ISSN 0016-2663, Functional Analysis and Its Applications, 2019, Vol. 53, No. 2, pp. 110–123. © Pleiades Publishing, Ltd., 2019. Text Copyright © The Author(s), 2019. Published in Funktsional'nyi Analiz i Ego Prilozheniya, 2019, Vol. 53, No. 2, pp. 42–58.

On the Distribution of Zero Sets of Holomorphic Functions: III. Converse Theorems

B. N. Khabibullin and F. B. Khabibullin

Received July 12, 2018; in final form, July 12, 2018; accepted February 4, 2019

ABSTRACT. Let M be a subharmonic function in a domain $D \subset \mathbb{C}^n$ with Riesz measure ν_M , and let $Z \subset D$. As was shown in the first of the preceding papers, if there exists a holomorphic function $f \neq 0$ in D such that f(Z) = 0 and $|f| \leq \exp M$ on D, then one has a *scale* of integral uniform upper bounds for the distribution of the set Z via ν_M . The present paper shows that for n = 1 this result "almost has a converse." Namely, it follows from such a *scale* of estimates for the distribution of points of the sequence $Z := \{z_k\}_{k=1,2,...} \subset D \subset \mathbb{C}$ via ν_M that there exists a nonzero holomorphic function f in D such that f(Z) = 0 and $|f| \leq \exp M^{\uparrow r}$ on D, where the function $M^{\uparrow r} \geq M$ on D is constructed from the averages of M over circles rapidly narrowing when approaching the boundary of D with a possible additive logarithmic term associated with the rate of narrowing of these circles.

KEY WORDS: holomorphic function, sequence of zeros, subharmonic function, Jensen measure, test function, balayage.

DOI: 10.1134/S0016266319020047

1. Introduction

The present paper uses the notation, definitions and conventions in [1] and [2] with their natural adaptations for the *complex plane* \mathbb{C} and its *Aleksandrov one-point compactification* $\mathbb{C}_{\infty} := \mathbb{C} \cup \{\infty\}$. The main goal is to give the converse of the results in the original paper [1] for domains $D \subset \mathbb{C}_{\infty}$ in the form of a criterion in the subharmonic version and also in a form close to a criterion when holomorphic functions in D are considered.

1.1. Notation, definitions, conventions. Throughout the paper, $\mathbb{N} := \{1, 2, ...\}$ stands for positive integers, $\mathbb{R} \subset \mathbb{C}$ is the *real line*, $\mathbb{R}^+ := \{x \in \mathbb{R} : x \ge 0\}$ is the *positive semiaxis*, and

$$\mathbb{R}^+_* := \mathbb{R}^+ \setminus \{0\}, \quad \mathbb{R}_{\pm\infty} := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}, \quad \mathbb{R}^+_{\pm\infty} := \mathbb{R}^+ \cup \{+\infty\}, \tag{1.1}$$

where the order on \mathbb{R} is supplemented with the natural inequalities $-\infty \leq x \leq +\infty$ for any $x \in \mathbb{R}_{\pm\infty}$. For $r \in \mathbb{R}^+_*$ and $z \in \mathbb{C}$, let $D(z,r) := \{z' \in \mathbb{C} : |z'-z| < r\}$ be the open disk with center z and radius r, let D(r) := D(0,r), let $\mathbb{D} := D(1)$, and let $D(z, +\infty) := \mathbb{C}$. For $z = \infty$, it is convenient for us to set $D(\infty, r) := \{z \in \mathbb{C}_{\infty} : |z| > 1/r\}$, $|\infty| := +\infty$, and $D(\infty, +\infty) := \mathbb{C}_{\infty} \setminus \{0\}$. The open disks $D(z,r), r \in \mathbb{R}^+_*$, form a base of open neighborhoods of a point $z \in \mathbb{C}_{\infty}$. For $S \subset \mathbb{C}_{\infty}$, by int S, clos S, and ∂S we denote the *interior*, *closure*, and *boundary* of S in \mathbb{C}_{∞} . For $S \subset S' \subset \mathbb{C}_{\infty}$, we write $S \in S'$ if S is a relatively compact subset of S'. A (sub) domain in \mathbb{C}_{∞} is an open connected subset of \mathbb{C}_{∞} . Throughout the following,

$$D \neq \emptyset$$
 is a proper subdomain of $\mathbb{C}_{\infty} \neq D$. (1.2)

Just as in [1], by har(S), sbh(S), δ -sbh(S), Hol(S), and $C^k(S)$, $k \in \mathbb{N} \cup \{\infty\}$, we denote the classes of harmonic, subharmonic ([3], [4]), δ -subharmonic [1, 3.1], holomorphic, and k times continuously differentiable functions, respectively, on open subsets of \mathbb{C}_{∞} containing $S \subset \mathbb{C}_{\infty}$; however, C(S)is the class of continuous functions on S. By $-\infty$ and $+\infty$ we denote the functions identically equal to $-\infty$ and $+\infty$, respectively. In this notation,

$$sbh_*(S) := sbh(S) \setminus \{-\infty\}, \quad \delta - sbh_*(S) := \delta - sbh(S) \setminus \{\pm\infty\},$$
$$Hol_*(S) := Hol(S) \setminus \{0\}.$$
(1.3)

The symbol 0 stands for the zero vector or the origin in a vector or an affine space. Positivity in an ordered vector space X is everywhere understood as ≥ 0 ; $+\infty \geq 0$ in^{*} $\mathbb{R}^+_{+\infty} \stackrel{(1.1)}{\subset} \mathbb{R}_{\pm\infty}$. For $A \subset X$, by A^+ we denote the set of positive elements in A. The class of all functions $f: X \to Y$ is denoted by Y^X . If $F(S) \subset \mathbb{R}^S_{\pm\infty} := (\mathbb{R}_{\pm\infty})^S$ is any class of extended real functions, then $F^+(S) \subset (\mathbb{R}^+_{+\infty})^S$ is the subclass of all positive functions in F(S).

