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1. Introduction

In [6] a formula for the spectral density of Jacobi matrices in terms of the asymptotics of
orthogonal polynomials was found for a certain class of matrices with unbounded entries. This class
is an example of the so-called noncritical case. The critical case for Jacobi matrices with unbounded
entries was studied in several other papers, among which we mention [9], [13], [17], [23], and [25].
The distinction between these cases is determined by the limit (whenever it exists) of the transfer
matrix of the eigenvector equation: in the noncritical case, it is diagonalizable, whereas in the critical
case, it is similar to a Jordan block. For the special case of the discrete Schrödinger operator with
rapidly decreasing potential (the main diagonal), the critical situation occurs only for two values
of the spectral parameter, λ = ±2. However, for Jacobi matrices, in the critical case, we have a
similar situation for all values of the spectral parameter λ. The type of asymptotics of generalized
eigenvectors differs significantly in these two cases, critical and noncritical. In the papers dealing
with the critical case mentioned above only asymptotics of the generalized eigenvectors were studied,
and there is no analogue of the formula for spectral density in [6]. The aim of the present paper is
to obtain such formulas in the critical case.

We consider a class of Jacobi matrices in the critical case which is an extension of the class
studied in [17]. In addition to asymptotics of generalized eigenvectors, we obtain a formula for the
spectral density of a matrix in terms of the asymptotics of its orthogonal polynomials. Namely, we
consider matrices of the form

J =

⎛
⎜⎜⎜⎜⎜⎝

b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
0 0 a3 b4 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

(1.1)

with entries
an = nα + pn, bn = −2nα + qn, (1.2)

where an > 0, bn ∈ R, α ∈ (0, 1), and
{

pn

nα/2

}∞

n=1

,

{
qn

nα/2

}∞

n=1

∈ l1. (1.3)
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The operators of this family act on the Hilbert space l2(N) and have the following spectral prop-
erties: the spectrum on the right half-line is pure point, and the spectrum on the left half-line
is purely absolutely continuous. This follows from the asymptotics of the generalized eigenvectors
by subordinacy theory ([10], [19]). For α ∈ (1/2, 2/3), such a family was considered in [17], and
for λ ∈ R \ {0}, asymptotics of generalized eigenvectors were found. In the present paper, to find
asymptotics, we use a modified version of the remarkable method of Kooman [20], which can yield a
result for all complex λ in the same manner and works for α ∈ (0, 1). In essence, Kooman’s method
is based on a transformation which reduces the discrete linear system to the Levinson (L-diagonal)
form and can be considered as an extension of Benzaid–Harris–Lutz methods ([7], [11]; see also [8],
[14], [27]). All of them are based on the discrete analogue of the Levinson asymptotic theorem [3;
Theorem 8.1]. Using Kooman’s method allowed us to substantially simplify the proof of the main
theorem in the difficult critical case.

We refer to a formula which relates the spectral density of an ordinary differential or difference
operator to the coefficient in the asymptotics of a solution of the eigenvector equation which satisfies
the boundary condition as a Titchmarsh–Weyl formula by analogy with the classical case of the
Schrödinger operator on the half-line with self-adjoint boundary condition at zero and integrable
potential; see Titchmarsh’s book [4; Chap. V, Sec. 5.6].

In this study of formulas for spectral density we have a certain application in mind, namely,
the phenomenon of spectral phase transition. If a family of self-adjoint operators depends on one or
several real parameters, it may happen that the space of these parameters is divided into regions
where the operators have similar spectral structures. For example, in some regions the spectrum may
be purely absolutely continuous, and in others it may be discrete. Then on the boundaries of the
regions a spectral phase transition occurs. We want to see by explicit examples how such transitions
are described in terms of the spectral measure. Some examples of spectral phase transitions can be
found in the papers [15], [16], and [28]. In these works only the “geometry” and type of the spectrum
were considered because of the lack of suitable methods for analyzing spectral measure. This is
where formulas for spectral density could be useful. Several papers were devoted to establishing
such formulas in both discrete and continuous cases ([18], [21], [29]). That analysis has been used to
study the behavior of the spectral density of discrete ([30]) and differential ([24], [31]) Schrödinger
operators with Wigner–von Neumann potential near the critical points which appear inside the
continuous spectrum of an operator with such a potential. These formulas were derived for special
classes of operators and, moreover, for the noncritical case. The example that we consider in the
present paper concerns a family of Jacobi matrices with spectral phase transition in a situation when
the parameters belong to the boundary between two regions. On that boundary Jacobi matrices are
in the critical case. The formula for the spectral density in this case is needed as the first important
step to understanding the “inner structure” of the spectral phase transition in this family.

We mention the interesting recent works [32]–[35], also devoted, in particular, to the study of
spectral density.

The paper is organized as follows. In Section 2 we recall some basic notions and facts related to
Jacobi matrices and their generalized eigenvector equations and also explain why in our situation the
critical case occurs. In Section 3 we describe the idea of approximating the matrix J by “stabilized”
matrices JN , which was used in [6] and which allows us to find the spectral density of J by
exploiting the ∗-weak convergence of spectral measures. In Section 4 the main result of the paper
(Theorem 4.2) is proved: a formula for the spectral density of J in the critical case.

