ISSN 0016-2663, Functional Analysis and Its Applications, 2019, Vol. 53, No. 3, pp. 224–228. © Pleiades Publishing, Ltd., 2019. Russian Text © The Author(s), 2019. Published in Funktsional'nyi Analiz i Ego Prilozheniya, 2019, Vol. 53, No. 3, pp. 84–88.

Caristi's Inequality and α -Contraction Mappings

B. D. Gel'man

Received October 12, 2018; in final form, May 23 2019; accepted May 25, 2019

ABSTRACT. A new Caristi-type inequality is considered and Caristi's fixed point theorem for mappings of complete metric spaces is developed (in both the single- and set-valued cases). On the basis of this development mappings of complete metric spaces which are contractions with respect to a function of two vector arguments are studied. This function is not required to be a metric or even a continuous function. The proved theorems are generalizations of the Banach contraction principle and Nadler's theorem.

KEY WORDS: fixed point, set-valued mapping, metric space, contraction mapping.

DOI: 10.1134/S0016266319030079

Various versions of the contraction mapping have been considered by many authors (see, e.g., the books [1] and [2] and the papers [3] and [4]). One of the generalizations of this principle is Caristi's theorem [5]. The necessary information from the theory of set-valued mappings can be found in [6] and [7].

Caristi's theorem [7]. Let X be a complete metric space, and let $F: X \multimap X$ be a set-valued mapping with closed graph. Suppose that there exists a nonnegative function $\alpha: X \to \mathbb{R}_+$ and a nonnegative number c such that, for any point $x \in X$, there is a point $y \in F(x)$ for which Caristi's inequality

$$\alpha(y) + c\rho(x, y) \leqslant \alpha(x) \tag{K}$$

holds. Then F has a fixed point, i.e., there exists a point $x_* \in X$ such that $F(x_*) \ni x_*$.

In this paper we prove some generalizations of Caristi's theorem and, relying on the obtained results, study contractions with respect to a function of two vector arguments, which is not required to be a metric or even a continuous function.

1. The case of single-valued mappings. Let (X, ρ) be a complete metric space. Suppose given a continuous mapping $f: X \to X$ and a function $\alpha: X \times X \to \mathbb{R}$.

Definition 1. A mapping $f: X \to X$ is called an α -contraction (contraction with respect to a function α) if it continuous and there exists a number $k \in (0, 1)$ such that $\alpha(f(x), f(y)) \leq k\alpha(x, y)$ for any $x, y \in X$.

The question arises: Does any α -contraction mapping have a fixed point? The answer to this question is negative, and counterexamples are easy to construct. In what follows, we assume that α is bounded from below and set $\gamma_0 = \inf_{(x,y) \in X \times X} \alpha(x, y)$.

Let us prove the following generalization of Caristi's theorem.

Theorem 1. If there exists a number c > 0 such that

$$\alpha(f(x), f(y)) + c\rho(x, y) \leqslant \alpha(x, y) \tag{1}$$

for any $x, y \in X$, then, given any point x_0 , the successive approximations $x_{n+1} = f(x_n)$ converge to a point x_* , which is the unique fixed point of f, and

$$\rho(x_*, x_0) \leqslant \frac{\alpha(x_0, f(x_0)) - \gamma_0}{c} \,. \tag{2}$$

Proof. Consider the iterative sequence of points starting from x_0 . Let $u_n = \alpha(x_n, x_{n+1})$. By the assumptions of the theorem, for any n, we have

$$\rho(x_n, x_{n+1}) \leqslant c^{-1}(\alpha(x_n, x_{n+1}) - \alpha(x_{n+1}, x_{n+2})) = c^{-1}(u_n - u_{n+1}).$$
(3)

Thus, the sequence $\{u_n\}$ monotonically decreases and is bounded from below; therefore, this is a Cauchy sequence. It is easy to check that, in this case, the sequence $\{x_n\}$ is Cauchy as well. Hence there exists a point x_* which is the limit of the sequence $\{x_n\}$. Since the mapping f is continuous, it follows that x_* is a fixed point of this mapping.

