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Abstract. We consider arbitrary noncompact hyperbolic Riemann surfaces of finite area. For
such surfaces, we obtain identities relating the discrete spectrum of the Laplace operator to the
resonance spectrum (formed by the poles of the scattering matrix). These identities depend on the
choice of a test function. We indicate a class of admissible test functions and consider two examples
corresponding to specific choices of the test function.
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1. Introduction

Let H be the upper half-plane with the Poincaré metric ds2 = y−2(dx2+dy2). A cofinite group
is a discrete group Γ ⊂ PSL(2,R) with noncompact fundamental domain F whose area |F | with
respect to the invariant measure dν = y−2 dx dy is finite. In what follows, we only deal with cofinite
groups Γ.

The Laplace operator Δ = y2(∂2x + ∂2y) extends to be a self-adjoint operator on L2(F, dν) with
continuous spectrum covering the interval [1/4,∞) and with discrete spectrum {λn} (Δϕn+λnϕn =
0, 0 = λ0 < λ1 � λ2 � · · · , ϕn ∈ L2(F, dν)). Little is known about the structure of the discrete
spectrum. In particular, it is not known for what groups Γ this spectrum is infinite.

Selberg posed the following question: what cofinite groups Γ satisfy the Weyl formula

NΓ

(
T 2 +

1

4

)
= #

{
n

∣∣∣∣ λn � T 2 +
1

4

}
� |F |

4π
T 2 (T → ∞). (1.1)

Nowadays, such groups are said to be essentially cuspidal. Formula (1.1) has been proved for a
number of groups (see [1]–[4]), in particular, for the congruence subgroups of SL(2,Z). However,
all these groups correspond to nongeneric points in the Teichmüller space [22]. Roelke (e.g., see [1])
conjectured that NΓ(T

2 + 1/4) → ∞ as T → ∞.
The interest in these questions arose in connection with the papers [5], [6]. These papers, as

well as [7]–[9], provide a number of sufficient conditions for the Weyl law (1.1) to be violated. Based
on these results, Sarnak [2] conjectured that neither the Weyl law nor even the Roelke conjecture
holds for generic cofinite groups Γ.

One main approach to studying the spectrum {λn} is based on the Selberg formula, and all the
results of the present paper are corollaries of this formula.

The Selberg formula for cofinite groups is given in Sec. 2. Symbolically, it can be written as

∑
n�0

h(rn) = ΦΓ[h|{λn}, {N(P )}, ϕ] for any h ∈ {h}S
(
λn = r2n +

1

4

)
, (1.2)

where ΦΓ is a functional on the space {h}S (see Sec. 2). The functional ΦΓ depends on the
spectrum {λn}, the set {N(P )} of norms of hyperbolic conjugacy classes, the function ϕ defined
by ϕ(s) = detΦ(s) (where Φ(s) is the scattering matrix), and finitely many parameters such as |F |,
the number of elliptic and parabolic classes, tr Φ(1/2), etc. The Selberg formula for a cocompact
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group Γ reads ∑
n�0

h(rn) = ΦΓ[h|{λn}, {N(P )}]. (1.3)

It was shown in [10] that, for strictly hyperbolic groups, the Selberg formula (supplemented by an
additional condition on the function h) implies that the spectrum {λn} satisfies equations of the
form ∑

n�0

h(rn) = Φ̃Γ[h|{λn}]. (1.4)

The main aim of the present paper is to generalize this result to arbitrary cofinite groups. We show
(see Theorem 1) that the following analog of formula (1.4) holds:∑

n�0

h(rn) = Φ̃Γ[h|{λn}, {sα}]. (1.5)

Here {sα} is the set of poles sα = βα+iγα of ϕ such that βα < 1/2 and γα �= 0. This set will be called

the resonance spectrum. Theorem 1 specifies the explicit form of the functional Φ̃Γ[h|{λn}, {sα}].
It follows from this theorem that Eq. (1.5) can be rewritten in the form∑

n�0

h(rn) +
∑
γα>0

h(γα) = L[h] + Φ̃′
Γ[h|{rn}, {sα}] (1.6)

and that |L[h]| � |Φ̃′
Γ[h|{rn}, {sα}]| for a fairly broad class of functions h. For such functions h, the

relations between the spectra {rn} and {sα} following from the Selberg formula are approximately
symmetric with respect to the replacement {rn} ↔ {γα} (see (5.23)).

Section 6 contains some applications of these results. In particular, we show how to obtain the
Selberg–Weyl formula from (1.6) in the form

N(rn < T ) +N(0 < γα < T ) =
|F |
4π

T 2 +O(T 2−θ) (θ > 0, T → ∞), (1.7)

where N(rn < T ) is the number of eigenvalues λn � T 2 + 1/4.

2. Preliminaries

This section provides some insight into the Selberg formula for cofinite groups and introduces
notation to be used in the paper. All the information given here can be found in [1], [3], [12]–[17].

