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ABSTRACT. A new Caristi-type inequality is considered and Caristi’s fixed point theorem for map-
pings of complete metric spaces is developed (in both the single- and set-valued cases). On the basis
of this development mappings of complete metric spaces which are contractions with respect to a
function of two vector arguments are studied. This function is not required to be a metric or even a
continuous function. The proved theorems are generalizations of the Banach contraction principle
and Nadler’s theorem.
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Various versions of the contraction mapping have been considered by many authors (see, e.g.,
the books [1] and [2] and the papers [3] and [4]). One of the generalizations of this principle is
Caristi’s theorem [5]. The necessary information from the theory of set-valued mappings can be
found in [6] and [7].

Caristi’s theorem [7]. Let X be a complete metric space, and let F': X — X be a set-valued
mapping with closed graph. Suppose that there exists a nonnegative function a: X — Ry and a
nonnegative number ¢ such that, for any point x € X, there is a point y € F(x) for which Caristi’s
nequality

a(y) + cp(z,y) < o) (K)
holds. Then F has a fized point, i.e., there exists a point x, € X such that F(x.) 3 x,.

In this paper we prove some generalizations of Caristi’s theorem and, relying on the obtained
results, study contractions with respect to a function of two vector arguments, which is not required
to be a metric or even a continuous function.

1. The case of single-valued mappings. Let (X, p) be a complete metric space. Suppose
given a continuous mapping f: X — X and a function a: X x X — R.

Definition 1. A mapping f: X — X is called an «a-contraction (contraction with respect to a
function «) if it continuous and there exists a number k € (0, 1) such that a(f(x), f(y)) < ka(z,y)
for any x,y € X.

The question arises: Does any a-contraction mapping have a fixed point? The answer to this
question is negative, and counterexamples are easy to construct. In what follows, we assume that
a is bounded from below and set vy = inf(, e xxx a(z,y).

Let us prove the following generalization of Caristi’s theorem.

Theorem 1. If there exists a number ¢ > 0 such that

a(f(x), f(y)) + cp(z,y) < oz, y) (1)

for any x,y € X, then, given any point xq, the successive approzimations x,+1 = f(x,) converge
to a point x,, which is the unique fixed point of f, and

Oé(ifo,f(io)) — 0 )

p(zy, x0) <

Proof. Consider the iterative sequence of points starting from xg. Let w, = a(x,,zy41). By
the assumptions of the theorem, for any n, we have

P(l’m mn—i—l) < c_l(a(xn, mn—i—l) - a(xn-i-la xn+2)) = C_l(un - un—i—l)- (3)
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Thus, the sequence {u,} monotonically decreases and is bounded from below; therefore, this is a
Cauchy sequence. It is easy to check that, in this case, the sequence {z,} is Cauchy as well. Hence
there exists a point z, which is the limit of the sequence {x, }. Since the mapping f is continuous,
it follows that x, is a fixed point of this mapping.

The uniqueness of the fixed point z, easily follows from inequality (1).

Inequality (3) also implies (2). This completes the proof of the theorem. O

Theorem 1 has the following corollary, which is a generalized form of the Banach contraction
principle.

Corollary 1. Let f be an «a-contraction. Suppose that there exists a number g > 0 such that
p(x,y) < qa(z,y) for any x,y € X. Then

1. the mapping f has a unique fixed point x.;
2. for any point xo € X, the iterative sequence {x,}, where x, = f(x,_1), converges to .;
3. the following inequality holds:

q(a(wo, f(x0)) —0)
1—-%

Proof. Since f is an a-contraction, it follows that a(f(z), f(y)) + (1 — k)a(z,y) < a(x,y). By
assumption, we have

p(x, o) <

a(f (@) f()) + % plz.y) < ole,y).

Now the corollary follows from Theorem 1. O

Theorem 1 has a local version. Given a point z in the space X, let Br[xo] be the closed ball
of radius R centered at this point, and let f: Br[zo] — X be a continuous mapping.

Theorem 2. Suppose that the mapping f satisfies the following conditions:

1. there exists a number ¢ > 0 such that o(f(x), f(y))+cp(z,y) < alx,y) for any x,y € Br[xo);

2. afzo, f(zo)) < cR+ 0.

Then f has a unique fized point.

Proof. As in the proof of Theorem 1, consider the iterative sequence of points starting from
xo. It is easy to check that this sequence is well defined, i.e., all points z;,, belong to Br[x]|. Now,
as in the proof of Theorem 1, we can show that the sequence {x,} converges and the limit point
x4 is a fixed point of f. The uniqueness of this fixed point is obvious. This proves the theorem. [

It is also easy to prove a local theorem for a-contractions.

Corollary 2. Suppose that there exist numbers q > 0 and k € (0,1) such that, for any x,y €
Bpglxo], the following inequalities hold:

L p(x,y) < qa(z,y);
2. a(f(x), f(y) < ka(z,y).

If a(zo, f(z0)) < q(1 — k)R + 70, then the mapping f has a unique fized point.

2. The case of set-valued mappings. Let X be a complete metric space. Suppose given a
set-valued mapping F': X — X with closed graph and a function a: X x X — R bounded from
below, and let vy = inf(, y)exxx @(7,y). By analogy with the Hausdorff metric, for subsets A and
B of X, we put

ax(A,B) = supbin]g ala,b) and ha(A, B) = max{a.(A4, B),a.(B,A)}.
ac€AbE
The following theorem is a development of Caristi’s theorem.