The uniqueness of the fixed point x_* easily follows from inequality (1).

Inequality (3) also implies (2). This completes the proof of the theorem.

Theorem 1 has the following corollary, which is a generalized form of the Banach contraction principle.

Corollary 1. Let f be an α -contraction. Suppose that there exists a number q > 0 such that $\rho(x, y) \leq q\alpha(x, y)$ for any $x, y \in X$. Then

1. the mapping f has a unique fixed point x_* ;

2. for any point $x_0 \in X$, the iterative sequence $\{x_n\}$, where $x_n = f(x_{n-1})$, converges to x_* ;

3. the following inequality holds:

$$\rho(x_*, x_0) \leqslant \frac{q(\alpha(x_0, f(x_0)) - \gamma_0)}{1 - k}$$

Proof. Since f is an α -contraction, it follows that $\alpha(f(x), f(y)) + (1-k)\alpha(x, y) \leq \alpha(x, y)$. By assumption, we have

$$\alpha(f(x), f(y)) + \frac{1-k}{q} \rho(x, y) \leqslant \alpha(x, y).$$

Now the corollary follows from Theorem 1.

Theorem 1 has a local version. Given a point x_0 in the space X, let $B_R[x_0]$ be the closed ball of radius R centered at this point, and let $f: B_R[x_0] \to X$ be a continuous mapping.

Theorem 2. Suppose that the mapping f satisfies the following conditions:

- 1. there exists a number c > 0 such that $\alpha(f(x), f(y)) + c\rho(x, y) \leq \alpha(x, y)$ for any $x, y \in B_R[x_0]$;
- 2. $\alpha(x_0, f(x_0)) \leq cR + \gamma_0$.

Then f has a unique fixed point.

Proof. As in the proof of Theorem 1, consider the iterative sequence of points starting from x_0 . It is easy to check that this sequence is well defined, i.e., all points x_n belong to $B_R[x_0]$. Now, as in the proof of Theorem 1, we can show that the sequence $\{x_n\}$ converges and the limit point x_* is a fixed point of f. The uniqueness of this fixed point is obvious. This proves the theorem. \Box

It is also easy to prove a local theorem for α -contractions.

Corollary 2. Suppose that there exist numbers q > 0 and $k \in (0,1)$ such that, for any $x, y \in B_R[x_0]$, the following inequalities hold:

1.
$$\rho(x,y) \leq q\alpha(x,y);$$

2.
$$\alpha(f(x), f(y)) \leq k\alpha(x, y).$$

If $\alpha(x_0, f(x_0)) \leq q(1-k)R + \gamma_0$, then the mapping f has a unique fixed point.

2. The case of set-valued mappings. Let X be a complete metric space. Suppose given a set-valued mapping $F: X \multimap X$ with closed graph and a function $\alpha: X \times X \to \mathbb{R}$ bounded from below, and let $\gamma_0 = \inf_{(x,y) \in X \times X} \alpha(x, y)$. By analogy with the Hausdorff metric, for subsets A and B of X, we put

$$\alpha_*(A,B) = \sup_{a \in A} \inf_{b \in B} \alpha(a,b) \quad \text{and} \quad h_\alpha(A,B) = \max\{\alpha_*(A,B), \alpha_*(B,A)\}$$

The following theorem is a development of Caristi's theorem.

Theorem 3. If there exists a number c > 0 such that, given any points $x \in X$ and $y \in F(x)$ and any number $\eta > 0$, there is a point $z \in F(y)$ for which $\alpha(y, z) + c\rho(y, z) \leq \alpha(x, y) + \eta$, then F has a fixed point; moreover, for any points $x \in X$ and $y \in F(x)$ and any $\delta > 0$, there exists a

fixed point x_* such that

$$\rho(y, x_*) < \frac{\alpha(x, y) - \gamma_0}{c} + \delta.$$
(4)

Proof. Suppose given any positive number ε . Let us construct a sequence $\{x_n\}_{n=0}^{\infty} \in X$ satisfying the following conditions:

(i) $x_{n+1} \in F(x_n);$

(ii) $\alpha(x_n, x_{n+1}) + c\rho(x_n, x_{n+1}) < \alpha(x_{n-1}, x_n) + \varepsilon/2^n$ for any $n \ge 1$.

