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Abstract. Interpolation inequalities play an important role in the study of PDEs and their appli-
cations. There are still some interesting open questions and problems related to integral estimates
and regularity of solutions to elliptic and/or parabolic equations. The main purpose of our work
is to provide an important observation concerning the Lp-boundedness property in the context of
interpolation inequalities between Sobolev and Morrey spaces, which may be useful for those work-
ing in this domain. We also construct a nontrivial counterexample, which shows that the range of
admissible values of p is optimal in a certain sense. Our proofs rely on integral representations and
on the theory of maximal and sharp maximal functions.
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1. Introduction

In the theory of partial differential equations, the study of interpolation inequalities in Lebesgue,
Sobolev, and Morrey spaces play an important role. There is still much to be done in the investigation
of interesting inequalities arising from Lp-estimates or regularity results for Lp-solutions of PDEs.
In recent years, the number of publications devoted to the study of these inequalities and their
improvements has increased; see, e.g., [6], [11], [5], [8] and references therein. In this paper we are
interested in an interpolation inequality between the Sobolev and Morrey spaces obtained in [8].
We present an interesting independent proof of this inequality, which uses sharp maximal functions
M#, and apply it to prove the boundedness of the Lr-norm. The main result is the counterexample
in Theorem 2.4, which shows the optimality of the admissible range of r values in the inequality.
We believe that this work opens new perspectives in the study of the regularity, existence, and
uniqueness of solutions and weak solutions of partial differential equations, as well as Sobolev and
Morrey spaces, which play a very important role in PDE theory and its applications.

We consider Euclidean space Rd, d � 2. For certain parameters 1 � p < d and 1 < q < pd/(d−p),
we therein focus on a brief proof of the following Lr-boundedness property of the set of functions
u ∈ C1

c (R
d) with uniformly bounded norms in certain Sobolev and Morrey spaces:ˆ

Rd

|u|rdx � C, r ∈
[
p

(
q

d
+ 1

)
,

pd

d− p

]
. (1.1)

This property is connected with solution regularity of PDEs, especially nonlinear, and plays a
significant role in analysis. In particular, it makes sense to study solution properties in the specified
range of the parameter r. As we will show in the present work, there is a counterexample for which
inequality in (1.1) does not hold for some values of r.

In order to state our result, we first recall some related notation and definitions. Here we only
recall the basic notions that we use in statements and proofs. The notation used throughout the
paper is standard; some conventions will be introduced in what follows. For definitions and properties
of spaces and operators under consideration we refer the reader to any of the many textbooks and
references in [1]–[4].
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1. Open ball : If x ∈ R
d and r is a positive real number, by Br(x) we denote the open ball

{y ∈ R
d : |y − x| < r} in R

d.
2. Mean value: the notation

ffl
Br(x)

f(y)dy is used for the integral average, or mean value, of f
in the variable y over the ball Br(x), i.e.,

 
Br(x)

f(y) dy =
1

|Bρ(x)|
ˆ
Br(x)

f(y) dy,

where |B| denotes the d-dimensional Lebesgue measure of a set B ⊂ R
d.

3. For any set I ⊂ R, by Ck
c (R

m, I) (by C∞
c (Rm, I)) we denote the set of k-times differentiable

(infinitely differentiable, respectively) functions f on R
m with compact support and values in I, i.e.,

functions for which there exists a compact set K ⊂ R
m such that

supp(f) = cl.{x ∈ R
m : f(x) �= 0} ⊂ K.

4. The Hardy–Littlewood maximal function: For x ∈ R
d, the Hardy–Littlewood maximal function

is defined for each locally integrable function f in R
d by

M(f)(x) = sup
ρ>0

 
Bρ(x)

|f | dy.

5. Sharp maximal function: For x ∈ R
d, the sharp maximal function of f is defined as

M#(f)(x) = sup
ρ>0

 
Bρ(x)

∣∣∣∣f(y)−
 
Bρ(x)

f(z) dz

∣∣∣∣dy. (1.2)

6. By a ∼ b we mean that there exist some positive real constants C1, C2 > 0 such that
C1a � b � C2a.

The rest of this paper is structured as follows. In the next section we state the main result and
some preparatory lemmas. In Section 3 we give a detailed proof of the main theorem and some other
necessary proofs.