Theorem 3. If there exists a number ¢ > 0 such that, given any points x € X and y € F(x)
and any number 1 > 0, there is a point z € F(y) for which a(y,z) + cp(y,2) < a(z,y) +n, then
F has a fived point; moreover, for any points x € X and y € F(z) and any 6 > 0, there ezists a
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fized point x, such that

+6. (4)

alr,y) — "
Py, ) < %

Proof. Suppose given any positive number . Let us construct a sequence {z, }°°, € X satis-
fying the following conditions:

(i) Znt1 € Flan);

(ii) a(xn, Tpi1) + cp(Tn, Tnt1) < @(Tp—1,2,) + /2" for any n > 1.

Such a sequence can be constructed by induction. We set 3, = a(x,—1,x,) and prove that the
sequence {f3,}°2, converges. For this purpose, we consider the sequence

{ﬂﬁzgj}
j=n

Obviously, this sequence monotonically decreases and is bounded from below; therefore, it con-
verges, and hence so does {f,}.
The sequence {x,} converges as well. This follows from the inequality

n—+p
1 €
P(Tn; Tntp) < - <(/6n+l — Brtp+1) + Z §>7

j=n+1

which implies that {x,} is a Cauchy sequence. Since the space X is complete, it follows that {x,,}
converges to some point z., and since x,41 € F(z,) and the graph of F' is closed, it follows that
x4 is a fixed point of the mapping F'.

Let us prove inequality (4). Note that, for sufficiently large n, we have

n
p(w1,3.) < Y p(rj,xj41) + e
=1

Therefore,

9j
j=1

1 a(xo,21) — elc+1

<E(a(mo,x1)—’yo+€)+sz (2o Cl) %0 4 (C ).

Since the number ¢ is arbitrary, we can assume that e(c + 1)/c < §, which implies (4). This
completes the proof of the theorem. O

Let us prove a fixed point theorem for set-valued a-contractions.
Theorem 4. Let F': X — X be a set-valued mapping with closed graph. Suppose that the
following conditions hold:

1. there exists a number q¢ > 0 such that p(x,y) < qa(z,y) for any x,y € X;
2. there exists a number k € (0,1) such that

ha(F(z), F(y)) < ka(z,y) ()

for any xz,y € X.

Then the mapping F has a fixed point, and for any number § > 0, there exists a fized point x, such
that
gk (a(z,y) — )
1-k
Proof. Take z € X and y € F(x). By virtue of inequality (5) and the definition of the function
hq, for any positive number 7, there exists a point z € F(y) such that a(y, z) < ka(z,y)+n. Since

p(y7x*)'< +'d
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the number k£ belongs to (0,1), we can represent it in the form k = 1/(1 + ¢), where ¢ > 0. Then

1-k
Oé(y, Z) + COé(y, Z) = a(y, Z) + T a(y, Z) < Oé($, y) + 1.
Therefore, by the assumptions of the theorem, we have
1—k
a(y, z) + ok p(y, 2) < a(z,y) + 1.

Now the required assertion follows from Theorem 3. ]

This theorem is a generalization of Nadler’s theorem (see, e.g., [9]).

Consider a local version of Theorem 3. Given an zy € X, let Br[xo] be the closed ball of radius
R centered at xq, and let F': Bgr[zg] —0 X be a set-valued mapping with closed graph such that
Bglzo] N F(xo) # 2.

We also assume that the following condition holds: there exists a number ¢ > 0 such that, for
any points © € X and y € F(x) N Br[zg] and any number n > 0, there is a point z € F(y) for
which

a(y,z) +cply, 2) < a(z,y) +1. (6)

Theorem 5. Suppose that a set-valued mapping F satisfies condition (6). If there exists a point
x1 € Brlxo| N F (o) for which axg,z1) < ¢(R — p(xo,x1)) + Y0, then the mapping F has a fizved
point.

This theorem is proved by the same scheme as a similar theorem for single-valued mappings.

By analogy with Theorem 4, a local fixed point theorem for set-valued a-contractions can be
proved.

Nemytskii proved a well-known fixed point theorem for mappings on a compact metric space
which are contractions in a weak sense (see [9]). We generalize this theorem to the case of set-valued
weak a-contractions.

Let X be a compact metric space. Suppose given a lower semicontinuous function a: X x X — R
and a set-valued mapping F': X — X with closed graph.

Theorem 6. If a.(y, F(y)) < a(x,y) for any v € X and y € F(x), x # y, then the mapping
F has a fized point.

Proof. Consider the function 5: X — R defined by

B(z) = ug}?l]&) a(z,u).
This function is well defined and lower semicontinuous; therefore, it attains its minimum value on the
set X. We put (z.) = mingex 5(z). Let us show that x, € F(z,). Suppose that, on the contrary,
Ty & F(zs). Then B(zy) = a(zy,ys) for yo # z.. We have ay(ys, F(ys)) < a(zs,ys) = B(z4).
Thus, there exists a point 2z, € F(y,) such that a(y., z.) < a(zs,ys), whence B(ys) < B(z«). This
contradiction proves the theorem. O
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