Such a sequence can be constructed by induction. We set $\beta_n = \alpha(x_{n-1}, x_n)$ and prove that the sequence $\{\beta_n\}_{n=1}^{\infty}$ converges. For this purpose, we consider the sequence

$$\bigg\{\beta_n + \sum_{j=n}^{\infty} \frac{\varepsilon}{2^j}\bigg\}.$$

Obviously, this sequence monotonically decreases and is bounded from below; therefore, it converges, and hence so does $\{\beta_n\}$.

The sequence $\{x_n\}$ converges as well. This follows from the inequality

$$\rho(x_n, x_{n+p}) < \frac{1}{c} \left(\left(\beta_{n+1} - \beta_{n+p+1} \right) + \sum_{j=n+1}^{n+p} \frac{\varepsilon}{2^j} \right),$$

which implies that $\{x_n\}$ is a Cauchy sequence. Since the space X is complete, it follows that $\{x_n\}$ converges to some point x_* , and since $x_{n+1} \in F(x_n)$ and the graph of F is closed, it follows that x_* is a fixed point of the mapping F.

Let us prove inequality (4). Note that, for sufficiently large n, we have

$$\rho(x_1, x_*) < \sum_{j=1}^n \rho(x_j, x_{j+1}) + \varepsilon.$$

Therefore,

$$\rho(x_1, x_*) < \frac{1}{c} \left((\alpha(x_0, x_1) - \alpha(x_n, x_{n+1}) + \sum_{j=1}^n \frac{\varepsilon}{2^j} \right) + \varepsilon$$
$$< \frac{1}{c} (\alpha(x_0, x_1) - \gamma_0 + \varepsilon) + \varepsilon = \frac{\alpha(x_0, x_1) - \gamma_0}{c} + \frac{\varepsilon(c+1)}{c}$$

Since the number ε is arbitrary, we can assume that $\varepsilon(c+1)/c < \delta$, which implies (4). This completes the proof of the theorem.

Let us prove a fixed point theorem for set-valued α -contractions.

Theorem 4. Let $F: X \multimap X$ be a set-valued mapping with closed graph. Suppose that the following conditions hold:

- 1. there exists a number q > 0 such that $\rho(x, y) \leq q\alpha(x, y)$ for any $x, y \in X$;
- 2. there exists a number $k \in (0,1)$ such that

 $h_{\alpha}(F(x), F(y)) \leqslant k\alpha(x, y) \tag{5}$

for any $x, y \in X$.

Then the mapping F has a fixed point, and for any number $\delta > 0$, there exists a fixed point x_* such that

$$\rho(y, x_*) < \frac{qk\left(\alpha(x, y) - \gamma_0\right)}{1 - k} + \delta.$$

Proof. Take $x \in X$ and $y \in F(x)$. By virtue of inequality (5) and the definition of the function h_{α} , for any positive number η , there exists a point $z \in F(y)$ such that $\alpha(y, z) \leq k\alpha(x, y) + \eta$. Since

the number k belongs to (0,1), we can represent it in the form k = 1/(1+c), where c > 0. Then

$$\alpha(y,z) + c\alpha(y,z) = \alpha(y,z) + \frac{1-k}{k}\alpha(y,z) \leqslant \alpha(x,y) + \eta.$$

Therefore, by the assumptions of the theorem, we have

$$\alpha(y,z) + \frac{1-k}{qk}\,\rho(y,z) \leqslant \alpha(x,y) + \eta$$

Now the required assertion follows from Theorem 3.

This theorem is a generalization of Nadler's theorem (see, e.g., [9]).