2. Statement of Main Results

In this section we list all lemmas, theorems, and corollaries that will be discussed and proved.
The first integral inequality is given in Lemma 2.1. It is not new (see [8]), but for the reader’s
convenience we give its self-contained proof in Section 3.

Lemma 2.1. Let 1 < p < d, and let 1 < q < pd/(d− p). Then the following integral inequality
holds:

ˆ
Rd

|u|p(q/d+1)dx � C

ˆ
Rd

|∇u|pdx
(

sup
Bρ(z)

ρd/q
 
Bρ(z)

|u| dx
)qp/d

, u ∈ C1
c (R

d). (2.1)

The following theorem contains an interpolation inequality in Lebesgue spaces. This theorem is
an easy corollary of inequality (2.1), Sobolev’s inequality, and Hölder’s inequality (see [4]).

Theorem 2.2. Let 1 < p < d, and let 1 < q < pd/(d− p). If u ∈ C1
c (R

d),
ˆ
Rd

|∇u|pdx � 1, (2.2)

and
sup
Bρ(z)

ρd(q1−q)/q

ˆ
Bρ(z)

|u|q1dx � 1 (2.3)
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for some 1 � q1 � q , then
ˆ
Rd

|u|rdx � C for any r ∈
[
p

(
q

d
+ 1

)
,

pd

d− p

]
. (2.4)

The proof of Theorem 2.2 given in the next Section 3 brings up an interesting problem, namely,
the following question concerning the range of r in (2.4): Is it possible to extend the range of
values of r for which the interpolation inequality (2.4) still holds? A solution of this problem would
complete a picture in studying interpolation inequalities in Lebesgue spaces; it is also related in a
certain way to the Gagliardo–Nirenberg inequalities and their generalizations (we refer the reader
to [7], [1], [2], [6], [5] and related references therein). This question arises from the theory of PDEs
and might provide a procedure for analyzing regularity and obtaining some comparison estimates
or important properties of solutions to elliptic and/or parabolic equations in future studies. That is
the main motivation for writing this paper.

The following result, Corollary 2.3, asserts that inequality (2.4) holds for an extended range of
r but only in the specific case q1 = q. A brief proof is given in Section 3.

Corollary 2.3. If q1 = q in Theorem 2.2, then (2.4) is true for any r ∈ [q, p(q/d+ 1)].
However, as we will show in this paper, this interpolation inequality does not hold if q1 < q and

r < p(q/d+1). This leads us to the very important conclusion that the range of r in Theorem 2.2 is
optimal. A counterexample in which inequality (2.4) does not hold outside the interval [q, p(q/d+1)]
is given in the following theorem.

Theorem 2.4. Let 1 < p < d, and let 1 < q < pd/(d − p). Then, for any 1 � q1 < q , there
exists a sequence (un)n ∈ C∞

c (Rd) such that
ˆ
Rd

|∇un|p dx � 1, sup
Bρ(z)

ρd(q1−q)/q

ˆ
Bρ(z)

|un|q1dx � 1. (2.5)

Moreover, for any r > 0,
ˆ
Rd

|un|rdx ∼ 2
d2(q−q1)

q(dp−(d−p)q)
(p(1+q/d)−r)n

, n � 1. (2.6)

In particular, ˆ
Rd

|un|rdx � C, n � 1, (2.7)

if and only if r � p(q/d+ 1).

3. Proofs of the Main Results

This section is devoted to proofs of our statements in the previous section. We note that the
positive constants C may be different in different inequalities, although they are denoted by the
same letter.

Proof of Lemma 2.1. By Poincaré’s inequality, for ρ > 0 and any y ∈ R
d, we have

 
Bρ(y)

|u− (u)Bρ(y)| dx � Cρ

 
Bρ(y)

|∇u| dx for any u ∈ C1
c (R

d), (3.1)

where (f)Ω denotes the mean value of f over the domain Ω. Taking the supremum of both sides of
(3.1) over all ρ > 0, we obtain

sup
ρ>0

ρ−1

 
Bρ(y)

|u− (u)Bρ(y)| dx � CM(|∇u|)(y) for any y ∈ R
d. (3.2)
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By the definition of the sharp maximal function M# in (1.2), we can decompose it as

[M#(u)(y)]
p(q/d+1) = sup

ρ>0

(
ρd/q

 
Bρ(y)

|u− (u)Bρ(y)| dx
)pq/d(

ρ−1

 
Bρ(y)

|u− (u)Bρ(y)| dx
)p

� C

(
sup

ρ>0, z∈Rd

ρd/q
 
Bρ(z)

|u| dx
)qp/d(

sup
ρ>0

ρ−1

 
Bρ(y)

|u− (u)Bρ(y)| dx
)p

.