Further, Meas(S) is the class^{**} of real Borel measures, also called charges [4], on Borel subsets of a set $S \subset \mathbb{C}_{\infty}$; Meas_c(S) is the subclass of measures $\nu \in \text{Meas}(S)$ with compact support supp $\nu \Subset S$; Meas⁺(S) is the subset of positive charges, i.e., just measures; λ is the Lebesgue measure in \mathbb{C} ; and δ_z is the Dirac measure at a point $z \in \mathbb{C}_{\infty}$.

Let $f \stackrel{(1.3)}{\in} \operatorname{Hol}_*(D)$. We say that a function f vanishes on a sequence $Z = \{z_k\}_{k=1,2,\dots}$ of points lying in D (we write $Z \subset D$) if the multiplicity of zero, or root, of f at each point $z \in D$ is not less than the number of occurrences of this point in the sequence Z (we write f(Z) = 0). To a sequence $Z = \{z_k\}_{k=1,2,\dots} \subset D$ without limit points in D, we assign

[div] The divisor of the sequence Z on D, that is, the function (denoted by the same symbol) $Z: D \to \mathbb{N}_0 := \{0\} \cup \mathbb{N}$ that takes each point $z \in D$ to the number of occurrences of z in Z; namely,

$$Z(z) := \sum_{z_k=z} 1 = \sum_k \delta_{z_k}(\{z\}), \qquad z \in D.$$
(1.4)

[cm] The counting measure

$$n_{\mathsf{Z}}(S) := \sum_{\mathsf{z}_k \in S} 1 = \sum_k \delta_{\mathsf{z}_k}(S), \qquad S \subset D,$$
(1.5)

i.e., the number of points of Z that lie in S. It is obvious that $Z(z) \stackrel{(1.4)}{\equiv} n_Z(\{z\}), z \in D$.

Departing from the traditional interpretation of a sequence as a function of a positive integer or integer argument, we say that two sequences are equal if their divisors (or, equivalently, their counting measures) coincide. See [5, 1.1] and [6, 0.1.2] for more detail.

The sequence of zeros, or roots, of a function $f \in \operatorname{Hol}_*(D)$, renumbered in some way counting multiplicities, is denoted by Zero_f . Here $\ln |f| \in \operatorname{sbh}_*(D)$, and for $f \neq 0$ the relationship between the Riesz measure $\nu_{\ln |f|}$ of the function $\ln |f|$ and the counting measure $n_{\operatorname{Zero}_f}$ of the sequence of zeros of f is given by the formula ([3, Theorem 3.7.8], [1, 1.2.4])

$$\nu_{\ln|f|} = \frac{1}{2\pi} \Delta \ln|f| \stackrel{(1.5)}{=} n_{\operatorname{Zero}_f} \in \operatorname{Meas}^+(D), \quad \text{where } \Delta \text{ is the Laplace operator.}$$
(1.6)

Obviously, $f(\mathsf{Z}) = 0$ if and only if $n_{\mathsf{Z}} \leq n_{\operatorname{Zero}_f}$ for $n_{\mathsf{Z}}, n_{\operatorname{Zero}_f} \in \operatorname{Meas}^+(D)$ on D.

1.2. Main Results.

Definition 1 (a version of the notion of *balayage* ([3], [4], [7])). Let $S \in D$, and let $F \subset \mathbb{R}_{\pm\infty}^{D\setminus S}$ be some class of extended real functions on $D\setminus S$. A charge $\mu \in \text{Meas}(D)$ is called an *affine balayage* of a charge $\nu \in \text{Meas}(D)$ for D outside $S \in D$ relative to F (and we write $\nu \preccurlyeq_{S,F} \mu$) if there exists a number $C \in \mathbb{R}$ such that

$$\int_{D\setminus S} v \,\mathrm{d}\nu \leqslant \int_{D\setminus S} v \,\mathrm{d}\mu + C \quad \text{for all } v \in F,$$
(1.7)

where the integrals in (1.7) are, generally speaking, upper integrals [8]. In particular, for a sequence $Z = \{z_k\}_{k=1,2,...}$ with counting measure n_Z defined in (1.5), a charge $\mu \in \text{Meas}(D)$ is called an

 $^{^{*}}$ A reference over a relation sign ((in)equality, inclusion, etc.) means that this relation is somehow connected with the object being referenced.

