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Abstract. A new Caristi-type inequality is considered and Caristi’s fixed point theorem for map-
pings of complete metric spaces is developed (in both the single- and set-valued cases). On the basis
of this development mappings of complete metric spaces which are contractions with respect to a
function of two vector arguments are studied. This function is not required to be a metric or even a
continuous function. The proved theorems are generalizations of the Banach contraction principle
and Nadler’s theorem.
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Various versions of the contraction mapping have been considered by many authors (see, e.g.,
the books [1] and [2] and the papers [3] and [4]). One of the generalizations of this principle is
Caristi’s theorem [5]. The necessary information from the theory of set-valued mappings can be
found in [6] and [7].

Caristi’s theorem [7]. Let X be a complete metric space, and let F : X � X be a set-valued
mapping with closed graph. Suppose that there exists a nonnegative function α : X → R+ and a
nonnegative number c such that, for any point x ∈ X , there is a point y ∈ F (x) for which Caristi’s
inequality

α(y) + cρ(x, y) � α(x) (K)

holds. Then F has a fixed point, i.e., there exists a point x∗ ∈ X such that F (x∗) � x∗ .
In this paper we prove some generalizations of Caristi’s theorem and, relying on the obtained

results, study contractions with respect to a function of two vector arguments, which is not required
to be a metric or even a continuous function.

1. The case of single-valued mappings. Let (X, ρ) be a complete metric space. Suppose
given a continuous mapping f : X → X and a function α : X ×X → R.

Definition 1. A mapping f : X → X is called an α-contraction (contraction with respect to a
function α) if it continuous and there exists a number k ∈ (0, 1) such that α(f(x), f(y)) � kα(x, y)
for any x, y ∈ X .

The question arises: Does any α-contraction mapping have a fixed point? The answer to this
question is negative, and counterexamples are easy to construct. In what follows, we assume that
α is bounded from below and set γ0 = inf(x,y)∈X×X α(x, y).

Let us prove the following generalization of Caristi’s theorem.

Theorem 1. If there exists a number c > 0 such that

α(f(x), f(y)) + cρ(x, y) � α(x, y) (1)

for any x, y ∈ X , then, given any point x0 , the successive approximations xn+1 = f(xn) converge
to a point x∗ , which is the unique fixed point of f , and

ρ(x∗, x0) �
α(x0, f(x0))− γ0

c
. (2)

Proof. Consider the iterative sequence of points starting from x0 . Let un = α(xn, xn+1). By
the assumptions of the theorem, for any n, we have

ρ(xn, xn+1) � c−1(α(xn, xn+1)− α(xn+1, xn+2)) = c−1(un − un+1). (3)
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Thus, the sequence {un} monotonically decreases and is bounded from below; therefore, this is a
Cauchy sequence. It is easy to check that, in this case, the sequence {xn} is Cauchy as well. Hence
there exists a point x∗ which is the limit of the sequence {xn}. Since the mapping f is continuous,
it follows that x∗ is a fixed point of this mapping.

The uniqueness of the fixed point x∗ easily follows from inequality (1).
Inequality (3) also implies (2). This completes the proof of the theorem.

Theorem 1 has the following corollary, which is a generalized form of the Banach contraction
principle.

Corollary 1. Let f be an α-contraction. Suppose that there exists a number q > 0 such that
ρ(x, y) � qα(x, y) for any x, y ∈ X . Then

1. the mapping f has a unique fixed point x∗ ;
2. for any point x0 ∈ X , the iterative sequence {xn}, where xn = f(xn−1), converges to x∗ ;
3. the following inequality holds :

ρ(x∗, x0) �
q(α(x0, f(x0))− γ0)

1− k
.

Proof. Since f is an α-contraction, it follows that α(f(x), f(y)) + (1− k)α(x, y) � α(x, y). By
assumption, we have

α(f(x), f(y)) +
1− k

q
ρ(x, y) � α(x, y).

Now the corollary follows from Theorem 1.

Theorem 1 has a local version. Given a point x0 in the space X , let BR[x0] be the closed ball
of radius R centered at this point, and let f : BR[x0] → X be a continuous mapping.

Theorem 2. Suppose that the mapping f satisfies the following conditions :

1. there exists a number c > 0 such that α(f(x), f(y))+cρ(x, y) � α(x, y) for any x, y ∈ BR[x0];
2. α(x0, f(x0)) � cR+ γ0 .

Then f has a unique fixed point.

Proof. As in the proof of Theorem 1, consider the iterative sequence of points starting from
x0 . It is easy to check that this sequence is well defined, i.e., all points xn belong to BR[x0]. Now,
as in the proof of Theorem 1, we can show that the sequence {xn} converges and the limit point
x∗ is a fixed point of f . The uniqueness of this fixed point is obvious. This proves the theorem.

It is also easy to prove a local theorem for α-contractions.

Corollary 2. Suppose that there exist numbers q > 0 and k ∈ (0, 1) such that, for any x, y ∈
BR[x0], the following inequalities hold:

1. ρ(x, y) � qα(x, y);
2. α(f(x), f(y)) � kα(x, y).

If α(x0, f(x0)) � q(1− k)R+ γ0 , then the mapping f has a unique fixed point.

2. The case of set-valued mappings. Let X be a complete metric space. Suppose given a
set-valued mapping F : X � X with closed graph and a function α : X ×X → R bounded from
below, and let γ0 = inf(x,y)∈X×X α(x, y). By analogy with the Hausdorff metric, for subsets A and
B of X , we put

α∗(A,B) = sup
a∈A

inf
b∈B

α(a, b) and hα(A,B) = max{α∗(A,B), α∗(B,A)}.