(3.3)

Thanks to (3.2) and (3.3), one also has the following inequality between the Hardy–Littlewood
maximal function M and the sharp maximal function M#:

[M#(u)(y)]
p(q/d+1) � C

(
sup
Bρ(z)

ρd/q
 
Bρ(z)

|u| dx
)qp/d

[M(|∇u|)(y)]p. (3.4)

It is well known [9] that, for any s ∈ (1,∞) and f ∈ Ls(Rd), there exists a positive constant C
such that the following inequalities hold:

C−1

ˆ
Rd

|f |sdx �
ˆ
Rd

|M#(f)|sdx � C

ˆ
Rd

|f |sdx, (3.5)

C−1

ˆ
Rd

|f |sdx �
ˆ
Rd

|M(f)|sdx � C

ˆ
Rd

|f |sdx. (3.6)

It follows from (3.4), (3.5), and (3.6) thatˆ
Rd

|u|p(q/d+1)dx � C

ˆ
Rd

[M#(u)(x)]
p(q/d+1)dx

� C

ˆ
Rd

[M(|∇u|)(x)]p
(

sup
Bρ(z)

ρd/q
 
Bρ(z)

|u(y)| dy
)qp/d

dx

� C

ˆ
Rd

|∇u|p
(

sup
Bρ(z)

ρd/q
 
Bρ(z)

|u(y)| dy
)qp/d

dx

� C

(
sup
Bρ(z)

ρd/q
 
Bρ(z)

|u| dx
)qp/d ˆ

Rd

|∇u|pdx,

which completes our proof. �
Proof of Theorem 2.2. According to the strengthened Sobolev inequality, for all u∈W 1,p(Rd),

one has (ˆ
Rd

|u|pd/(d−p)dx

)(d−p)/(dp)

� C

(ˆ
Rd

|∇u|pdx
)1/p

,

which implies that if (2.2) holds, thenˆ
Rd

|u|pd/(d−p)dx � C. (3.7)

Thanks to Hölder’s inequality, for all u satisfying (2.3), we have

sup
Bρ(z)

ρd/q
 
Bρ(z)

|u| dx � C sup
Bρ(z)

ρd(1−q)/q

ˆ
Bρ(z)

|u| dx

� C sup
Bρ(z)

ρd(1−q)/q · ρd(q1−1)/q1

(ˆ
Bρ(z)

|u|q1dx
)1/q1

� C

(
sup
Bρ(z)

ρd(q1−q)/q

ˆ
Bρ(z)

|u|q1dx
)1/q1

� C
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for any 1 � q1 � q. Using Lemma 2.1, one obtainsˆ
Rd

|u|p(q/d+1)dx � C. (3.8)

It is easy to see that, for any r ∈ [p(q/d+ 1), pd/(d− p)], there exists a θ ∈ [0, 1] such that

1

r
=

θd

p(q + d)
+

(1− θ)(d− p)

pd
.

Applying Hölder’s inequality, one obtainsˆ
Rd

|u|rdx =

ˆ
Rd

|u|rθ|u|r(1−θ)dx

�
(ˆ

Rd

[|u|rθ]p(q/d+1)/(rθ)dx

)rθd/(p(q+d))( ˆ
Rd

[|u|r(1−θ)]pd/(r(1−θ)(d−p))dx

)r(1−θ)(d−p)/(pd)

�
(ˆ

Rd

|u|p(q/d+1)dx

)rθd/(p(q+d))(ˆ
Rd

|u|pd/(d−p)dx

)r(1−θ)(d−p)/(pd)

. (3.9)

It should be mentioned that the obtained inequality (3.9) is also an interpolation inequality in
Lebesgue spaces; such inequalities were studied in [9, 10].