^{**} The notation $\mathcal{M}(S)$ was used in [1].

affine balayage of the sequence Z for D outside $S \in D$ with respect to the class F (and we write $Z \preccurlyeq_{S,F} \mu$) if $n_Z \preccurlyeq_{S,F} \mu$, i.e., if there exists a number $C \in \mathbb{R}$ such that

$$\sum_{\mathsf{z}_k \in D \setminus S} v(\mathsf{z}_k) \stackrel{(1.5)}{:=:} \int_{D \setminus S} v \, \mathrm{d}n_{\mathsf{Z}} \stackrel{(1.7)}{\leqslant} \int_{D \setminus S} v \, \mathrm{d}\mu + C \quad \text{for all } v \in F.$$
(1.8)

Obviously, the *preorder* relation $\preccurlyeq_{S,F}$ on $\operatorname{Meas}(D)$ with $F = F^+$ is weaker than the standard order relation $\nu \leq \mu$ on $\operatorname{Meas}(D)$. For a function $v: D \setminus S \to \mathbb{R}_{\pm\infty}$ with $S \subseteq D$, set

$$\lim_{\partial D} v := \lim_{D \ni z' \to z} v(z') \in \mathbb{R}, \qquad z \in \partial D,$$
(1.9)

if the limit on the right-hand side exists and if it is the same for any point $z \in \partial D$.

To avoid some purely technical complications associated with the need to apply inversion of the complex plane and the Kelvin transform of functions [1, 1.2.2], for the time being we only consider domains $D \subset \mathbb{C}$; i.e., $\infty \notin D$.

Theorem 1 (a criterion for subharmonic functions). Let $D \subset \mathbb{C}$ be a domain with a nonpolar boundary $\partial D \subset \mathbb{C}_{\infty}$, let M be a function in $\mathrm{sbh}_*(D) \cap C(D)$ with Riesz measure $\mu \in \mathrm{Meas}^+(D)$, let $\nu \in \mathrm{Meas}^+(D)$, and let $b \in \mathbb{R}^+_*$. Then the following three assertions are equivalent.

s1. There exists a function $u \in sbh_*(D)$ with Riesz measure $\nu_u \ge \nu$ such that $u \le M$ on D.

s2. For any subset $S \in D$ satisfying the conditions

$$\emptyset \neq \operatorname{int} S \subset S = \operatorname{clos} S \Subset D, \tag{1.10}$$

the measure μ is an affine balayage of the measure ν for D outside S with respect to the class of test^{*} subharmonic positive functions

$$\operatorname{sbh}_{0}^{+}(D \setminus S; \leqslant b) := \left\{ v \in \operatorname{sbh}^{+}(D \setminus S) \colon \lim_{\partial D} v \stackrel{(1.9)}{=} 0, \sup_{D \setminus S} v \leqslant b \right\}.$$
(1.11)

s3. There exists a subset $S \subseteq D$ satisfying condition (1.10) for which the measure μ is an affine balayage of ν for D outside S with respect to the class $\operatorname{sbh}_{00}^+(D \setminus S; \leq b) \cap C^{\infty}(D \setminus S)$, where

$$\operatorname{sbh}_{00}^{+}(D \setminus S; \leqslant b) := \left\{ v \in \operatorname{sbh}_{0}^{+}(D \setminus S; \leqslant b) \colon \exists D_{v} \Subset D, \ v \equiv 0 \ on \ D \setminus D_{v} \right\}$$
(1.12)

is the class of test subharmonic positive compactly supported functions.

Remark 1. The implication $s_2 \Rightarrow s_3$ is obvious for any domain $D \subset \mathbb{C}_{\infty}$ and any measure $\mu \in \text{Meas}^+(D)$ without the condition of continuity of the function M on D. The same, as shown in Sec. 2.1, is true for the implication $s_1 \Rightarrow s_2$. Only the proof of the implication $s_3 \Rightarrow s_1$ uses both the continuity of the function M and the fact that the boundary $\partial D \subset \mathbb{C}_{\infty}$ is a nonpolar set. Recall that the latter is equivalent to the existence of a *Green function* g_D for the domain D ([3, 4.4], [12, 3.7, 5.7.4]). The boundary ∂D is nonpolar, say, if at least one of its connected components contains more than one point [3, Corollary 3.6.4] or if the Hausdorff dimension of ∂D is greater than zero [12, 5.4.1].

The implication $s3 \Rightarrow s1$ is a special case of Theorem 3 in Sec. 2.2.

Let us proceed to the holomorphic version of Theorem 1, in which there arises a gap between necessary and sufficient conditions. This gap, which is often insignificant, can hardly be bridged even for the disk $D = \mathbb{D}$ in the general situation considered here. We denote by dist (\cdot, \cdot) the *Euclidean distance* between two points, between a point and a set, and between two sets in \mathbb{C} . By definition, we set dist $(\cdot, \emptyset) :=: \text{dist}(\emptyset, \cdot) := \inf \emptyset := +\infty =: \text{dist}(z, \infty) :=: \text{dist}(\infty, z)$ for $z \in \mathbb{C}$.

1.2.1. The choice of lift of the function M. In what follows, $r: D \to \mathbb{R}^+$ is an arbitrary continuous function satisfying the condition

$$0 < r(z) < \min\{\operatorname{dist}(z, \partial D), 1\} \quad \text{for all } z \in D.$$

$$(1.13)$$

^{*}Similar classes of test subharmonic functions were studied and used in [1], [2], and [9]–[11].