Throughout the paper, we assume that the functions h( · ) belong to the class {h}S , that is,
satisfy the following conditions:

1. h(r) = h(−r).
2. The function h is holomorphic in the strip {r : | Im r| � 1/2 + ε, ε > 0}.
3. In this strip, one has |h(r)| = O(1 + |r|2)−1−ε (|r| → ∞).
By g we denote the Fourier transform of h,

g(y) =
1

2π

∫ ∞

−∞
h(r)e−iry dr, h(r) =

∫ ∞

−∞
eiryg(y) dy. (2.1)

The numbers rn , sn , and sn with a Latin subscript are defined by the formulas

λn = snsn, sn = 1− sn, s0 = 1, sn =
1

2
+ irn, λn =

1

4
+ r2n. (2.2)

The eigenvalues λn in the interval 0 � λn < 1/4 are said to be exceptional; the number M of such
eigenvalues is finite. For the exceptional eigenvalues, one has

rn = −i
(
1

4
− λn

)1/2

, r0 = − i

2
.

The eigenvalues λn � 1/4 will be numbered by a subscript j , so that λj = 1/4 + r2j , rj � 0.
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When considering the Selberg formula, we restrict ourselves to the case of the trivial one-
dimensional representation χ : Γ → C, χ(γ) = 1 for all γ ∈ Γ. Then the Selberg formula reads∑

n�0

h(rn) = H[h] + SR[h] + SP [g] + P[h|ϕ] (2.3)

for every h ∈ {h}S and determines the form of the functional ΦΓ in (1.2).
Let us give the definitions of the objects occurring on the right-hand side in (2.3). First,

H[h] =
|F |
4π

∫ ∞

−∞
r tanhπrh(r) dr. (2.4)

Second, SR[h] is the contribution of the conjugacy classes (in Γ) of elliptic elements (the contribu-
tion of elliptic conjugacy classes), and

SR[h] =
∑
{R}

p−1∑
k=1

1

p sinπk/p

∫ ∞

−∞
h(r)

e−2πkr/p

1 + e−2πr
dr, (2.5)

where the sum is over the set {R} of primitive elliptic conjugacy classes and p = p(R) is the order
of a class R. The number |{R}| of elliptic conjugacy classes and their maximum order are finite.

The third term on the right-hand side in (2.3) is the contribution of hyperbolic conjugacy
classes; it is given by the formula

SP [g] =
∑
{P0}

∞∑
k=1

lnN(P0)

N(P0)k/2 −N(P0)−k/2
g(k lnN(P0)), (2.6)

where the sum is over the set of primitive classes P0 and N(P0) is the norm of a class P0 . Recall
that every hyperbolic element γ ∈ Γ is conjugate in SL(2,R) to the transformation z → N(P )z ,
N(P ) > 1, P = P k

0 (k � 1), where P is an arbitrary hyperbolic class and N(P ) = N(P0)
k . In

what follows, we write

B0 = min
{P}

N(P ), B0 > 1, b0 = lnB0. (2.7)

The last term P[h|ϕ] on the right-hand side in (2.3) is the contribution of parabolic conjugacy
classes (the contribution of the continuous spectrum), and

P[h|ϕ] = 1

4π

∫ ∞

−∞
h(r)

ϕ′

ϕ

(
1

2
+ ir

)
dr − n

2π

∫ ∞

−∞
h(r)

Γ′

Γ
(1 + ir) dr

− h(0)

4

(
n− tr Φ

(
1

2

))
− ng(0) ln 2. (2.8)

Here Φ(s) is the n× n matrix of free terms in the Eisenstein series (the scattering matrix),

ϕ(s) = detΦ(s), (2.9)

n is the number of primitive parabolic conjugacy classes (the number of pairwise nonequivalent
parabolic points in F ), and Γ( · ) is the gamma function.

The properties of ϕ are described in [1], [3], [12], [17]. This is a meromorphic function satisfying
the functional equations

ϕ(s)ϕ(1 − s) = 1, ϕ(s) = ϕ̃(s̃), (2.10)

where the tilde stands for complex conjugation. The function ϕ is holomorphic in the half-plane
Re s > 1/2 except for finitely many poles on the interval (1/2, 1]. The poles sα of ϕ with Re sα < 1/2
lie in the strip −ν0 < Re s < 1/2 symmetrically with respect to the real axis, and

∑
α

(
1

2
− βα

)
|sα|−2 = CΓ <∞,

∑
0<γα�x

1 � AΓx
2. (2.11)

Throughout the following, Greek subscripts are used to number the poles of ϕ.
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The Selberg zeta function Z( · ) for cofinite groups is defined in the same way as for cocompact
groups; for Re s > 1, one has

Z(s) =
∏
{P0}

∞∏
k=1

[1−N(P0)
−k−s].

This function has an analytic continuation into the entire plane of the variable s = σ + it as a
meromorphic function and satisfies a functional equation of the form Z(1 − s) = A(s)Z(s). An
explicit expression for the factor A(s) can be found in the papers [1, 12], which give a complete
description of all the zeros and poles of Z , their multiplicities being indicated. Let us present this
description and simultaneously introduce a numbering to be used for the nontrivial zeros of the
Selberg zeta function.