2. Preliminaries

For complete information on definitions of Jacobi matrices, orthogonal polynomials associated
to them, and Weyl functions, we refer the reader to Akhiezer’s book [1].
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The operator J defined by the matrix (1.1)–(1.3) is self-adjoint in l2(N) according to the Carle-
man condition [1]. If E is its projection-valued spectral measure and {en, n ∈ N} is the standard basis
in l2(N), then ρ = (Ee1, e1) is its scalar spectral measure, and its density ρ′ (the Radon–Nikodym
derivative of its absolutely continuous part with respect to the Lebesgue measure) is its spectral
density. By m we denote the Weyl function, for which the following relations hold:

m(λ) =

∫

R

dρ(x)

x− λ
, λ ∈ C \ R, (2.1)

ρ′(λ) =
1

π
Imm(λ+ i0) for a. e. λ ∈ R. (2.2)

Orthogonal polynomials of the first and the second kind, Pn(λ) and Qn(λ), respectively, are solutions
of the eigenvector equation

an−1un−1 + bnun + anun+1 = λun, n � 2, (2.3)

with initial conditions P1(λ) = 1, P2(λ) = (b1−λ)/a1, Q1(λ) = 0, and Q2(λ) = 1/a1. For λ ∈ C\R,
their linear combination Qn(λ)+m(λ)Pn(λ) is the only (up to multiplication by a constant) solution
of (2.3) which belongs to l2(N). The weighted Wronskian of two solutions u and v of the eigenvector
equation (2.3) is defined as

W{u, v} := an(unvn+1 − un+1vn), n ∈ N, (2.4)

and does not depend on n.
The eigenvector equation (2.3) can be written in the vector form:

�un :=

(
un−1

un

)
, Bn(λ) :=

(
0 1

−an−1/an (λ− bn)/an

)
, (2.5)

�un+1 = Bn(λ)�un, n � 2. (2.6)

The matrices Bn(λ) are called the transfer matrices for the equation (2.3).
In our case of the matrix (1.1)–(1.3), the transfer matrices for every λ have the limit

(
0 1
−1 2

)
. (2.7)

The eigenvalues of this limit matrix coincide, and, by analogy to the case of constant coefficients,
when the roots of the characteristic equation are the same as the eigenvalues of the limit transfer
matrix, this case is called the double root case, or the critical case. The matrix (2.7) is not propor-
tional to the identity, so it is not diagonalizable and is similar to a Jordan block. For this reason,
our situation can also be called the Jordan block case. Asymptotic analysis of solutions may become
involved in this case; several papers were devoted to studying examples of such Jacobi matrices,
among which we mention [9], [13], [17], and [23].

3. The Stabilized Matrix

In this section J denotes a Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎜⎝

b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
0 0 a3 b4 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (3.1)
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with arbitrary sequences {an}∞n=1 and {bn}∞n=1 of positive and real numbers, respectively. Consider
the bounded matrix JN which has the sequence a1, a2, . . . , aN−1, aN , aN , aN , . . . of off-diagonal
entries and the sequence b1, b2, . . . , bN−1, bN , bN , bN , . . . on the main diagonal:

JN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 0 · · · 0 0
...

a1 b2 a2 · · · 0 0
...

0 a2
. . . . . . 0 0

...
...

...
. . . bN aN 0

...

0 0 0 aN bN aN
...

0 0 0 0 aN bN
. . .

...
...

...
...

...
. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

The matrix JN is a scaled and shifted discrete Schrödinger operator perturbed by finitely sup-
ported sequences of diagonal and off-diagonal entries (finite-rank perturbation). It is known that
its spectrum is purely absolutely continuous on the interval [bN − 2aN , bN + 2aN ], which follows,
e.g., from subordinacy theory [19], and discrete and finite on the rest of the real line. One can write
an explicit formula for its spectral density in terms of orthogonal polynomials associated with the
original matrix J .

Proposition 3.1. Consider a Jacobi matrix J given by (3.1) with some sequences {an}∞n=1 of
positive numbers and {bn}∞n=1 of real numbers. Let JN be defined by (3.2). Then its spectral density
is

ρ′N (λ) =

√
1− (λ−bN

2aN

)2
πaN |PN+1(λ)− zN (λ)PN (λ)|2 , λ ∈ (bN − 2aN , bN + 2aN ), (3.3)

where the {Pn(λ)}∞n=1 are the orthogonal polynomials of the first kind associated with the matrix J
and

zN (λ) :=
λ− bN
2aN

− i

√
1−

(
λ− bN
2aN

)2

. (3.4)

This result is analogous to the classical Titchmarsh–Weyl formula for the Schrödinger differential
operator with integrable potential on the half-line and is more or less well known. A version of it
is contained in [6]. A much more general version, for sequences {an}∞n=1 and {bn}∞n=1 of bounded
variation, can be found in [22]; see also [5].

Stabilized matrices approximate the original matrix as N → ∞, so knowing the spectral density
of JN , we can pass to the limit and find the spectral density of J . The next two propositions specify
the exact sense of this limit passage; both of them are more or less standard. We use the following
notation: for −∞ � A < B � +∞,

Cc(A,B) = {ϕ ∈ C(A,B) | suppϕ is compact}, (3.5)
C0(A,B) = {ϕ ∈ C(A,B) | ∀ε ∃ compact K ⊂ (A,B) : |ϕ(x)| < ε ∀x ∈ (A,B) \K}. (3.6)

C0(A,B) is a Banach space with norm ‖ϕ‖ = supx∈R |ϕ(x)|, Cc(A,B) is its dense linear subset, and
the space C∗

0 (A,B) consists of finite complex-valued Borel measures (automatically regular) [26;
Chaps. 3 and 6]. The following proposition can be found, for example, in [6].

Proposition 3.2. Let J be a Jacobi matrix (3.1) with some sequences {an}∞n=1 of positive
numbers and {bn}∞n=1 of real numbers such that J is in the limit-point case, and let JN be defined
by (3.2). Then ρN → ρ in the ∗-weak sense as N → ∞.
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The next elementary proposition is also essentially known (see [12] for a more sophisticated
version), but it is convenient for us to use it in the following special form.