The following theorem is a development of Caristi’s theorem.

Theorem 3. If there exists a number c > 0 such that, given any points x ∈ X and y ∈ F (x)
and any number η > 0, there is a point z ∈ F (y) for which α(y, z) + cρ(y, z) � α(x, y) + η , then
F has a fixed point ; moreover, for any points x ∈ X and y ∈ F (x) and any δ > 0, there exists a
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fixed point x∗ such that

ρ(y, x∗) <
α(x, y)− γ0

c
+ δ. (4)

Proof. Suppose given any positive number ε. Let us construct a sequence {xn}∞n=0 ∈ X satis-
fying the following conditions:

(i) xn+1 ∈ F (xn);
(ii) α(xn, xn+1) + cρ(xn, xn+1) < α(xn−1, xn) + ε/2n for any n � 1.
Such a sequence can be constructed by induction. We set βn = α(xn−1, xn) and prove that the

sequence {βn}∞n=1 converges. For this purpose, we consider the sequence

{
βn +

∞∑
j=n

ε

2j

}
.

Obviously, this sequence monotonically decreases and is bounded from below; therefore, it con-
verges, and hence so does {βn}.

The sequence {xn} converges as well. This follows from the inequality

ρ(xn, xn+p) <
1

c

(
(βn+1 − βn+p+1) +

n+p∑
j=n+1

ε

2j

)
,

which implies that {xn} is a Cauchy sequence. Since the space X is complete, it follows that {xn}
converges to some point x∗ , and since xn+1 ∈ F (xn) and the graph of F is closed, it follows that
x∗ is a fixed point of the mapping F .

Let us prove inequality (4). Note that, for sufficiently large n, we have

ρ(x1, x∗) <
n∑

j=1

ρ(xj , xj+1) + ε.

Therefore,

ρ(x1, x∗) <
1

c

(
(α(x0, x1)− α(xn, xn+1) +

n∑
j=1

ε

2j

)
+ ε

<
1

c
(α(x0, x1)− γ0 + ε) + ε =

α(x0, x1)− γ0
c

+
ε(c + 1)

c
.

Since the number ε is arbitrary, we can assume that ε(c + 1)/c < δ , which implies (4). This
completes the proof of the theorem.

Let us prove a fixed point theorem for set-valued α-contractions.

Theorem 4. Let F : X � X be a set-valued mapping with closed graph. Suppose that the
following conditions hold:

1. there exists a number q > 0 such that ρ(x, y) � qα(x, y) for any x, y ∈ X ;
2. there exists a number k ∈ (0, 1) such that

hα(F (x), F (y)) � kα(x, y) (5)

for any x, y ∈ X .

Then the mapping F has a fixed point, and for any number δ > 0, there exists a fixed point x∗ such
that

ρ(y, x∗) <
qk (α(x, y) − γ0)

1− k
+ δ.

Proof. Take x ∈ X and y ∈ F (x). By virtue of inequality (5) and the definition of the function
hα , for any positive number η, there exists a point z ∈ F (y) such that α(y, z) � kα(x, y)+η. Since
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the number k belongs to (0, 1), we can represent it in the form k = 1/(1 + c), where c > 0. Then

α(y, z) + cα(y, z) = α(y, z) +
1− k

k
α(y, z) � α(x, y) + η.

Therefore, by the assumptions of the theorem, we have

α(y, z) +
1− k

qk
ρ(y, z) � α(x, y) + η.

Now the required assertion follows from Theorem 3.

This theorem is a generalization of Nadler’s theorem (see, e.g., [9]).
Consider a local version of Theorem 3. Given an x0 ∈ X , let BR[x0] be the closed ball of radius

R centered at x0 , and let F : BR[x0] � X be a set-valued mapping with closed graph such that
BR[x0] ∩ F (x0) �= ∅.

We also assume that the following condition holds: there exists a number c > 0 such that, for
any points x ∈ X and y ∈ F (x) ∩ BR[x0] and any number η > 0, there is a point z ∈ F (y) for
which

α(y, z) + cρ(y, z) � α(x, y) + η. (6)

Theorem 5. Suppose that a set-valued mapping F satisfies condition (6). If there exists a point
x1 ∈ BR[x0] ∩ F (x0) for which α(x0, x1) < c(R − ρ(x0, x1)) + γ0 , then the mapping F has a fixed
point.

This theorem is proved by the same scheme as a similar theorem for single-valued mappings.
By analogy with Theorem 4, a local fixed point theorem for set-valued α-contractions can be

proved.
Nemytskii proved a well-known fixed point theorem for mappings on a compact metric space

which are contractions in a weak sense (see [9]). We generalize this theorem to the case of set-valued
weak α-contractions.

Let X be a compact metric space. Suppose given a lower semicontinuous function α : X×X → R

and a set-valued mapping F : X � X with closed graph.

Theorem 6. If α∗(y, F (y)) < α(x, y) for any x ∈ X and y ∈ F (x), x �= y , then the mapping
F has a fixed point.

Proof. Consider the function β : X → R defined by

β(x) = min
u∈F (x)

α(x, u).

This function is well defined and lower semicontinuous; therefore, it attains its minimum value on the
set X . We put β(x∗) = minx∈X β(x). Let us show that x∗ ∈ F (x∗). Suppose that, on the contrary,
x∗ �∈ F (x∗). Then β(x∗) = α(x∗, y∗) for y∗ �= x∗ . We have α∗(y∗, F (y∗)) < α(x∗, y∗) = β(x∗).
Thus, there exists a point z∗ ∈ F (y∗) such that α(y∗, z∗) < α(x∗, y∗), whence β(y∗) < β(x∗). This
contradiction proves the theorem.
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