The nontrivial zeros of Z( · ) are
1. The zeros sj on the critical line Re s = 1/2. They are arranged symmetrically with respect

to the real axis, and one has the corresponding eigenvalues

λj = sj(1− sj), sj = 1/2 + rj (j � 0).

2. The zeros sm ∈ (0, 1), m = 1, . . . ,M1 . They are arranged symmetrically with respect to the
point s = 1/2, and one has the corresponding eigenvalues

λm = sm(1− sm), sm = σm.

3. The zeros
sα = βα + iγα, −ν0 < βα < 1/2,

at the poles of the function ϕ in (2.9). These zeros are arranged symmetrically with respect to the
real axis.

4. The zeros sν = σν , 1/2 < σν � 1, ν = 0, 1, . . . ,M2 − 1, at the poles of ϕ. One has the
corresponding eigenvalues λν = σν(1 − σν) (ν �= 0) and λ0 = 0 (σ0 = 1). The poles of Z( · ) lie
at the points s = −l + 1/2, l = 0, 1, . . . , and the trivial zeros of Z( · ) lie at the points s = −l,
l = 0, 1, . . . .

The numbers λm , λν , and λj exhaust the whole discrete spectrum, and so {λn} = {λm} ∪
{λν} ∪ {λj}.

3. Explicit Formula for SP [g]

In analytic number theory, the term explicit formulas refers to formulas representing the object
of study by a series over zeros and poles of the corresponding analytic function. The main example
is given by the explicit formula representing the Chebyshev function Ψ( · ) by a series over the
nontrivial zeros of the Riemann zeta function. In our setting, the function (see [14], [15])

ΛΓ(P ) =
lnN(P0)

1−N(P )−1
(3.1)

is an analog of the Mangoldt function Λ( · ), and
ΨΓ(x) =

∑
B0�N(P )�x

ΛΓ(P ) (3.2)

is the corresponding analog of the Chebyshev function. Based on the results in [15], [16], let us
present a definitive version of an explicit formula for the function

ΨΓ
1 (x) =

∫ x

B0

ΨΓ(ξ) dξ. (3.3)

This formula reads
ΨΓ

1 (x) = ΣR,Δ(x) + ΣR,ϕ(x) + ΨΓ
1,0 +ΔR(x),

ΔR(x) = O

(
x2 lnx

R

)
, x � 2, R→ ∞.

(3.4)
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The functions ΣR,Δ(x) and ΣR,ϕ(x) on the right-hand side in (3.4) are given by the formulas

ΣR,Δ(x) =
∑

0�rj�R

x1+sj

sj(1 + sj)
+

x1+s̃j

s̃j(1 + s̃j)

+
∑

1/2<sm<1

(
x1+sm

sm(1 + sm)
+

x1+sm

sm(1 + sm)

)
+

M2−1∑
ν=0

x1+sν

sν(1 + sν)
, (3.5)

ΣR,ϕ(x) =
∑
(α,R)

x1+sα

sα(1 + sα)
+

x1+s̃α

s̃α(1 + s̃α)
(sα = βα + iγα), (3.6)

while Ψr
1,0(x) is the contribution of the poles and trivial zeros of Z(s) (see (3.10)). Just as above,

the tilde stands for complex conjugation, s = 1 − s, and the summation in
∑

(α,R) is over all the

poles sα of ϕ such that

βα < 1/2, γα > 0, 0 < γα < R. (3.7)

Strictly speaking, formula (3.4) is lacking in the book [16], which only contains the result of
passing to the limit as R → ∞ in (3.4), while the proof of formula (3.4) itself is barely outlined.
In this connection, note that, by reproducing the scheme of proof of Propositions 5.7–5.10 in [15],
one can prove (3.4) with the weaker remainder estimate

ΔR(x) = O

(
x3 lnx

lnR

)
, x � 2, (3.8)

which suffices for our aims.
Formula (3.4) can be proved by standard methods of analytic number theory based on the

integral representation [15]

ΨΓ
1 (x) =

1

2πi

∫ σ1+i∞

σ1−i∞

xs+1

s(s+ 1)

Z ′

Z
(s) ds, σ1 > 1. (3.9)

The first two terms on the right-hand side in (3.4) are the sum of residues of the integrand in
the rectangular domain with vertices σ1 ± iR and −A± iR (A → ∞). The residues at the points
s = 0,−1 must be considered separately (see [15]), and their contribution is included in ΨΓ

1,0(x).

This function includes the contributions of the poles and trivial zeros of Z( · ), and

ΨΓ
1,0(x) = −2

3
x3/2(n− tr Φ(1/2)) + Ψ̃Γ

1,0(x). (3.10)

The first term on the right-hand side in this formula is the contribution of the pole at s = 1/2.