Consider a local version of Theorem 3. Given an $x_0 \in X$, let $B_R[x_0]$ be the closed ball of radius R centered at x_0 , and let $F \colon B_R[x_0] \multimap X$ be a set-valued mapping with closed graph such that $B_R[x_0] \cap F(x_0) \neq \emptyset$.

We also assume that the following condition holds: there exists a number c > 0 such that, for any points $x \in X$ and $y \in F(x) \cap B_R[x_0]$ and any number $\eta > 0$, there is a point $z \in F(y)$ for which

$$\alpha(y,z) + c\rho(y,z) \leqslant \alpha(x,y) + \eta.$$
(6)

Theorem 5. Suppose that a set-valued mapping F satisfies condition (6). If there exists a point $x_1 \in B_R[x_0] \cap F(x_0)$ for which $\alpha(x_0, x_1) < c(R - \rho(x_0, x_1)) + \gamma_0$, then the mapping F has a fixed point.

This theorem is proved by the same scheme as a similar theorem for single-valued mappings.

By analogy with Theorem 4, a local fixed point theorem for set-valued α -contractions can be proved.

Nemytskii proved a well-known fixed point theorem for mappings on a compact metric space which are contractions in a weak sense (see [9]). We generalize this theorem to the case of set-valued weak α -contractions.

Let X be a compact metric space. Suppose given a lower semicontinuous function $\alpha \colon X \times X \to \mathbb{R}$ and a set-valued mapping $F \colon X \multimap X$ with closed graph.

Theorem 6. If $\alpha_*(y, F(y)) < \alpha(x, y)$ for any $x \in X$ and $y \in F(x)$, $x \neq y$, then the mapping F has a fixed point.

Proof. Consider the function $\beta: X \to \mathbb{R}$ defined by

$$\beta(x) = \min_{u \in F(x)} \alpha(x, u)$$

This function is well defined and lower semicontinuous; therefore, it attains its minimum value on the set X. We put $\beta(x_*) = \min_{x \in X} \beta(x)$. Let us show that $x_* \in F(x_*)$. Suppose that, on the contrary, $x_* \notin F(x_*)$. Then $\beta(x_*) = \alpha(x_*, y_*)$ for $y_* \neq x_*$. We have $\alpha_*(y_*, F(y_*)) < \alpha(x_*, y_*) = \beta(x_*)$. Thus, there exists a point $z_* \in F(y_*)$ such that $\alpha(y_*, z_*) < \alpha(x_*, y_*)$, whence $\beta(y_*) < \beta(x_*)$. This contradiction proves the theorem.

Funding

This work was supported by the Russian Science Foundation (project no. 19-01-00080).

References

- A. A. Ivanov, in: Investigations in Topology. Part II [in Russian], Nauka, Leningrad. Otdel., Leningrad, 1975, 5–102.
- [2] J. Dugundji and A. Granas, Fixed Point Theory, PWN, Warszawa, 1982.
- [3] P. V. Semenov, Funkts. Anal. Prilozh., 36:2 (2002), 89–92; English transl.: Functional Anal. Appl., 36:2 (2002), 159–161.
- [4] A. I. Perov, Funkts. Anal. Prilozh., 44:1 (2010), 83–87; English transl.: Functional Anal. Appl., 44:1 (2010), 69–72.
- [5] J. Caristi, Trans. Amer. Math. Soc., **215** (1976), 241–251.

- [6] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the Theory of Set-Valued Mappings and Differential Inclusions [in Russian], KomKniga (URSS), Moscow, 2005.
- [7] J.-P. Aubin, L'analyse non linéaire et ses motivations économiques, Masson, Paris, 1984.
- [8] S. B. Nadler, Pacif. J. Math., **30**:2 (1969), 475–488.
- [9] V. V. Nemytskii, Uspekhi Mat. Nauk, 1936, No. 1, 141–174.

VORONEZH STATE UNIVERSITY, VORONEZH, RUSSIA PEOPLE'S FRIENDSHIP UNIVERSITY OF RUSSIA, MOSCOW, RUSSIA e-mail: gelman_boris@mail.ru

Translated by O. V. Sipacheva