Proposition 3.3. Let J be a Jacobi matrix (3.1) with some sequences {an}∞n=1 of positive
numbers and {bn}∞n=1 of real numbers such that J is in the limit-point case, and let JN be defined
by (3.2). If there exist a continuous function f on (A,B), −∞ � A < B � +∞, and an increasing
sequence {Nk}∞k=1 such that, for every compact set K ⊂ (A,B), there exists a natural M(K) such
that, for every k > M(K), one has K ⊂ [bNk

− 2aNk
, bNk

+ 2aNk
] and ρ′Nk

(λ) → f(λ) as k → ∞
uniformly in λ ∈ K , then the spectral measure ρ of the operator J is absolutely continuous on the
interval (A,B) and ρ′(λ) = f(λ) for a.e. λ ∈ (A,B).

Proof. By Proposition 3.2, ρNk
→ ρ ∗-weakly as k → ∞ in C∗

0 (R). Hence ρNk
|(A,B) → ρ|(A,B)

∗-weakly in C∗
0 (A,B): if (A,B) �= R, then, for any function ϕ ∈ C0(A,B), consider its continuation

ϕ̃ ∈ C0(R) to R by zero, and the convergence follows. Since one sequence in this topology cannot
have two limits, it is enough to prove that dρNk

(λ)|(A,B) → f(λ)dλ ∗-weakly in C∗
0 (A,B). For every

ϕ ∈ Cc(A,B) and k > M(suppϕ), we have
∣∣∣∣
∫ B

A
ϕ(λ) dρNk

(λ)−
∫ B

A
ϕ(λ)f(λ) dλ

∣∣∣∣ =
∣∣∣∣
∫

suppϕ
ϕ(λ)(ρ′Nk

(λ)− f(λ)) dλ

∣∣∣∣

� sup
x∈suppϕ

|ρ′Nk
(x)− f(x)|

∫ B

A
|ϕ(λ)| dλ → 0, k → ∞.

Owing to the uniform estimate
‖ρNk

|(A,B)‖C∗
0 (A,B) � 1,

convergence holds for every ϕ ∈ C0(A,B) as well. Thus, dρ(λ)|(A,B) = f(λ)dλ, which completes the
proof. �

4. Spectral Density in the Critical Case

In this section we formulate and prove the main result of the paper. We investigate the asymp-
totics of solutions to (2.3) as n → ∞ locally in λ. Let us fix some 0 < r < R < ∞ and consider the
open set

Ω0 := {λ ∈ C : r < |λ| < R} \ R−; (4.1)

see Fig. 1.
Remark 4.1. By Ω0 we denote the closure of Ω0 (on the Riemannian surface of

√
λ), which

contains both sides (considered to be different) of the cut along R−. Writing [−R,−r], we will
always mean the upper side of the cut.

Theorem 4.2. Let the entries of the Jacobi matrix J be given by

an = nα + pn, bn = −2nα + qn (4.2)

with
α ∈ (0, 1), (4.3)

and let real sequences {pn}∞n=1 and {qn}∞n=1 be such that an > 0 for all n and
{

pn

nα/2

}∞

n=1

,

{
qn

nα/2

}∞

n=1

∈ l1. (4.4)

Then, for the domain Ω0 , there exists an N0 ∈ N such that, for every λ ∈ Ω0 , the equation

an−1un−1 + bnun + anun+1 = λun, n � 2, (4.5)
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−r−R 0

Ω0

Fig. 1. The domain Ω0.

has a solution u−(λ) := {u−n (λ)}∞n=1 with asymptotics

u−n (λ) =
( n∏

l=N0

η−l (λ)
)
(1 + o(1)), n → ∞, (4.6)

uniform in λ ∈ Ω0 , where1

η−n (λ) = 1 +
λ

2nα
+

α

4n
−

√
λ

nα/2

√
1 +

λ

4nα
+

α

λn1−α
(4.7)

and η−n (λ) �= 0 for λ ∈ Ω0 and n � N0 . For every n, u−n is analytic in Ω0 and continuous in Ω0 .
For λ ∈ [−R,−r], there exists a nonzero limit

H(λ) := lim
n→∞nα/4

n∏
l=N0

|η−l (λ)|, (4.8)

which is continuous in λ. For λ ∈ [−R,−r], the sequence u+(λ) := {u+n (λ)}∞n=1 with u+n (λ) = u−n (λ)
is another solution of the equation (4.5) with nonzero Wronskian

W{u+(λ), u−(λ)} = −2i
√−λH2(λ). (4.9)

The orthogonal polynomials of the first kind associated with J can be expressed as

Pn(λ) = Ψ(λ)u+n (λ) + Ψ(λ)u−n (λ), λ ∈ [−R,−r], n ∈ N, (4.10)

where

Ψ(λ) =
u−0 (λ)

2i
√−λH2(λ)

, (4.11)

u−0 (λ) := (λ − b1)u
−
1 (λ) − a1u

−
2 (λ) (assuming formally in (4.5) that a0 := 1). The spectral density

of J is given by the formula

ρ′(λ) =
1

4π
√−λ |Ψ(λ)|2H2(λ)

=

√−λH2(λ)

π|u−0 (λ)|2
, λ ∈ [−R,−r]. (4.12)

1The branch of the square root should be chosen so that its values are positive for positive λ.
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Remark 4.3. Another critical case with bn = 2nα + qn can be easily reduced to the case (4.2)
with λ replaced by −λ.

Remark 4.4. The solution u−n (λ) depends, through N0, on the set Ω0 (i.e., on r and R), as
well as the coefficients Ψ, H, and u−0 : they differ by a product of a finite number of the values η−n (λ)
for small n, which is a function of λ. Unfortunately, this function cannot be taken the same for the
whole set (C \ R−) \ {0}. At the same time, the functions |Ψ(λ)|H(λ), H(λ)/|u−0 (λ)|, and hence
ρ′(λ) do not depend on r and R. Note also that we can take any compact set in (C \ R−) \ {0}
instead of Ω0.