The function ΨΓ
1,0(x) can be explicitly evaluated based on the results in [1], [12], and Ψ̃Γ

1,0( · ) is a
function differentiable for x � 2 and such that

Ψ̃Γ
1,0(x) = CΓ

1 x lnx+O(x),
dΨ̃Γ

1,0

dx
(x) = CΓ

1 lnx+ CΓ
2 +O(x−1). (3.11)

For example, if Γ = SL(2,Z) and B0 =
1
4(3 +

√
5 )2 � 6.8541, then

Ψ̃Γ
1,0(x) = C1x lnx+ C2x+ C3 + C4x ln(1− x−1) + C5 ln(1− x−1)

+ C6x
−1/2 + C7(1 + x−1) ln

1 + x−1/2

1− x−1/2
,

where the Ci are some constants. Let us introduce the function

F (x) =
d

dx

g(ln x)√
x

. (3.12)
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Lemma 1 (an explicit formula for SP [g]). Let B > 2, let B � B0 , and let h ∈ {h}S be a
function such that∫ ∞

b0

ey/2y[|g(y)| + |g(1)(y)|+ |g(2)(y)|] dy = CΓ[g] <∞, g(3) ∈ L1(b0,∞). (3.13)

Then for any cofinite group Γ one has

SP [g] = S∞
P [g] + Sex[g] + S0[g], (3.14)

where

S0[g] = −
∫ ∞

B
F (x)

d

dx
ΨΓ

1,0(x) dx−
∫ B

B0

ΨΓ(x)F (x) dx, (3.15)

Sex[g] = −
∑

1/2<sm<1

∫ ∞

B

(
xsm

sm
+
xsm

sm

)
F (x) dx −

M2−1∑
ν=0

∫ ∞

B

xsν

sν
F (x) dx, (3.16)

S∞
P [g] = −

∑
(α)

∫ ∞

B

(
xsα

sα
+
xs̃α

s̃α

)
F (x) dx−

∑
rj�0

∫ ∞

B

(
xsj

sj
+
xsj

sj

)
F (x) dx, (3.17)

and the symbol
∑

(α) stands for a sum over the poles sα = βα + iγα of ϕ such that βα < 1/2 and

γα > 0 (see (3.7)).
Here and in what follows,

∑
rj�0+

∑
(α) = limR→∞

(∑
rj�R+

∑
|γα|�R

)
.

Proof. An analog of Lemma 1 for strictly hyperbolic groups was proved in [10]. Let us
rewrite (2.6) in the form

SP [g] =
∑
{P}

ΛΓ(P )f(N(P )), f(x) =
g(ln x)√

x
.

By Abel’s partial summation formula,

∑
B0�N(P )�x

ΛΓ(P )f(N(P )) = ΨΓ(x)f(x)−
∫ x

B0

ΨΓ(ξ)F (ξ) dξ.

In view of the estimates (see [15], [16])

ΨΓ(x) = O(x), ΨΓ
1 (x) = O(x2), x→ ∞,

and condition (3.13), we obtain

SP [g] = −
∫ ∞

B0

ΨΓ(x)F (x) dx = −
∫ ∞

B

dΨΓ
1

dx
(x)F (x) dx −

∫ B

B0

ΨΓ(x)F (x) dx.

Further, we integrate by parts and find that

SP [g] = ΨΓ
1 (B)F (B)−

∫ B

B0

ΨΓ(x)F (x) dx +

∫ ∞

B
ΨΓ

1 (x)
dF

dx
(x) dx. (3.18)

Let us use formula (3.4). We obtain

SP [g] =

∫ ∞

B
[ΣR,Δ(x) + ΣR,ϕ(x) + ΨΓ

1,0(x)]
dF

dx
(x) dx

+ΨΓ
1 (B)F (B)−

∫ B

B0

ΨΓ(x)F (x) dx +

∫ ∞

B

dF

dx
(x)ΔR(x) dx,
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whence it follows that

SP [g] = −ΨΓ
1 (B)F (B) + ΔR(B)F (B)

−
∫ ∞

B

d

dx
[ΣR,Δ(x) + ΣR,ϕ(x) + ΨΓ

1,0(x)]F (x) dx

+ΨΓ
1 (B)F (B)−

∫ B

B0

ΨΓ(x)F (x) dx +

∫ ∞

B

dF

dx
(x)ΔR(x) dx.

We differentiate, change the order of summation and integration, and then pass to the limit as
R→ ∞, thus obtaining the desired result. The proof of Lemma 1 is complete.

Formally, one can obtain Eq. (3.14) by substituting an explicit formula for ΨΓ
1 (x) (see [16])

into (3.18) with subsequent integration by parts and changing the order of integration and sum-
mation.

Note that if we use the estimate (3.9), then the entire derivation remains valid except that ey/2

must be replaced with e(k−3/2)y in condition (3.13).

Lemma 2. Let the assumptions of Lemma 1 be satisfied. Then∑
n�0

h(rn) = H[h] + SR[h] + S∞
P [g] + Sex[g] + S0[g] + P[h|ϕ]. (3.19)

Here

S∞
P [g] = −

∑
rj�0

1

r2j + 1/4

∫ ∞

b
(cos(rjy) + 2rj sin(rjy))f(y) dy

−
∑
(α)

∫ ∞

B

(
xsα

sα
+
xs̃α

s̃α

)
F (x) dx,

f(y) = −1

2
g(y) + g(1)(y), b = lnB,

(3.20)

and the remaining terms on the right-hand side in (3.19) have been defined above.