To a function $M \in L^1_{loc}(D)$, where $L^1_{loc}(D) \subset \mathbb{R}^D_{\pm\infty}$ is the class of functions locally integrable with respect to the Lebesgue measure λ , we assign its variable means over disks,

$$M^{*r}(z) := \frac{1}{\lambda(D(z, r(z)))} \int_{D(z, r(z))} M \, \mathrm{d}\lambda$$

= $\frac{1}{\pi r^2(z)} \int_0^{2\pi} \int_0^{r(z)} M(z + te^{i\theta}) t \, \mathrm{d}t \, \mathrm{d}\theta, \qquad D(z, r(z)) \subset D,$ (1.14)

and also, following [13] and [14], its *lift* $M^{\uparrow r}$, defined as follows:

(i) In the general case of $D \subset \mathbb{C}$, we set

and 5 give other versions of the implication $h3 \Rightarrow h1$.

$$M^{\uparrow r}(z) := M^{*r}(z) + \ln \frac{1}{r(z)} + (1+\varepsilon)\ln(1+|z|) \quad \text{for all } z \in D,$$
(1.15)

where the number $\varepsilon \in \mathbb{R}^+_*$ can be chosen to be arbitrarily small.

(ii) If $\mathbb{C}_{\infty} \setminus \operatorname{clos} D \neq \emptyset$ or the domain $D \subset \mathbb{C}$ is simply connected in \mathbb{C}_{∞} , then

$$M^{\uparrow r}(z) := M^{*r}(z) + \ln \frac{1}{r(z)}$$
 for all $z \in D$. (1.16)

(iii) If $D = \mathbb{C}$, then for an arbitrarily large number P > 0 we can set

$$M^{\uparrow r}(z) := M^{*r}(z), \quad r(z) := \frac{1}{(1+|z|)^P} \quad \text{for all } z \in \mathbb{C} = D.$$
 (1.17)

Theorem 2 (necessary/sufficient conditions for holomorphic functions). Let D be a domain in \mathbb{C} , let M be a function in $\mathrm{sbh}_*(D)$ with Riesz measure $\mu \in \mathrm{Meas}^+(D)$, let $\mathsf{Z} = \{\mathsf{z}_k\}_{k=1,2,\ldots} \subset D$, and let $b \in \mathbb{R}^+_*$. Each of the following three assertions h1–h3 follows from the preceding one.

h1. There exists a function $f \in \operatorname{Hol}_*(D)$ such that $f(\mathsf{Z}) = 0$ and $|f| \leq \exp M$ on D.

h2. For any set S satisfying condition (1.10), the measure μ is an affine balayage of the sequence Z for D outside S with respect to the class of test subharmonic functions (1.11).

h3. There exists a set S satisfying condition (1.10) such that μ is an affine balayage of the sequence Z for D outside S with respect to the class $\mathrm{sbh}_{00}^+(D \setminus S; \leq b) \cap C^{\infty}(D \setminus S)$. Conversely, if, in addition, the boundary ∂D is a nonpolar set in \mathbb{C}_{∞} and $M \in C(D)$, then assertion h3 implies the existence of a function $f \in \mathrm{Hol}_*(D)$ vanishing on Z and satisfying the inequality

 $|f| \leq \exp M^{\uparrow r}$ on *D* with lifts $M^{\uparrow r}$ in (i)–(iii) defined by formulas (1.15)–(1.17). **Remark 2.** The implication h2 \Rightarrow h3 is obvious. Sections 3 and 4 contain the converse Theorems 4 and 5 exclusively in terms of affine balayage with respect to the classes of Green functions and certain logarithmic potentials of analytic disks, respectively. Corollaries 1 and 2 of Theorems 4

2. Proofs of Theorems 1 and 2

2.1. Proof of the implications s1\Rightarrows2 and h1\Rightarrowh2. This section does not assume that the function M is continuous. The nonempty domain D \subset \mathbb{C} is arbitrary.

Take a $z_0 \in D$ such that $u(z_0) \neq -\infty$ and $M(z_0) \neq -\infty$. The choice of the domain D, $S \in D \in D$, regular for the Dirichlet problem in the statement of the main theorem in [1] is arbitrary. Then, by condition s1 of the main theorem in [1], there exist numbers $C, \overline{C}_M \in \mathbb{R}^+$ such that [1, (3.3)]

$$Cu(x_0) + \int_{D \setminus S} v \, \mathrm{d}\nu_u \leqslant \int_{D \setminus S} v \, \mathrm{d}\mu + C \, \overline{C}_M \quad \text{for all } v \in \mathrm{sbh}_0^+(D \setminus S; \leqslant b).$$

Since $\nu \leq \nu_u$, this shows by Definition 1 that $\nu \preccurlyeq_{S,F} \nu_u \preccurlyeq_{S,F} \mu$ for the affine balayage operation $\preccurlyeq_{S,F}$ for D outside S with respect to the class $F \stackrel{(1.11)}{=} \mathrm{sbh}_0^+ (D \setminus S; \leq b)$.

The implication $h1 \Rightarrow h2$ is a special case of the implication $s1 \Rightarrow s2$ for $u := \ln |f|$ with the Riesz measure $n_{\text{Zero}_f} \ge n_{\text{Z}}$ in the framework of Definition (1.8) of the affine balayage μ of the sequence Z.