Remark 4.5. 1. In the particular case α ∈ (1/2, 2/3) considered in [17], formula (4.6) and its
conjugate version can be written as

u±n (λ) =
H(λ) + o(1)

nα/4
exp

(
± i

(√−λn1−α/2

1− α/2
− nα/2

√−λ
+

(
√−λ)3n1−3α/2

24(1− 3α/2)
+ ϕ0(λ)

))
, (4.13)

where ϕ0 is some real-valued function. Formula (4.13) coincides up to multiplication by a constant
in n with the formula from the work [17]. Note that the restriction α ∈ (1/2, 2/3) is essential here.

2. It is easy to see that, in the case α ∈ (0, 1)\(1/2, 2/3), the asymptotics of
∏n

l=1 η
−
l has a form

similar to (4.13). The power terms in n in the exponent have orders from the interval (0, 1) and
correspond to nonsummable terms in the asymptotic expansions of ln η−n as n → ∞. The number of
such terms depends on α and grows without bound as α approaches 0 or 1. At the same time, the
decay of polynomials is always of the order 1/nα/4 for λ < 0, and the asymptotics of the solution
u− can be written as

u±n (λ) =
H(λ) + o(1)

nα/4
exp(±iφn(λ)), n → ∞,

where φn(λ) =
K∑
k=0

ϕk(λ)n
αk with some K, 0 = α0 < α1 < · · · < αK < 1, and some real-valued

{ϕk(λ)}Kk=1. Elementary calculations show that K ∼ (2/α+ 1/(2(1− α))) as α → 0 or α → 1.
Proof of Theorem 4.2. Consider λ ∈ Ω0. For the system

�un+1 = Bn(λ)�un, n � 2, (4.14)

which is equivalent to the eigenvector equation, we choose a sequence {Sn(λ)}∞n=N0
of diagonal

matrices

Sn(λ) =

(
s+n (λ) 0
0 s−n (λ)

)

such that the transformation

�un = Sn(λ)�vn, �vn+1 = S−1
n+1(λ)Bn(λ)Sn(λ)�vn, n � N0, (4.15)

leads to the system (resembling the system for the discrete Schrödinger operator with spectral
parameter on the boundary of the essential spectrum)

�vn+1 =

(
0 1

−1 + cn(λ) 2

)
�vn, n � N0, (4.16)

with some sequence {cn(λ)}∞n=N0
. The value N0 ∈ N will be chosen large enough uniformly in λ ∈ Ω0

in order that a number of conditions hold (these conditions will be specified in what follows). This

form of the system corresponds, via the transformation �vn =

(
xn
xn+1

)
, to the three-term recurrence
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relation xn+2 − 2xn+1 + (1− cn(λ))xn = 0, which was studied in Kooman’s paper [20]. In order to
obtain this system, we need the following relations to hold:

⎛
⎜⎜⎜⎝

0
s−n (λ)
s+n+1(λ)

−s+n (λ)an−1

s−n+1(λ)an

s−n (λ)(λ− bn)

s−n+1(λ)an

⎞
⎟⎟⎟⎠ =

(
0 1

−1 + cn(λ) 2

)
, n � N0. (4.17)

Comparing the rightmost columns, we obtain s−n (λ)(λ− bn)/(s
−
n+1(λ)an) = 2 and s−n (λ) = s+n+1(λ).

We denote
dn(λ) :=

λ− bn
2an

, n � 1.

Then s−n+1(λ)/s
−
n (λ) = dn(λ). The index N0 will be chosen large enough to ensure, in particular,

that dn(λ) �= 0 for λ ∈ Ω0 and n � N0 − 1. Take

s−n (λ) :=
n−1∏

l=N0−1

dl(λ), s+n (λ) :=

n−2∏
l=N0−1

dl(λ), n � N0,

so that

Sn(λ) =

( n−2∏
l=N0−1

dl(λ)

)(
1 0
0 dn−1(λ)

)
, n � N0. (4.18)

From the equality of the lower-left entries in (4.17) we have

−1 + cn(λ) = −s+n (λ)an−1

s−n+1(λ)an
;

therefore, we have to define

cn(λ) := 1− 4a2n−1

(λ− bn−1)(λ− bn)
, n � N0.

Note that cn(λ) → 0 as n → ∞ in the critical case. The substitution

�vn =

(
1 0
1 1

)
�wn (4.19)

transforms system (4.16) into the system

�wn+1 =

(
1 1

cn(λ) 1

)
�wn, n � N0, (4.20)

which has the same form as in [20]. Following the method of Kooman, we look for sequences
{g±n (λ)}∞n=N0

such that the substitution

�wn =

(
1 1

g+n (λ) g−n (λ)

)
�yn (4.21)

transforms system (4.20) into

�yn+1 =

((
1 + g+n 0

0 1 + g−n

)
+

1

g−n+1 − g+n+1

×
(

g+n+1 − g+n + g+n g
+
n+1 − cn g−n+1 − g−n + g−n g

−
n+1 − cn

−(g+n+1 − g+n + g+n g
+
n+1 − cn) −(g−n+1 − g−n + g−n g

−
n+1 − cn)

))
�yn, (4.22)
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which has the Levinson (L-diagonal) form ([3], [8]) if the second term in the coefficient matrix in
(4.22) is integrable. Combining the substitutions (4.15), (4.19), and (4.21), we see that the solutions
of systems (4.14) and (4.22) are related by

�un = Sn(λ)

(
1 1

1 + g+n (λ) 1 + g−n (λ)

)
�yn, n � N0.