Proof. The proof amounts to the substitution of the expression (3.14) into the Selberg for-
mula (2.3) with regard to the remark that(

xsj

sj
+
xs̃j

s̃j

)
F (x) dx =

1

1/4 + r2j
(cos(rjy) + 2rj sin(rjy))f(y) dy (s̃j = sj)

for y = lnx. The proof of Lemma 2 is complete.

4. Explicit Formula for P[h|ϕ]
We introduce the notation

J [h|ϕ] = 1

4π

∫ ∞

−∞
h(r)

ϕ′

ϕ

(
1

2
+ ir

)
dr, (4.1)

ΔP[h|ϕ] = − n

2π

∫ ∞

−∞
h(r)

Γ′

Γ
(1 + ir) dr − h(0)

4
(n− tr Φ(1/2)) − ng(0) ln 2 (4.2)

and represent P[h|ϕ] (2.8) in the form

P[h|ϕ] = J [h|ϕ] + ΔP[h|ϕ]. (4.3)

As was already noted, the main properties of the function ϕ in (2.9) are indicated in [1], [3], [12].
According to these papers,

ϕ(s) =
√
π

(
Γ(s− 1/2)

Γ(s)

)n ∞∑
n=1

an
b2sn

, a1 �= 0, 0 < b1 < b2 < . . . , (4.4)
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for σ = Re s > 1. By the functional equation (2.10), if sα is a pole of ϕ, then so is s̃α , while
1− sα and 1− s̃α are zeros of ϕ. The logarithmic derivative of ϕ occurring in (4.1) has the simple
fraction decomposition [17]

ϕ′

ϕ
(s) =

∑
ν

(
1

s− 1 + sν
− 1

s− sν

)
+

∑
βα<1/2

(
1

s− 1 + s̃α
− 1

s− sα

)
− 2 ln b1. (4.5)

The summation in
∑

μ is over all poles sν of ϕ such that 1/2 < sν � 1. If s = 1/2 + ir, then

(r ∈ R)

1

s− 1 + sν
− 1

s− sν
= −(1− 2sν)

1

r2 + (sν − 1/2)2
> 0 (1/2 < sν � 1),

1

s− 1 + s̃α
− 1

s− sα
=

1

ir − a
(1)
α

− 1

ir − a
(2)
α

= − 1− 2βα
(r − γα)2 + (βα − 1/2)2

< 0.
(4.6)

In the last formula,

a(1)α = 1/2 − s̃α, a(2)α = sα − 1/2. (4.7)

It was proved in [1], [12] that the series

∑
βα<1/2

1− 2βα
(s− γα)2 + (βα − 1/2)2

converges uniformly on compact sets. We substitute the expressions (4.5) and (4.6) into (4.1),
change the order of integration and summation, and obtain

J [h|ϕ] = J0[h|ϕ] + J1[h|ϕ], (4.8)

where

J0[h|ϕ] = −
∑
ν

(1− 2sν)
1

4π

∫ ∞

−∞

h(r) dr

r2 + (sν − 1/2)2
− 2g(0) ln 2, (4.9)

J1[h|ϕ] =
∑

βα<1/2

(I(a(1)α )− I(a(2)α )) (4.10)

and

I(a) =
1

4π

∫ ∞

−∞

h(r)

ir − a
dr.

By Parseval’s identity,

I(a) =
1

2

∫ ∞

−∞
g(y)f̂(−y) dy,

where

f̂(−y) = 1

2π

∫ ∞

−∞
eiry

1

ir − a
dr =

1

π

∫ ∞

0

r sin(ry)

r2 + a2
dr − a

π

∫ ∞

0

cos(ry)

r2 + a2
dr.

Since (see [18]) ∫ ∞

0

r sin(ry)

r2 + a2
dr =

π

2
e−ay , Re a > 0, y > 0,

∫ ∞

0

r cos(ry)

r2 + a2
dr =

π

2a
e−ay, Re a > 0, y � 0,

it follows that

f̂(−y) = 1

2
sgn y e−|y|a − 1

2
e−|y|a, Re a > 0,

f̂(−y) = 1

2
sgn y e|y|a +

1

2
e|y|a, Re a < 0.
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It remains to note that Re a
(1)
α > 0, Re a

(2)
α < 0, g(y) = g(−y), and hence

I(a(1)α ) = −1

2

∫ ∞

0
g(y)e−ya

(1)
α dy, I(a(2)α ) =

1

2

∫ ∞

0
g(y)eya

(2)
α dy.

As a result, we obtain

I(a(1)α )− I(a(2)α ) = −1

2

∫ ∞

0
g(y)[e−y/2+s̃αy + e−y/2+sαy] dy. (4.11)

We substitute this expression into (4.10), take into account our definition of
∑

(α) (
∑

(α) =∑
βα<1/2, γα>0), and arrive at the relation

J1[h|ϕ] = −
∑
(α)

∫ ∞

0
g(y)[e−y/2+s̃αy + e−y/2+sαy] dy

= −2
∑
(α)

∫ ∞

0
g(y)e(βα−1/2)y cos(γαy) dy. (4.12)

Lemma 3 (an explicit formula for P[h|ϕ]). For every cofinite group Γ and every h ∈ {hS},
one has

P[h|ϕ] = J1[h|ϕ] + ΔP[h|ϕ] + J0[h|ϕ]. (4.13)

Here J1[h|ϕ] is defined in (4.12), ΔP[h|ϕ] is defined in (4.2), and J0[h|ϕ] is defined in (4.9).