2.2. Proof of the implication s3 \Rightarrow s1. Let us prove a more general assertion.

Theorem 3. Let $D \subset \mathbb{C}_{\infty}$ be a domain with nonpolar boundary ∂D , let $S \in D$ be a subset satisfying condition (1.10), let $M \stackrel{(1.3)}{\in} \delta$ -sbh_{*}(D) be a δ -subharmonic function with Riesz charge $\nu_M \in \text{Meas}(D)$, let $\nu \in \text{Meas}^+(D)$, and let $b \in \mathbb{R}^+_*$. If the charge ν_M is an affine balayage of the measure ν for D outside S with respect to the class $\text{sbh}_{00}^+(D \setminus S; \leq b) \cap C^{\infty}(D \setminus S)$ defined according to formula (1.12), i.e., if there exists a number $C \in \mathbb{R}$ such that

$$\int_{D\setminus S} v \,\mathrm{d}\nu \leqslant \int_{D\setminus S} v \,\mathrm{d}\nu_M + C \quad \text{for all } v \stackrel{(1.12)}{\in} \mathrm{sbh}^+_{00}(D\setminus S; \leqslant b) \cap C^\infty(D\setminus S), \tag{2.1}$$

then for each continuous function $r: D \to \mathbb{R}^+$ satisfying condition (1.13) there exists a function $u \in \mathrm{sbh}_*(D)$ with Riesz measure $\nu_u \ge \nu$ such that

$$u(z) \stackrel{(1.14)}{\leqslant} M^{*r}(z) \quad for \ all \ z \in D.$$

$$(2.2)$$

If $M \in \delta$ -sbh_{*} $(D) \cap C(D)$, i.e., if the function M is also continuous, then under condition (2.1) there exists a function $u \in$ sbh*(D) with Riesz measure $\nu_u \ge \nu$ such that $u \le M$ on D.

Proof. First, assume that, instead of condition (2.1), in addition to condition (1.10), for some nonempty subdomain

$$D_0 \in \operatorname{int} S \tag{2.3}$$

and some number $C \in \mathbb{R}$ one has the inequality

$$\int_{D \setminus D_0} v \, \mathrm{d}\nu \leqslant \int_{D \setminus D_0} v \, \mathrm{d}\nu_M + C \quad \text{for all } v \stackrel{(1.12)}{\in} \mathrm{sbh}_{00}^+(D \setminus D_0; \leqslant b); \tag{2.4}$$

i.e., the compactly supported test functions v are not necessarily differentiable, and $S \in D$ is somewhat narrowed to a subdomain $D_0 \in D$. For the measure ν on $D \supset D_0$, there always exists a point $z_0 \in D_0$ such that the value $M(z_0) \neq \infty$ is well defined; i.e., $z_0 \in D_0 \cap \text{dom } M$ in the notation of [1, 3.1], and the equivalent conditions

$$\left(\int_{0}^{r_{0}} \frac{\nu(z_{0},t)}{t} \,\mathrm{d}t < +\infty\right) \iff \left(\int_{D(z_{0},r_{0})} \ln|z'-z_{0}| \,\mathrm{d}\nu(z') > -\infty\right), \qquad D(z_{0},3r_{0}) \in D_{0}, \quad (2.5)$$

hold for some number $r_0 > 0$. Conditions (2.5), in particular, ensure the existence of a function $u_0 \in \mathrm{sbh}_*(D)$ with Riesz measure $\nu_{u_0} = \nu$ and with the property $u_0(z_0) \neq -\infty$ [1, 3.1].

In what follows, we temporarily need the boundedness of the function M in a neighborhood of the point z_0 . To this end, we so far transform it locally while preserving condition (2.4). Using (2.5) and the representation $M = u_+ - u_-$ of M as a difference of subharmonic functions $u_+, u_- \in$ $\mathrm{sbh}_*(D)$, one can locally change the values of M in $D(z_0, 2r_0) \in D_0$, namely, continue the functions u_+ and u_- into $D(z_0, 2r_0)$ harmonically by the Poisson integral. We denote them by u_+° and u_-° , respectively. Then $M^{\circ} := u_+^{\circ} - u_-^{\circ} \in \delta - \mathrm{sbh}_*(D)$ is a bounded function in a neighborhood of the closed disk clos $D(z_0, r_0)$, and (2.4) is still true for all $v \in \mathrm{sbh}_{00}^+(D \setminus D_0; \leq b)$. For now, we denote the function M° by the same symbol M. By $J_{z_0}(D)$, as in [1], we denote the class of all Jensen measures $\mu \in \mathrm{Meas}^+_{\mathrm{c}}(D)$ satisfying the condition $u(z_0) \leq \int u \, d\mu$ for all $u \in \mathrm{sbh}(D)$. We need the following theorem.

Theorem A (a special case of Theorem 6 in [5]). Assume that $M \in L^1_{loc}(D)$, $z_0 \in D$, $u_0 \in sbh(D)$, and $u_0(z_0) \neq -\infty$. If the function M is bounded in an open neighborhood of the closure clos D_1 of some subdomain $D_1 \in D$ containing z_0 and there exists a number $C_0 \in \mathbb{R}$ such that

$$\int_{D} u_0 \,\mathrm{d}\mu \leqslant \int_{D} M \,\mathrm{d}\mu + C_0 \quad \text{for any Jensen measure } \mu \in J_{z_0}(D), \tag{2.6}$$

then for each continuous function $r: D \to \mathbb{R}^+$ satisfying condition (1.13) there exists a function $w \in \mathrm{sbh}_*(D)$ such that

$$u_0 + w \stackrel{(1.14)}{\leqslant} M^{*r} \quad on \ D.$$

$$(2.7)$$

In our case, the role of the domain D_1 will be played by the disk $D(z_0, r_0)$. In addition, the following notion is required.