Consider the sequence {cn(λ)}∞n=N0
. It has asymptotics

cn(λ) = 1− 4((n− 1)α + pn−1)
2

(λ+ 2(n− 1)α − qn−1)(λ+ 2nα − qn)

=
λ
nα + λ2

4n2α + α
n

1 + λ
nα + λ2

4n2α

+
r
(1)
n (λ)

nα/2
= χn(λ) +

r
(1)
n (λ)

nα/2
, (4.23)

where {supλ∈Ω0
{|r(1)n (λ)|}}∞n=N0

∈ l1 for sufficiently large N0. Here we use the notation

χn(λ) :=
λ
nα + λ2

4n2α + α
n(

1 + λ
2nα

)2 . (4.24)

The index N0 will be chosen so that the roots and the poles of χn and the poles of cn lie outside
Ω0 for n � N0.

An important property, which also arises in [20; Theorem 1, case 1] as a condition and which
one can check straightforwardly here, is that

{
sup
λ∈Ω0

∣∣∣∣
χn+1(λ)− χn(λ)

χn(λ)
+

α

n

∣∣∣∣
}∞

n=N0

∈ l1 (4.25)

due to the property

χn+1(λ) = χn(λ)

(
1− α

n
+ r(2)n (λ)

)
with

{
sup
λ∈Ω0

|r(2)n (λ)|
}∞

n=N0

∈ l1

for sufficiently large N0. Let us define

g±n (λ) := ±
√

χn(λ) +
α

4n
, n � N0. (4.26)

To specify the branch of the square root, note that the function χn has one pole μn := −2nα

and two zeros λ±
n := 2nα(−1 ±√1− α

n ) such that λ−
n → −∞ and λ+

n → 0 as n → ∞. Since
χ−1
n ((−∞, 0])) = [λ−

n , λ
+
n ] \ {μn} and χn(μn) = ∞, it follows that, for λ ∈ C \ [λ−

n , λ
+
n ], the value

z = χn(λ) never lies on the cut (−∞, 0]. A branch of
√
z on C \ (−∞, 0] can be chosen so that

Re
√
z > 0 (the principle branch). Thus, we can choose a branch of

√
χn(λ) in C \ [λ−

n , λ
+
n ] so that√

χn(0) =
√

α
n > 0, and for this choice we have Re

√
χn(λ) > 0 for λ ∈ C \ [λ−

n , λ
+
n ]. We choose N0

large enough to ensure that λ−
n , μn < −3R and λ+

n > −r for n � N0. Then

Re
√

χn(λ) � 0 for λ ∈ Ω0, n � N0. (4.27)

Note that there are two sides of the cut [−R,−r] in Ω0 for which the values of √χn are different;
see Remark 4.1. For every n � N0, the function

√
λ/nα + λ2/4n2α + α/n is also analytic in Ω0 and

continuous in Ω0, and we can write

√
χn(λ) =

√
λ
nα + λ2

4n2α + α
n

1 + λ
2nα

=

√
λ

nα/2

√
1 + λ

4nα + α
λn1−α

1 + λ
2nα

for λ ∈ Ω0, n � N0,
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which corresponds to the choice of the branch of
√
λ.

It follows from (4.25) that
{

sup
λ∈Ω0

∣∣∣∣
g±n+1(λ)− g±n (λ) + g±n (λ)g

±
n+1(λ)− χn(λ)

g−n+1(λ)− g+n+1(λ)

∣∣∣∣
}∞

n=N0

∈ l1. (4.28)

Indeed, one can easily check that

g±n+1(λ) = ±
√
χn(λ)

√
1− α

n
+ r

(3)
n (λ) +

α

4(n+ 1)

= ±
√
χn(λ)∓ α

√
χn(λ)

2n
+

α

4n
+
√
χn(λ)r

(4)
n (λ),

g±n+1(λ)− g±n (λ) =
√
χn(λ)

(
∓ α

2n
+ r(5)n (λ)

)
,

g−n+1(λ)− g+n+1(λ) = −2
√

χn+1(λ) =
√
χn(λ)

(
− 2 +

α

n
+ r(5)n (λ)

)
, (4.29)

g±n (λ)g
±
n+1(λ) = χn(λ)± α

√
χn(λ)

2n
+
√
χn(λ) r

(6)(λ)

and {supλ∈Ω0
{|r(3)n (λ)|, |r(4)n (λ)|, |r(5)n (λ)|, |r(6)n (λ)|}}∞n=N0

∈ l1 for sufficiently large N0, from which
(4.28) follows. From (4.23), (4.29), and (4.24) we have

{
sup
λ∈Ω0

∣∣∣∣
cn(λ)− χn(λ)

g−n+1(λ)− g+n+1(λ)

∣∣∣∣
}∞

n=N0

∈ l1.

Therefore, we can write system (4.22) in the form

�yn+1 =

((
1 + g+n (λ) 0

0 1 + g−n (λ)

)
+Rn(λ)

)
�yn, n � N0, (4.30)

where {supλ∈Ω0
‖Rn(λ)‖}∞n=N0

∈ l1. Clearly, cn and g±n are analytic in Ω and continuous in Ω0 for
all n � N0.

Now the tools used to prove the following lemma can be employed to show the existence of a
solution �y−

n (λ) analytic in Ω0, continuous in Ω0 (for all n � N0), and having asymptotics

�y−
n (λ) =

( n−1∏
l=N0

(1 + g−l (λ))
)
(�e− + o(1)), n → ∞, (4.31)

uniform in Ω0.
Lemma 4.6. Let a sequence {λn}∞n=1 of nonzero complex numbers be such that, for some C > 0

and any p, q ∈ N such that p � q ,
q∏

l=p

|λl| � 1

C
. (4.32)

Let a sequence {Rn}∞n=1 of complex 2× 2 matrices be such that

det

((
λn 0
0 1/λn

)
+Rn

)
�= 0, n � 1,

and ∞∑
k=1

|λk|‖Rk‖ < ∞. (4.33)
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Then the system

�xn+1 =

((
λn 0
0 1/λn

)
+Rn

)
�xn, n � 1, (4.34)

has the solution

�x−
n =

( n−1∏
l=1

1

λl

)
(�e− + o(1)), n → ∞, (4.35)

where �e− =

(
0
1

)
.