Proof. The proof amounts to the substitution of the right-hand sides of (4.8) and (4.12)
into (4.3). The series J1[h|ϕ] converges in view of (4.13).

5. Main Theorem

Theorem 1 proved in the section specifies the explicit form of the functional Φ̃Γ in formula (1.5).
First, let us transform the expression (3.20) for S∞

P [g].

Lemma 4. Let the assumptions of Lemma 1 be satisfied, and let λn �= 1/4. Then

S∞
P [g] =W [g] + S1

P [g|Δ] + S2
P [g|ϕ] + S3

P [g|ϕ] − J1[h|ϕ]. (5.1)

Here J1[h|ϕ] is defined in (4.12), and

W [g] = −2f(b)

[ ∑
rj�0

cos(rjb)

r2j + 1/4
+

∑
(α)

cos(bγα)

γ2α
e(βα−1/2)b

]
, (5.2)

S1
P [g|Δ] = −

∑
rj>0

1

r2j + 1/4

∫ ∞

b
cos(rjy)

[
−1

2
g(y) + 2g(2)(y)

]
dy, (5.3)

S2
P [g|ϕ] = 2

∑
(α)

[
g(b)e(βα−1/2)b sin(γαb)

(
γα

β2α + γ2α
− 1

γα

)

+
(βα − 1/2)

γ2α
g(0) − g(b)

β3α cos(bγα)

γ2α(β
2
α + γ2α)

e(βα−1/2)b

]
, (5.4)

S3
P [g|ϕ] = 2

∑
(α)

γ−2
α

∫ b

0

d2

dy2
(
e(βα−1/2)yg(y)

)
cos(γαy) dy. (5.5)

If λn = 1/4, then one must add −4k

∫ b

0
f(y) dy to the right-hand side of (5.1), where k is the

multiplicity of the eigenvalue λn = 1/4.
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Proof. Consider the integral

Aα =

∫ ∞

B

(
xsα

sα
+
xs̃α

s̃α

)
F (x) dx,

occurring on the right-hand side in (3.20). By definition (3.12) of the function F ,

Aα = −2g(b)

sαs̃α
e(βα−1/2)b(βα cos(bγα) + γα sin(bγα))− 2

∫ ∞

b
e(βα−1/2)y cos(γαy)g(y) dy. (5.6)

It follows from (3.20) in view of (4.12) and (5.6) that

S∞
P [g] = −

∑
rj>0

1

(r2j + 1/4)rj

∫ ∞

b
(cos(rjy) + 2rj sin(rjy))f(y) dy +

∑
α

Bα − J1[h|ϕ], (5.7)

where

Bα =
2ψα(b)

β2α + γ2α
(βα cos(bγα) + γα sin(bγα))− 2

∫ b

0
ψα(y) cos(yγα) dy,

ψα(y) = e(βα−1/2)yg(y).

(5.8)

We integrate by parts and obtain

Bα = 2cos(bγα)Cα + 2 sin(bγα)ψα(b)

(
γα

γ2α + β2α
− 1

γα

)
+

2

γ2α
ψ(1)
α (0)

+
2

γ2α

∫ b

0
ψ(2)
α (y) cos(γαy) dy, Cα =

ψα(b)βα
β2α + γ2α

− ψ
(1)
α (b)

γ2α
. (5.9)

We take into account definition (5.8) of the function ψα(y), use the relation g
(1)(b) = f(b)+g(b)/2,

where f(y) was defined in Lemma 2, and find that

Cα = −f(b)e
(βα−1/2)b

γ2α
+ ψα(b)

(
− β3α
γ2α(γ

2
α + β2α)

)
(5.10)

and hence

Bα = 2cos(bγα)

(
−f(b)e

(βα−1/2)b

γ2α
− ψα(b)

β3α
γ2α(γ

2
α + β2α)

)

+ 2 sin(bγα)ψα(b)

(
γα

β2α + γ2α
− 1

γα

)
+

2

γ2α
ψ(1)
α (0) +

2

γ2α

∫ b

0
ψ(2)
α cos(γαy) dy. (5.11)

Note that since g(1)(0) = 0, it follows that

2

γ2α
ψ(1)
α (0) =

2(βα − 1/2)

γ2α
g(0). (5.12)

of the function f , ∫ ∞

b

(
cos(rjy) + 2rj sin(rjy)

)
f(y) dy

= 2f(b) cos(rjb) +

∫ ∞

b

(
−1

2
g(y) + 2g(2)(y)

)
cos(rjy) dy. (5.13)