Combining (3.7), (3.8), and (3.9), we obtain the proof of Theorem 2.2. �
Next, let us give a proof of Corollary 2.3.
Proof of Corollary 2.3. If q1 = q in Theorem 2.2, assumption (2.3) becomes

sup
Bρ(z)

ˆ
Bρ(z)

|u|qdx � 1,

and it follows that ˆ
Rn

|u|qdx � 1. (3.10)

The fulfillment of estimate (2.4) for any r ∈ [q, p(q/d+1)] follows from (3.8), (3.10), and a repeatedly
applied interpolation inequality in Lebesgue space of the form (3.9). �

Proof of Theorem 2.4. Suppose given functions φ ∈ C∞
c (Rd−1, [0, 1]) and η ∈ C∞

c (R, [0, 1])
satisfying the conditions

φ(x) =

{
1, x ∈ B1(0),

0, x ∈ B2(0)
c,

η(t) =

{
1, t ∈ (−1, 1),

0, t ∈ (−2, 2)c,

|∇φ(x)| � 1 for any x ∈ R
d−1, and |η′(t)| � 1 for any t ∈ R.

Let us choose a parameter θ ∈ (0, 10−10d) and a number n � 100/θ. Then, for any fixed k � 10/θ,
we define a sequence {ak,j} by

ak,j = 2k−1 + 1 + j2k−1−θ(k−1), 1 � j � 2θ(k−1) − 3.

It is easy to check that, for any 1 � j � 2θ(k−1) − 3, one has

ak,j ∈ (2k−1 + 2, 2k − 2).

Consider the functions χn and σn defined by

χn(t) =

n∑
k�10θ−1

2θ(k−1)−3∑
j=1

η(t− ak,j) and σn(t) = χn(t) + χn(−t).
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Note that, since

supp(η( · − ak,j)) ∩ supp(η( · − ak′,j′)) = ∅ for any (k, j) �= (k′, j′),

it follows that, for any r > 0,

sup
ρ>0, t0∈R

(
ρ−θ

ˆ t0+ρ

t0−ρ
σn(t)

rdt

)
∼ 1 for all n � 100/θ, (3.11)

ˆ
R

σn(t)
rdt ∼ 2θn for all n � 100/θ, (3.12)

and
ˆ
R

|σ′
n(t)|rdt ∼ 2θn for all n � 100/θ. (3.13)

Indeed, relation (3.12) follows from the estimates

ˆ
R

σn(t)
rdt ∼

n∑
k�10θ−1

2θ(k−1)−3∑
j=1

ˆ
R

η (t− ak,j)
r dt

∼
n∑

k�10θ−1

2θ(k−1)−3∑
j=1

ˆ
R

η (t)r dt

∼
n∑

k�10θ−1

2θ(k−1)−3∑
j=1

1 ∼ 2θn.

The proof of (3.13) is similar. To prove (3.11), it suffices to prove a similar relation in which the
supremum is taken over ρ large enough (because the function σn is bounded). Note that

sup
ρ>2100,t0∈R

(
ρ−θ

ˆ t0+ρ

t0−ρ
σn(t)

rdt

)
∼ sup

ρ>2100,t0∈R

n∑
k�10θ−1

2θ(k−1)−3∑
j=1

(
ρ−θ

ˆ t0+ρ

t0−ρ
η (t− ak,j)

r dt

)
.

(3.14)

For each ρ > 2100, choose m ∈ N such that ρ ∼ 2m. We obtain

sup
t0∈R

n∑
k�10θ−1

2θ(k−1)−3∑
j=1

ˆ t0+ρ

t0−ρ
η (t− ak,j)

r dt ∼ # {ak,j ∈ [−ρ, ρ]} ∼
m∑

k=2

(
2θ(k−1) − 3

)
∼ 2θm ∼ ρθ.

(3.15)

where # denotes the cardinality of a set. Combining (3.14) with (3.15), we obtain (3.11).
Now, for n > 100/θ, we define the following sequence of functions:

un(t,x) = 2−αdn/qσn(2
−αnt)φ(2−αnx) for each (t,x) ∈ R× R

d−1,

where θ = d(q − q1)/q ∈ (0, 10−10d) and α = d(q − q1)/(dp− (d− p)q).
Let us prove that un satisfies (2.5) and (2.6).
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(i) First, we compute
ˆ
Rd

|∇un|pdx dt ∼ 2−pαdn/q

ˆ
R

|σ′
n(2

−αnt)|p2−pαndt

ˆ
Rd−1

φ(2−αnx)pdx

+ 2−pαdn/q

ˆ
R

|σn(2−αnt)|pdt
ˆ
Rd−1

|∇φ(2−αnx)|p2−pαndx

= 2−pαdn/q

ˆ
R

|σ′
n(t)|p2αn−pαndt

ˆ
Rd−1

φ(x)p2(d−1)αndx

+ 2−pαdn/q

ˆ
R

|σn(t)|p2αndt
ˆ
Rd−1

|∇φ(x)|p2(d−1)αn−pαndx

= 2n(−pαd/q+dα−pα)