Proof. One can check that the solutions of system (4.34) are the same as the solutions of the
integral equations

�xn =

⎛
⎜⎜⎝

n−1∏
l=1

λl 0

0
n−1∏
l=1

1
λl

⎞
⎟⎟⎠ �f −

∞∑
k=n

⎛
⎜⎜⎝

k∏
l=n

1
λl

0

0
k∏

l=n

λl

⎞
⎟⎟⎠Rk�xk

for arbitrary �f ∈ C
2 (this argument is a kind of the variation of parameters method). In particular,

consider �f = �e− and

�x−
n =

(
n−1∏
l=1

1

λl

)
�e− −

∞∑
k=n

⎛
⎜⎜⎝

k∏
l=n

1
λl

0

0
k∏

l=n

λl

⎞
⎟⎟⎠Rk�x

−
k . (4.36)

Then, for the new sequence of vectors

�̃x−n :=

( n−1∏
l=1

λl

)
�x−
n ,

equation (4.36) is equivalent to the equation

�̃x−n = �e− −
∞∑
k=n

⎛
⎝

k∏
l=n

1
λ2
l

0

0 1

⎞
⎠λkRk

�̃x−k . (4.37)

Consider the family of 2× 2 matrices

Vnk := −
⎛
⎝

k∏
l=n

1
λ2
l

0

0 1

⎞
⎠λkRk, n, k � 1.

Since the norms
‖Vnk‖ � (C2 + 1)|λk|‖Rk‖ (4.38)

are summable in k by conditions (4.32) and (4.33), equation (4.37) can be written as

�̃x− = �e− + V �̃x−
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with the Volterra operator V defined by the matrix-valued kernel Vnk on the Banach space l∞(N;C2).
One has

‖V j‖ �
(∑∞

k=1(C
2 + 1)|λk|‖Rk‖

)j
j!

, j � 0,

‖(I − V )−1‖ � exp

( ∞∑
k=1

(C2 + 1)|λk|‖Rk‖
)
,

�̃x− = (I − V )−1�e− =

∞∑
j=0

V j�e−. (4.39)

From (4.37) and (4.38) it follows that �̃x−n → e−, n → ∞, and this implies (4.35), which completes
the proof. �

Remark 4.7. Lemma 4.6 is another variation of the discrete asymptotic Levinson theorem; see
[7; Lemma 2.1]. However, note that the proof of the existence of a “small” solution does not require
the dichotomy condition. This is crucial for the uniformity of asymptotics and for the continuity of
solutions in the parameter λ in what follows. Other formulations of smooth and uniform discrete
Levinson theorems, such as those in [27], do not yield the result we need.

Consider the following transformation �yn → �xn:

�yn =

( n−1∏
l=N0

√
1 + g+l (λ)

√
1 + g−l (λ)

)
�xn, n � N0. (4.40)

For sufficiently large N0, we have |g±n (λ)| � 1
2 for λ ∈ Ω, n � N0, and we can take the principal

branch for both square roots. This substitution transforms (4.30) into the system

�xn+1 =

⎛
⎜⎝

⎛
⎜⎝

√
1+g+n√
1+g−n

0

0

√
1+g−n√
1+g+n

⎞
⎟⎠+

Rn√
1 + g+n

√
1 + g−n

⎞
⎟⎠ �xn, n � N0,

to which Lemma 4.6 is applicable in Ω0 if N0 is chosen large enough (shifting the index by N0 − 1
does not change the situation). Indeed, the constant C in (4.32) can be chosen equal to 1 for every
λ ∈ Ω0: due to (4.27) we have ∣∣∣∣

1 +
√

χn(λ) + α/(4n)

1−√χn(λ) + α/(4n)

∣∣∣∣ � 1

for all λ ∈ Ω0 and n � N0. Moreover, we have
{

sup
λ∈Ω0

‖Rn(λ)‖
|1 + g−n (λ)|

}∞

n=N0

∈ l1,

since |g−n (λ)| � 1/2 for λ ∈ Ω and n � N0, which ensures that the estimate of the sum in (4.37)
provided by (4.38) is uniform in λ ∈ Ω0. By Lemma 4.6 there exists a solution

�x−
n (λ) =

(
n−1∏
l=N0

√
1 + g+l (λ)√
1 + g−l (λ)

)
(�e− + o(1)), n → ∞, (4.41)

which, together with (4.40), gives (4.31), and the asymptotics in (4.41) and (4.31) are uniform.
Furthermore, the sum in (4.39) converges absolutely and uniformly (i.e.,

∑∞
j=0 supλ∈Ω0

‖V j(λ)�e−‖ <
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∞), and the summands are analytic in Ω0 and continuous in Ω0; thus, the solutions �x−(λ) and
�y−(λ) are also analytic in Ω0 and continuous in Ω0. Returning to the system (4.14), using (4.21),
(4.19), and (4.15), we obtain a solution of system (4.14) analytic in Ω0 and continuous in Ω0 whose
asymptotics as n → ∞ is uniform in Ω0; we denote this solution by �̃u−

n (λ):

�̃u−
n (λ) := Sn(λ)

(
1 0
1 1

)(
1 1

g+n (λ) g−n (λ)

)
�y−
n (λ)

= Sn(λ)

(
1 0
1 1

)(
1 1

g+n (λ) g−n (λ)

)( n−1∏
l=N0

√
1 + g+l (λ)

√
1 + g−l (λ)

)
�x−
n

=

( n−1∏
l=N0

h−l (λ)
)(

1 1
h+n (λ) h−n (λ)

)
(�e− + o(1)),

where
h±n (λ) := dn−1(λ)(1 + g±n (λ)). (4.42)

As one can see,

dn(λ) = 1 +
λ

2nα
+

r
(7)
n (λ)

nα/2
, and

{
sup
λ∈Ω0

|r(7)n (λ)|
}∞

n=1

∈ l1. (4.43)

Using this formula and the definitions (4.26), (4.24), and (4.7), we obtain

h−n (λ) = η−n (λ) + r(8)n (λ), and
{

sup
λ∈Ω0

|r(8)n (λ)|
}∞

n=N0

∈ l1.