To obtain the desired result (5.1), it remains to substitute the expressions (5.13) and (5.11)
into (5.7). We integrate by parts and find that

S1
P [g|Δ] =

∑
rj>0

1

(r2j + 1/4)rj

{
sin(rjb)

[
−1

2
g(b) + 2g(2)(b)

]

+

∫ ∞

b
sin(rjy)

[
−1

2
g(1)(y) + 2g(3)(y)

]
dy

}
. (5.14)
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Since

∑
(α)

(βα − 1/2)

γ2α
= CΓ <∞,

∑
(α)

γ−3
α <∞,

∑
rj>0

r−3
j <∞, g(3) ∈ L1[0,∞], (5.15)

we see that the absolute convergence of the series S1
P [g|Δ] and S2

P [g|ϕ] follows from (5.14) and (5.4)
and that it suffices to integrate by parts to prove the absolute convergence of the series S3

P [g|ϕ]. Now
the convergence of the series W [g] follows from formula (5.1), and W [g] includes all nonabsolutely
convergent series on the right-hand side in (5.1).

The proof of Lemma 4 is complete.

Corollary 1. For any b > b0 and any cofinite group Γ, the series in the definition of W [g]
converges; i.e., ∑

rj�0

cos(rjb)

r2j + 1/4
+

∑
(α)

cos(bγα)

γ2α
e(βα−1/2)b = CΓ(b) <∞. (5.16)

Now we are in a position to prove the following theorem.

Theorem 1. Let a function h ∈ {h}S satisfy condition (3.13). Then∑
n�0

h(rn) = H[h] +G[h] + S1
P [g|Δ] + S2

P [g|ϕ] + S3
P [g|ϕ] +M [g] (5.17)

for any cofinite group Γ and any B � B0 , B > 2.
Here

G[h] = − n

2π

∫ +∞

−∞
h(r)ψ(1 + ir) dr

(
ψ(x) =

Γ′

Γ
(x)

)
, (5.18)

M [g] =W [g] + Sex[g] + SR[h] + S0[g] −
∑
ν

1− 2sν
4π

∫ +∞

−∞
h(r) dr

r2 + (sν − 1/2)2

−
(
n− tr Φ

(
1

2

))
h(0)

4
− g(0)n ln 2, (5.19)

where the summation in
∑

μ is over the poles sν of ϕ such that 1/2 < sν � 1 (sμ = σν).

Proof. The proof amounts to the substitution of (5.1) and (4.13) into (3.19). Note that the
expression J1[h|ϕ] occurs in (5.1) and (4.13) with opposite signs. The proof of Theorem 1 is com-
plete.

The expression S1
P [g|Δ] in (5.17) depends on the behavior of g(y) for y > b, while S3

P [g|ϕ]
depend on the behavior of the same function for 0 < y < b. Since

∫ ∞

b
g(2)(y) cos(rjy) dy = −1

2
r2jh(rj)−

∫ b

0
g(2)(y) cos(rjy) dy,

1

2

∫ ∞

b
g(y) cos(rjy) dy =

1

4
h(rj)− 1

2

∫ b

0
g(y) cos(rjy) dy,

we obtain

S1
P [g|Δ] =

∑
rj>0

h(rj) +
∑
rj>0

1

r2j + 1/4

[ ∫ b

0

[
−1

2
g(y) + 2g(2)(y)

]
cos(rjy) dy

]
, (5.20)

which permits rewriting (5.17) in the form∑
λn<1/4

h(rn) = H[h] +G[h] + S̃1
P [g|Δ] + S2

P [g|ϕ] + S3
P [g|ϕ] +M [g], (5.21)
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where

S̃1
P [g|Δ] =

1

2

∑
rj>0

1

(r2j + 1/4)rj

[
−g(b) sin(rjb) +

∫ b

0
g(1)(y) sin(rjy) dy

]

+ 2
∑
rj>0

1

r2j + 1/4

∫ b

0
g(2)(y) cos(rjy) dy. (5.22)

Let us transform S3
P [g|ϕ] in a similar way. The expression (5.5) contains the integral∫ b

0
e(βα−1/2)yg(2)(y) cos(γαy) dy =

∫ b

0
(e(βα−1/2)y − 1)g(2)(y) cos(γαy) dy

− 1

2
γ2αh(γα)−

∫ ∞

b
g(2)(y) cos(γαy) dy.

We use this expression in (5.5), substitute the result into (5.17), and arrive at the following assertion.

Corollary 2. Under the assumptions of Theorem 1, for every cofinite group one has∑
n�0

h(rn) +
∑
(α)

h(γα) = H[h] +G[h] +R[h] +M [g], (5.23)

where
R[h] = S1

P [g|Δ] + S2
P [g|ϕ] + ΔS3

P [g|ϕ], (5.24)

ΔS3
P [g|ϕ] = 2

∑
(α)

(βα − 1/2)2

γ2α

∫ b

0
e(βα−1/2)yg(y) cos(γαy) dy

+ 4
∑
(α)

βα − 1/2

γ2α

∫ b

0
e(βα−1/2)yg(1)(y) cos(γαy) dy

+ 2
∑
(α)

γ−2
α

∫ b

0
(e(βα−1/2)y − 1)g(2)(y) cos(γαy) dy

− 2
∑
(α)

γ−2
α

∫ ∞

b
g(2)(y) cos(γαy) dy. (5.25)

Equation (5.23) specifies the explicit form of the functionals L[h] and Φ̃Γ[h|{rj}, {γα}] in for-
mula (1.6) with L[h] = H[h] +G[h].