(ˆ
R

|σ′
n(t)|pdt

ˆ
Rd−1

φ(x)pdx

+

ˆ
R

|σn(t)|pdt
ˆ
Rd−1

|∇φ(x)|pdx
)
. (3.16)

It is easy to see that, for θ and α chosen above, we have −pαd
q + dα− pα+ θ = 0, and from (3.12),

(3.13), and (3.16) we obtain
ˆ
Rd

|∇un|p ∼ 2−pαdn/q+dαn−pαn+θn = 1 for any n > 100/θ, (3.17)

which implies the first inequality of (2.5).
(ii) By changing variables inside the integrals, one obtains

sup
Bρ(s,y)⊂Rd

(
ρ−θ

ˆ
Bρ(s,y)

|un(t,x)|q1dt dx
)

∼ sup
ρ>0

(
ρ−θ

ˆ
Bρ(0)

|un(t,x)|q1dt dx
)

∼ 2−q1αdn/q sup
ρ>0

(
ρ−θ

ˆ ρ

−ρ
σn(2

−αnt)q1dt

ˆ
|x|<ρ

φ(2−αnx)q1dx

)

∼ 2−q1αdn/q sup
ρ>0

(
ρ−θ

ˆ 2−αnρ

−2−αnρ
σn(t)

q12αndt

ˆ
|x|<2−αnρ

φ(x)q12(d−1)αndx

)

∼ 2−q1αdn/q sup
ρ>2αn

(
ρ−θ

ˆ 2−αnρ

−2−αnρ
σn(t)

q12αndt

ˆ
|x|<2−αnρ

φ(x)q12(d−1)αndx

)

(3.12)∼ 2−q1αdn/q2αdn2−αθn = 1.

Thus,

sup
Bρ(s,y)⊂Rd

ρ−θ

ˆ
Bρ(s,y)

|un|q1dx ∼ 1 for any n > 100/θ,

which implies the second inequality of (2.5).
(iii) For each r > 0, we have

ˆ
Rd

|un(t,x)|rdt dx = 2−rαdn/q

ˆ
R

σn(2
−αnt)rdt

ˆ
Rd−1

φ(2−αnx)rdx

= 2−rαdn/q+dαn

ˆ
R

σn(t)
rdt

ˆ
Rd−1

φ(x)rdx

(3.12)∼ 2−rαdn/q+dαn+θn = 2
d2(q−q1)

q(dp−(d−p)q)
(p(1+q/d)−r)n

,

which implies (2.6).
Finally, relation (2.6) shows that estimate (2.7) holds if and only if r � p(q/d+ 1). �
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Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces”, Nonlinear Anal., 173
(2018), 146–153.

[6] D. S. McCormick, J. C. Robinson, and J. L. Rodrigo, “Generalised Gagliardo–Nirenberg in-
equalities using weak Lebesgue spaces and BMO”, Milan J. Math., 81:2 (2013), 265–289.

[7] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa, 13
(1959), 115–162.

[8] G. Patalucci and A. Pisante, “Improved Sobolev embeddings, profile decomposition, and con-
centration compactness for fractional Sobolev spaces”, Calc. Var. Partial Differ. Equ., 50:3–4
(2014), 799–829.

[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Inte-
grals, Princeton Univ. Press, Princeton, NJ, 1993.

[10] E. M. Stein and R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis,
Princeton Univ. Press, Princeton, NJ, 2011.

[11] J. Van Schaftingen, “Interpolation inequalities between Sobolev and Morrey–Campanato
spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg interpo-
lation inequalities”, Port. Math., 71:3 (2014), 159–175.

Minh-Phuong Tran
Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh
City, Viet Nam
E-mail : tranminhphuong@tdtu.edu.vn

Thanh-Nhan Nguyen
Department of Mathematics, Ho Chi Minh City University of Education, Ho Chi Minh City, Viet Nam
E-mail : nguyenthnhan@hcmup.edu.vn

207