2.2.1. Jensen potentials. A function $V \in sbh^+(\mathbb{C}_{\infty} \setminus \{z_0\})$ is called a Jensen potential inside D with pole at $z_0 \in D$ [1, Definition 3] if the following two conditions are satisfied:

(1) There exists a domain $D_V \Subset D$ containing $z_0 \in D_V$ such that $V(z) \equiv 0$ for $z \in \mathbb{C}_{\infty} \setminus D_V$. (2) One has a *logarithmic seminormalization at* z_0 ; namely,

$$\limsup_{z_0 \neq z \to z_0} \frac{V(z)}{l_{z_0}(z)} \leqslant 1, \tag{2.80}$$

where
$$l_{z_0}(z) := \begin{cases} \ln \frac{1}{|z-z_0|} & \text{for } z_0 \neq \infty, \\ \ln |z| & \text{for } z_0 = \infty. \end{cases}$$
 (2.81)

The class of all such Jensen potentials will be denoted by $PJ_{z_0}(D)$.

The logarithmic potential of genus 0 of a probability measure $\mu \in \text{Meas}^+_{c}(\mathbb{C}_{\infty})$ with a pole at $z_0 \in \mathbb{C}_{\infty}$ is defined for all $w \in \mathbb{C}_{\infty} \setminus \{z_0\}$ as the function

$$V_{\mu}(w) := \int_{D} \ln \left| \frac{w - z}{w - z_0} \right| d\mu(z) = \int_{D} \ln \left| 1 - \frac{z - z_0}{w - z_0} \right| d\mu(z) \quad \text{for } z_0 \neq \infty,$$
(2.90)

where for $w = \infty$ the integrands are defined to be 0;

$$V_{\mu}(w) := \int_{D} \ln \left| \frac{w-z}{z} \right| d\mu(z) = \int_{D} \ln \left| 1 - \frac{w}{z} \right| d\mu(z) \quad \text{for } z_{0} = \infty,$$

$$(2.9\infty)$$

where for $z = \infty$ the integrands are defined to be 0.

Recall the main relationships between the classes $J_{z_0}(D)$ and $PJ_{z_0}(D)$. The first is the following duality statement.

Proposition 1 [15, Proposition 1.4, duality theorem]. The mapping

$$\mathscr{P}\colon J_{z_0}(D)\to PJ_{z_0}(D), \quad \mathscr{P}(\mu)\stackrel{(2.9)}{:=}V_{\mu}, \quad \mu\in J_{z_0}(D),$$

is a bijection for which $\mathscr{P}(t\mu_1 + (1-t)\mu_2) = t\mathscr{P}(\mu_1) + (1-t)\mathscr{P}(\mu_2)$ for all $t \in [0,1]$ (affinity), and the inverse bijection \mathscr{P}^{-1} is defined by the formula

$$\mathscr{P}^{-1}(V) \stackrel{(2.8l)}{=} \frac{1}{2\pi} \Delta V \bigg|_{D \setminus \{z_0\}} + \left(1 - \limsup_{z_0 \neq z \to z_0} \frac{V(z)}{l_{z_0}(z)}\right) \cdot \delta_{z_0}, \qquad V \in PJ_{z_0}(D).$$
(2.10)

The second is the extended Poisson-Jensen formula (2.11).

Proposition 2 [15, Proposition 1.2]. Let $\mu \in J_{z_0}(D)$. Then for any function $u \in sbh(D)$ with Riesz measure ν_u and with $u(z_0) \neq -\infty$ one has

$$u(z_0) + \int_{D \setminus \{z_0\}} V_{\mu} \, \mathrm{d}\nu_u = \int_D u \, \mathrm{d}\mu.$$
 (2.11)

Lemma 1. Assume that $M \in \delta$ -sbh_{*}(D) with Riesz charge ν_M , $z_0 \in \text{dom } M$, $u_0 \in \text{sbh}(D)$ with Riesz measure ν , $u_0(z_0) \neq -\infty$, $V \in PJ_{z_0}(D)$ is a Jensen potential, and $C_1 \in \mathbb{R}$. If

$$\int_{D\setminus\{z_0\}} V \,\mathrm{d}\nu \leqslant \int_{D\setminus\{z_0\}} V \,\mathrm{d}\nu_M + C_1,\tag{2.12}$$

then for the Jensen measure $\mu \stackrel{(2.10)}{=} \mathscr{P}^{-1}(V) \in J_{z_0}(D)$ one has the inequality

$$\int u_0 \,\mathrm{d}\mu \leqslant \int M \,\mathrm{d}\mu + C_0, \quad where \ C_0 = C_1 - M(z_0) + u_0(z_0). \tag{2.13}$$