6. Some Applications

The study of the asymptotics as t → 0 of the series
∑

n e
−λnt is a standard object of spectral

theory. It was proved in the book [17] that

∑
n�0

e−tr2n − 1

4π

∫ +∞

−∞
e−tr2 ϕ

′

ϕ

(
1

2
+ ir

)
dr =

|F |
4πt

− n ln(1/t)

4
√
πt

− γn

4
√
πt

+O(1) (6.1)

as t→ 0 for any cofinite group Γ.
Let us use formula (5.17) and successively compute the asymptotics as t → 0 of all terms on

the right-hand side in this relation for the case in which

h(r) = e−tr2 , g(y) =
1

2
√
πt
e−y2/4t. (6.2)

We omit the details of calculations and present the final result
∑
n�0

e−tr2n =
|F |
4πt

− n ln(1/t)

4
√
πt

−
∑
(α)

e−tγ2
α +Q(t) +

C√
πt

+O(1). (6.3)
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Here Q(t) is given by the relations

Q(t) = −2
∑
(α)

βα − 1/2

γα
Fα(t) +

3√
πt

∑
(α)

βα − 1/2

γ2α
Gα(t) = O(t−1/2),

Fα(t) =
i

4
e−γ2

αt[erf(−iγα
√
t )− erf(iγα

√
t )],

Gα(t) = e−γ2
αt/2[D−4(−i

√
2t γα) +D−4(i

√
2t γα)].

(6.4)

We use the standard notation in [20]; erf z is the error function, and Dν(z) is the parabolic cylinder
function. Since

D−m−1(z) =
π

2

(−1)m

m!
e−z2/4 dm

dzm

(
ez

2/4 erfc
z√
2

)
,

we see that Q(t) can be expressed via the error function.
Equation (6.3) is consistent with (5.23) and specifies the explicit form of the first two terms

of the asymptotics as t → 0 of R[h] with h(r) = exp(−tr2). The first and second terms on the
right-hand side in (6.3) correspond to the asymptotics of H[h] and G[h], respectively, while the
third and fourth terms correspond to the asymptotics of the function S3

P [g|ϕ] defined in (5.5).
As a second application, let us show that formula (5.17) implies the Selberg–Weyl formula (1.7).

Selberg [3] proved that

N(T )− 1

4π

∫ T

−T

ϕ′

ϕ

(
1

2
+ ir

)
dr ∼ |F |

4π
T 2 (T → ∞) (6.5)

for any cofinite group Γ. The following refinement of this formula was obtained in [12]:

N(T )− 1

4π

∫ T

−T

ϕ′

ϕ

(
1

2
+ ir

)
dr =

|F |
4π

T 2 − n

π
T lnT + CT +O

(
T

lnT

)
. (6.6)

One can use (4.5) to prove that

N(T ) +M(T ) =
|F |
4π

T 2 +O(T lnT ), M(T ) = #{α | 0 < γα < T}. (6.7)

Theorem 1 readily implies a weakened version of this formula. To this end, consider the case in
which

h(r) = hα,T (r) =

∫ ∞

−∞
χT (s)δα(r − s) ds,

χT (r) =

{
1, |r| < T,

0, |r| > T,
δα(r) =

√
α

π
e−αr2 ,

(6.8)

and hence

g(y) =
1

π

sin(Ty)

y
e−y2/4α. (6.9)

Let us use Eq. (5.23). It can be shown that one can pass to the limit as α → ∞ on both sides in
this equation. This justifies the application of Eq. (5.23) for the case in which

h(r) = χT (r), g(y) =
1

π

sin(Ty)

y
. (6.10)

In this case, all the integrals on the right-hand side in (5.23) can readily be computed. Using the
estimates ∑

|γα−T |<δ

1 
 Tδ,
∑

|rj−T |<δ

1 
 Tδ (δ � T 1/2) (6.11)

and taking δ � T 1/2 , we find that

N(T ) +M(T ) =
|F |
4π

T 2 +O(T 3/2), (6.12)
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and this formula can be refined.
Inclosing, note that, in the case of the modular group (Γ = SL(2,Z)), one has sα = ρα/2 , where

the ρα are the nontrivial zeros of the Riemann zeta function. Using the results of the present paper,
the author has been able to prove (see [21]) that the distribution of primes can be reconstructed
from the discrete spectrum of the Laplace operator for Γ = SL(2,Z).

The author is keenly grateful to the referee of the paper [11], who is particular has made a
number of remarks that have led the author to Eq. (5.14) and Corollary 2. The author is grateful
to D. A. Frolenkov for a number of useful comments that have made for the refinement of the text
and the elimination of a number of errors.
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