By the choice of N0 we can ensure that, for all λ ∈ Ω and n � N0, we have |η−n (λ)| � 1/2. Then,
for every n � N0,

h−n (λ)
η−n (λ)

= 1 +
r
(8)
n (λ)

η−n (λ)
= 1 + r(9)n (λ), and

{
sup
λ∈Ω0

|r(9)n (λ)|
}∞

n=N0

∈ l1.

This quotient is a function analytic in Ω0 and continuous in Ω0, and it has no roots. Therefore, the
product

∞∏
l=N0

h−n (λ)
η−n (λ)

=: C0(λ)

converges and has the same properties. Consider the solution

�u−
n (λ) =

(
un−1(λ)
un(λ)

)
:=

�̃u−n (λ)
C0(λ)

=

( n−1∏
l=N0

η−l (λ)
)( ∞∏

l=n

η−l (λ)
h−l (λ)

)(
1 1

h+n (λ) h−n (λ)

)
(�e− + o(1))

=

( n−1∏
l=N0

η−l (λ)
)(

1 1
h+n (λ) h−n (λ)

)
(�e− + o(1)), (4.44)

which is proportional to �̃u−n (λ) and implies (4.6). The solution �un is analytic in Ω0 and continuous
in Ω0 for every n � N0. Moreover, although this solution is initially defined for n � N0, it exists

106



for all n � 2 (and can be formally defined also for n = 1, in which case a0 := 0), retaining the same
properties, because the matrices Bn(λ) and B−1

n (λ) are entire in λ for all n.
Note that the asymptotics of the form

( n−1∏
l=N0

η−l (λ)
)(

1 1
h+n (λ) h−n (λ)

)
(�e− + o(1))

implies, but is not equivalent to,

( n−1∏
l=N0

η−l (λ)
)(

1 + o(1)
1 + o(1)

)
,

which would be enough to obtain (4.6). It contains more information, which is lost due to the
degeneracy of the matrix

(
1 1
1 1

)
= lim

n→∞

(
1 1

h+n (λ) h−n (λ)

)
.

We will employ this more refined form of asymptotics below, in (4.46).
In this proof, we have many times declared that N0 should be chosen sufficiently large, so that

one property or another holds true. Evidently, one can choose N0 so that all of them hold at once.
This choice is determined only by the values r and R.

For λ ∈ [−R,−r] and large n,

|η−n (λ)|2 =
(
1 +

λ

2nα
+

α

4n

)2 − λ

nα
− λ2

4n2α
− α

n
= 1− α

2n
+

αλ

4n1+α
+

α2

16n2
.

Thus, n
α
2
∏n

n=N0
|η−n (λ)|2 has a finite limit as n → ∞, which is a continuous function of λ without

roots in [−R,−r]. Hence H(λ) is well defined by (4.8).

Since the recurrence relation (4.5) has real coefficients, the sequence u+n (λ) := u−n (λ) is its
solution for λ ∈ [−R,−r]. The sequence

�u+
n (λ) :=

(
u+n−1(λ)
u+n (λ)

)
=

( n−1∏
l=N0

η−l (λ)
)(

1 1

h+n (λ) h−n (λ)

)
(�e− + o(1))

is a solution to system (4.14). For λ ∈ [−R,−r] and large n, one has h+n (λ) = h−n (λ), and hence

�u+
n (λ) =

( n−1∏
l=N0

η−l (λ)
)(

1 1
h−n (λ) h+n (λ)

)
(�e− + o(1))

=

( n−1∏
l=N0

η−l (λ)
)(

1 1
h+n (λ) h−n (λ)

)
(�e+ + o(1)), (4.45)
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where �e+ :=

(
1
0

)
. For fixed λ ∈ [−R,−r] and any n ∈ N, the Wronskian of the solutions u+(λ)

and u−(λ) is equal to

W{u+(λ), u−(λ)} = an(u
+
n (λ)u

−
n+1(λ)− u+n+1(λ)u

−
n (λ))

= an det

(
u+n (λ) u−n (λ)
u+n+1(λ) u−n+1(λ)

)

= lim
n→∞ an det

((
1 1

h+n+1(λ) h−n+1(λ)

)
(I + o(1))

n∏
l=N0

(
η−l (λ) 0

0 η−l (λ)

))

= lim
n→∞ an(h

−
n+1(λ)− h+n+1(λ))

( n∏
l=N0

|η−l (λ)|2
)
(1 + o(1))

= −2 lim
n→∞ andn(λ)

√
χn+1(λ)

( n∏
l=N0

|η−l (λ)|2
)
(1 + o(1))

= −2i
√−λH2(λ), (4.46)

where we used (4.42), (4.44), and (4.45) to obtain the third equality, (4.42) and (4.26) to obtain
the fifth one, and (1.2), (4.43), (4.24), and (4.8) to obtain the last equality. Hence u+(λ) and u−(λ)
are linearly independent for λ ∈ [−R,−r], and the orthogonal polynomials of the first kind can be
expressed as

Pn(λ) = Ψ(λ)u+n (λ) + Ψ(λ)u−n (λ) (4.47)

with

Ψ(λ) =
W{P (λ), u−(λ)}
W{u+(λ), u−(λ)} =

a0(P0(λ)u
−
1 (λ)− P1(λ)u

−
0 (λ))

−2i
√−λH2(λ)

=
u−0 (λ)

2i
√−λH2(λ)

,

where P (λ) := {Pn(λ)}∞n=1 and P0(λ) is the formal extension of the solution of the eigenvector
equation with a0 = 1, i.e., P0(λ) ≡ 0; one can easily check that the Wronskian remains constant on
the larger index set N ∪ {0}. From this we see that Ψ and u−0 cannot have zeros on [−R,−r].