Proof of Lemma 1. Under the condition $z_0 \in \text{dom } M$, the function M can be represented by the difference $M = u_+ - u_-$ of functions $u_{\pm} \in \text{sbh}_*(D)$ with respective Riesz measures $\nu_M^{\pm} \in \text{Meas}^+(D)$ such that $u_{\pm}(z_0) \neq -\infty$. The extended Poisson–Jensen formula in Proposition 2 applies to each of the functions u_{\pm} and hence to the function M. Thus, for the Jensen measure $\mu \stackrel{(2.10)}{:=} \mathscr{P}^{-1}(V)$ we obtain

$$\int_{D} u_0 \,\mathrm{d}\mu \stackrel{(2.11)}{=} \int_{D \setminus \{z_0\}} V \,\mathrm{d}\nu + u_0(z_0) \stackrel{(2.12)}{\leqslant} \int_{D \setminus \{z_0\}} V \,\mathrm{d}\nu_M + C_1 + u_0(z_0)$$
$$\stackrel{(2.11)}{=} \int M \,\mathrm{d}\mu - M(z_0) + C_1 + u_0(z_0),$$

which proves the desired inequality (2.13).

Let us return directly to the proof of Theorem 3. For a domain D with nonpolar boundary $\partial D \subset \mathbb{C}_{\infty}$, there always exists a Green function $g_D(\cdot, z_0)$ with a pole at z_0 . Throughout the subsequent proof, for brevity we write

$$g := g_D(\cdot, z_0)$$
 is the Green function for D with a pole at $z_0 \in D_0$.

Here only the following properties (see [3, 4.4] and [12, 3.7, 5.7]) of the function g are important.

g1. The normalization condition $\lim_{z_0 \neq z \to z_0} \frac{g(z)}{l_{z_0}(z)} \stackrel{(2.8l)}{=} 1$ at the point z_0 , which is stronger than (2.8o).

g2. $g \in har^+(D \setminus \{z_0\})$: the harmonicity and positivity in $D \setminus \{z_0\}$.

In particular, it follows from the maximin principle owing to inclusion $z_0 \in D_0 \Subset D$ that

$$0 < \text{const}_{z_0, D_0, D} := B_0 := \sup_{z \in \partial D_0} g(z) < +\infty.$$
(2.14)

Let $V \in PJ_{z_0}(D)$ be an arbitrary Jensen potential. Then, in view of properties g1–g2,

$$\limsup_{D\ni z\to z_0} \frac{(V-g)(z)}{l_{z_0}(z)} \stackrel{\text{gl}}{\leqslant} 0, \qquad V-g \stackrel{\text{g2}}{\in} \operatorname{sbh}_*(D\setminus\{z_0\}).$$

It follows that the point z_0 is a removable singularity of the function $V - g \in \mathrm{sbh}_*(D \setminus \{z_0\})$, and since

$$\limsup_{D \ni z' \to z} (V - g)(z') \leqslant \limsup_{D \ni z' \to z} V(z') = 0, \qquad z \in \partial D,$$

it follows by the maximum principle that the inequality $V - g \leq 0$ is satisfied on D for the function $V - g \in \mathrm{sbh}_*(D)$; i.e.

$$V \leqslant g \quad \text{on } D, \qquad V \stackrel{(2.14)}{\leqslant} B_0 \quad \text{on } \partial D_0.$$
 (2.15)

Consequently, inequality (2.4) holds for the function

$$v := \frac{b}{B_0} V \in \operatorname{sbh}_{00}^+ (D \setminus D_0; \leqslant b)$$

considered in the open neighborhood $D \setminus D_0$. Multiplying both sides by B_0/b , we obtain

$$\int_{D\setminus D_0} V \,\mathrm{d}\nu \leqslant \int_{D\setminus D_0} V \,\mathrm{d}\nu_M + \frac{B_0}{b} C, \qquad V \in PJ_{z_0}(D).$$

This inequality can be rewritten as

$$\int_{D\setminus\{z_0\}} V \,\mathrm{d}\nu \leqslant \int_{D\setminus\{z_0\}} V \,\mathrm{d}\nu_M + \frac{B_0}{b} C + \int_{D_0\setminus\{z_0\}} V \,\mathrm{d}\nu + \int_{D_0\setminus\{z_0\}} V \,\mathrm{d}\nu_M^- \\
\overset{(2.15)}{\leqslant} \int_{D\setminus\{z_0\}} V \,\mathrm{d}\nu_M + \left(\frac{B_0}{b} C + \int_{D_0\setminus\{z_0\}} (g \,\mathrm{d}\nu + g \,\mathrm{d}\nu_M^-)\right), \quad V \in PJ_{z_0}(D). \quad (2.16)$$

