + bmη
1/2
m (η

1/2
m + 1), bj = max(1, aj), and c6 = 3c5 (the remaining constants c1 , c3 , and aj are

the same as in Theorem 2.1).
Proof. We use the same notation as in the proof of Theorem 2.1. Obviously, u(tk)=U(τ)u(tk−1),

or, equivalently,

u(tk) = U0(τ)u(tk−1) + ψk, ψk = (U(τ)− U0(τ))u(tk−1). (2.32)

From (2.32) it follows that

u(tk) = (U0(τ))
ku0 +

k∑

i=1

(U0(τ))
k−iψi. (2.33)

Substituting u(tk) = U(tk)u0 into (2.33), replacing the vector ψi by

(I − U0(τ))
1/2(I − U0(τ))

−1/2ψi,

and taking (U0(τ))
ku0 to the left-hand side, we obtain

(U(tk)− (U0(τ))
k)u0 =

k∑

i=1

(U0(τ))
k−i(I − U0(τ))

1/2T0(τ)ψi, (2.34)

where T0(τ) = (I − U0(τ))
−1/2.

Since the operator U0(t) is self-adjoint and the spectrum σ(U0(t)) lies in the interval [0, 1] for
any t � 0, it follows from (2.34) that (see (2.17))

‖(U(tk)− (U0(τ))
k)u0‖ �

k∑

i=1

(2(k − i) + 1)−1/2‖T0(τ)ψi‖. (2.35)

It is easy to show that
‖T0(t)(I − S(t))1/2‖ � 1, t > 0. (2.36)

Indeed, since

((I + (t/n)η−1
j Aj)

nu, u) � ((I + tη−1
j Aj)u, u), u ∈ D(An

j ),

it follows that (Sn
j (t/n)u, u) � (Sj(t)u, u) for u ∈ H (see Remark 2.3(a)). Letting n tend to infinity,

we see that (Uj(t)u, u) � (Sj(t)u, u) for j = 1, . . . ,m. Multiplying these inequalities by ηj and
adding them together, we obtain (U0(t)u, u) � (S(t)u, u). This gives ((I − U0(t))u, u) � ((I −
S(t))u, u) for t > 0. This inequality, again by virtue of Remark 2.3(a), implies ((I−U0(t))

−1u, u) �
((I − S(t))−1u, u), or ‖T0(t)u‖ � ‖S0(t)‖, where S0(t) = (I − S(t))−1/2. Substituting the vector
u = (I − S(t))1/2ϕ with ϕ ∈ H into this estimate, we arrive at estimate (2.36).

Obviously, we have

U0(t)− U(t) =

m∑

j=1

ηj(Uj(t)− Sj(t)) + (S(t)− L(t)) + (L(t)− U(t)). (2.37)
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Equation (2.37) and estimate (2.36) imply the inequality

‖T0(τ)ψk‖ � ‖S0(τ)ζk‖+ ‖S0(τ)ζ0k‖+
m∑

j=1

ηj‖S0(τ)ζjk‖, (2.38)

where

ζk = (S(τ)− L(τ))u(tk−1), ζ0k = (L(τ)− U(τ))u(tk−1),

ζjk = (Uj(τ)− Sj(τ))u(tk−1).

Using (2.22) and (2.3), we obtain

‖S0ζjk‖ � τ−1/2‖A−1/2
j ζjk‖+ η

−1/2
j ‖ζjk‖ � (1 + η

−1/2
j )τ‖AjSj(τ)u(tk−1)‖.

Since ‖Aju‖ � aj‖Au‖ for u ∈ D(A) (see Remark 2.2), it follows from Corollary 2.8 that
‖S0ζjk‖ � bj(1 + η

−1/2
j )τ‖AL(τ)u(tk−1)‖, where bj = max(1, aj). This inequality implies

m∑

j=1

ηj‖S0(τ)ζjk‖ � τc0‖AL(τ)u(tk−1)‖.

The inequality ‖S0ALf‖ � mτ−1/2‖A1/2Lf‖+ c3‖ALf‖ (see the proof of Theorem 2.1) yields
‖S0f‖ � mτ−1/2‖A−1/2f‖+ c3‖f‖ for f ∈ H. Substituting the vector ζ0k in place of f and applying
(2.3), we obtain ‖S0ζ0k‖ � (m + c3)τ‖AL(τ)u(tk−1)‖. By virtue of (2.20), for the vector S0(τ)ζk,
we have ‖S0(τ)ζk‖ � τc1‖ALu(tk−1)‖. Substituting these estimates into (2.38), we arrive at the
inequality ‖T0(τ)ψk‖ � c5τ‖AL(τ)u(tk−1)‖. Substituting the vector u(tk−1) = U(tk−1)u0 (see Re-
mark 1.5) and using (2.2), we obtain ‖T0(τ)ψk‖ � c4/k. The substitution of this estimate into (2.35)
and simple calculations yield

‖(U(tk)− (U0(τ))
k)u0‖ � (c6 + c5 ln k)

1√
2k + 1

. (2.39)

Obviously, (2.39) implies (2.31). �
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