Using Proposition 3.3, we can prove the existence of a limit, uniform in [−R,−r], of the sequence

ρ′n(λ) =
√

1− d2n(λ)

πan|Pn+1(λ)− zn(λ)Pn(λ)|2 for a. e. λ ∈ (bn − 2an, bn + 2an), (4.48)

where

zn(λ) = dn(λ)− i
√

1− d2n(λ),

according to (3.3) and (3.4). Firstly, from (4.43) we have

√
1− d2n(λ) =

√−λ

nα/2

√
1 +

2

λ
nα/2r

(7)
n (λ) + o(1) .

The term (2/λ)nα/2r
(7)
n (λ) does not generally tend to zero under our condition (1.3). However, it

can be made infinitesimal on a subsequence. Since we are looking for uniform convergence, this
subsequence should not depend on λ. Let κn := max{|pn|/nα/2, |qn|/nα/2}; then {κn}∞n=1 ∈ l1 by
condition (1.3). One can choose an increasing sequence {nk}∞k=1 such that κnk

= o(1/nα
k ), k → ∞.
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This means that pnk
, qnk

= o(1/n
α/2
k ). Thus,

dnk
(λ) =

λ+ 2nα
k − qnk

2nα
k + 2pnk

= 1 +
λ

2nα
k

+ o

(
1

n
3α/2
k

)
,

√
1− d2nk

(λ) =

√−λ

n
α/2
k

(
1 + o

(
1

n
α/2
k

))
, (4.49)

znk
(λ) = 1− i

√−λ

n
α/2
k

+ o

(
1

n
α/2
k

)
, (4.50)

h±nk+1(λ) = 1± i
√−λ

n
α/2
k

+ o

(
1

n
α/2
k

)
. (4.51)

The remainder o-terms are uniform in λ ∈ [−R,−r]. This also gives bnk
+ 2ank

→ 0 as k → ∞
(while bn − 2an → −∞ as n → ∞ holds for the whole sequence). Thus, we can find K ∈ N such
that, for k � K, the inclusion [−R,−r] ⊂ (bnk

− 2ank
, bnk

+ 2ank
) holds and (4.48) is true for a. e.

λ ∈ [−R,−r] and n = nk. Further, on [−R,−r] we have

Pn+1 − znPn = Ψ(u+n+1 − znu
+
n ) + Ψ(u−n+1 − znu

−
n ).

Using (4.45), we obtain

u+n+1 − znu
+
n =

(−zn 1
)( u+n

u+n+1

)

=
(−zn 1

)( n∏
l=N0

η−l

)(
1 1

h+n+1 h−n+1

)
(�e+ + o(1))

=

( n∏
l=N0

η−l

)(
h+n+1 − zn h−n+1 − zn

)(1 + o(1)
o(1)

)

and, similarly,

u−n+1 − znu
−
n =

⎛
⎝

n∏
l=N0

η−l

⎞
⎠(h+n+1 − zn h−n+1 − zn

)( o(1)
1 + o(1)

)
.

From (4.50) and (4.51) we have

u+nk+1 − znk
u+nk

=

( nk∏
l=N0

η−l

)
(h+nk+1 − znk

)(1 + o(1)),

u−nk+1 − znk
u−nk

=

( nk∏
l=N0

η−l

)
o

(
1

n
α/2
k

)

as k → ∞, and in view of (4.8) all this implies

|u+nk+1(λ)− znk
(λ)u+nk

(λ)| = 2
√−λH(λ) + o(1)

n
α/4
k

,

|u−nk+1(λ)− znk
(λ)u−nk

(λ)| = o

(
1

n
α/4
k

)
.
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Therefore,

|Pnk+1(λ)− znk
(λ)Pnk

(λ)| = 2
√−λ|Ψ(λ)|H(λ) + o(1)

n
α/4
k

, k → ∞,

uniformly in λ ∈ [−R,−r]. Here we write only the asymptotics of absolute values, because, firstly,
this is exactly what we need to proceed, and secondly, because its form should depend on α and
cannot be written explicitly for all α ∈ (0, 1); see Remark 4.5. Since an = nα(1 + o(1)) due to
(4.4), this, together with (4.49), is sufficient for passing to the limit for the subsequence ρ′nk

by
using (4.48):

ρ′nk
(λ) =

√
1− d2nk

(λ)

πan|Pnk+1(λ)− znk
(λ)Pnk

(λ)|2 → 1

4π
√−λ |Ψ(λ)|2H2(λ)

,

and this limit is uniform in λ ∈ [−R,−r]. By Proposition 3.3 the spectral measure ρ is absolutely
continuous on (−R,−r) and

ρ′(λ) =
1

4π
√−λ |Ψ(λ)|2H2(λ)

=

√−λH2(λ)

π|u−0 (λ)|2
for a. e. λ ∈ (−R,−r),

which finishes the proof. �
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no. 174, Birkhäuser, Basel, 2007, pp. 173–186.

[28] S. Simonov, “An example of spectral phase transition phenomenon in a class of Jacobi matrices
with periodically modulated weights”, Operator Theory, Analysis and Mathematical Physics,
Oper. Theory Adv. Appl., no. 174, Birkhäuser, Basel, 2007, pp. 187–203.
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