Here the last integral is finite in view of (2.5) and the fact that $z_0 \in D_0 \cap \operatorname{dom} M$ and also does not depend on $V \in PJ_{z_0}(D)$. Thus, inequality (2.12) holds with a constant C_1 equal to the value of the "big" bracket on the right-hand side in formula (2.16) for any potential $V \in PJ_{z_0}(D)$. Then, by Lemma 1, (2.13) holds for any Jensen measure $\mu \in J_{z_0}(D)$. Therefore, for any potential $V \in PJ_{z_0}(D)$, condition (2.6) of Theorem A is satisfied and there exists a function $w \in \mathrm{sbh}_*(D)$ for which inequality (2.7) holds. Further, the inequality $\nu + \nu_w \ge \nu$ on D obviously holds with the Riesz measure ν_w of the function w. Therefore, the function $u^\circ := u_0 + w$ with the Riesz measure $\nu_{u^{\circ}} = \nu + \nu_{w}$ is the function needed in (2.2), so far for the function M° , which is different from M in the disk $D(z_0, 2r_0)$. Consider $M \leq M^\circ$. For a *continuous* function r, the functions M^{*r} and $(M^\circ)^{*r}$ are continuous in D as well, since both lie in the class $L^1_{loc}(D)$. At the same time, the subharmonic function $u^{\circ} \neq -\infty$ is bounded above in $D(z_0, 3r_0) \in D$. Therefore, there exists a sufficiently large constant $C_2 \ge 0$ such that $u_0 := u^\circ - C_2 \leqslant (M^\circ)^{*r}$ on D with Riesz measure $\nu_{u_0} = \nu_{u^\circ} \ge \nu$. Under the conditions on the function r, there exists a subdomain $D_2 \subseteq D$ that includes $D(z_0, r_0)$ and for which, by the construction of the function M° and the definition of averaging on $D \setminus D_2$, one has $(M^{\circ})^{*r} = M^{*r}$ and hence the inequality $u_0 \leq M^{*r}$ on $D \setminus D_2$. Since the function M^{*r} is continuous on D and u_0 is bounded above on D_1 , it follows that there exists a sufficiently large number $C_3 \ge 0$ such that $u := u_0 - C_3 \leqslant M^{*r}$ on D with Riesz measure $\nu_u = \nu_{u_0} \ge \nu$, which gives (2.2).

If the function $M \in \delta$ -sbh_{*}(D) is continuous, then it is necessarily locally bounded below, which allows avoiding the intermediate use of the function M° in the proof. In addition, the continuous function M is locally uniformly continuous, which allows choosing a continuous function r satisfying condition (1.13) for which $M^{*r} \leq M + 1$ on D. This permits one to replace the right-hand side M^{*r} in (2.2) with M.

Now assume that condition (2.1) of Theorem 3 is satisfied. From this condition, we derive condition (2.4), under which all the conclusions of Theorem 3 have already been proved.

Let $v \in \mathrm{sbh}_{00}^+(D \setminus D_0; \leq b)$ be an arbitrary compactly supported test function, where the subdomain $D_0 \subseteq \mathrm{int} S$ is chosen as in (2.3). Since the function v is compactly supported, it follows that there exists a subdomain $D_v \subseteq D$ such that $D_0 \subseteq D_v$ and the function v is subharmonic on $D \setminus D_0$ and identically zero on $D \setminus D_v$. In this case, we set

$$\varepsilon_0 := \frac{1}{2} \min\{\operatorname{dist}(D_v, \partial D), \operatorname{dist}(D_0, D \setminus S)\} > 0.$$
(2.17)

Consider an infinitely differentiable function $a: RR^+ \to \mathbb{R}^+$

with support supp
$$a \in (0,1)$$
 and normalization $2\pi \int_0^{+\infty} a(x)x \, dx = 1,$ (2.18)

and also the measures $\alpha_{\varepsilon} \in \text{Meas}^+(\mathbb{C})$ determined by the densities

$$d\alpha_{\varepsilon}(z) \stackrel{(2.18)}{:=} \frac{1}{\varepsilon^2} a\left(\frac{|z|}{\varepsilon}\right) d\lambda(z), \qquad 0 < \varepsilon < \varepsilon_0, \ z \in \mathbb{C}.$$
(2.19)

It is well known ([3, 2.7], [12, 3.4.1]) that, for a decreasing sequence of numbers $0 < \varepsilon_n \xrightarrow[n \to \infty]{n \to \infty} 0$, (2.17)

 $\varepsilon_n \leq \varepsilon_0$, the sequence of subharmonic infinitely differentiable convolution functions $v_n := v * \alpha_{\varepsilon_n}$ decreases in $n \in \mathbb{N}$ and is pointwise convergent to the function v on $D \setminus S$. In particular, according to (2.17), $v \leq v_n$ on $D \setminus S$ and $v_n \leq b$ on $D \setminus S$ as the averages over the measures (2.19), which are probability measures in view of (2.18). By construction, all the functions v_n belong to $\mathrm{sbh}_{00}^+(D \setminus S; \leq b) \cap C^{\infty}(D \setminus S)$. By condition (2.1), there exists a number C such that

$$\int_{D\setminus S} v_n \,\mathrm{d}\nu \leqslant \int_{D\setminus S} v_n \,\mathrm{d}\nu_M + C$$

for all functions v_n constructed above for all $n \in \mathbb{N}$. Hence, by the Hahn–Jordan decomposition for the Riesz charge $\nu_M = \nu_M^+ - \nu_M^-$, $\nu_M^\pm \in \text{Meas}^+(D)$, we have

$$\int_{D\setminus S} v_n \,\mathrm{d}(\nu + \nu_M^-) \leqslant \int_{D\setminus S} v_n \,\mathrm{d}\nu_M^+ + C', \qquad n \in \mathbb{N},$$

which, since $v \leq v_n$ on $D \setminus S$, gives

$$\int_{D\setminus S} v \,\mathrm{d}\nu \leqslant \int_{D\setminus S} v_n \,\mathrm{d}\nu_M^+ - \int_{D\setminus S} v \,\mathrm{d}\nu_M^- + C, \qquad n \in \mathbb{N}.$$

By letting $n \to +\infty$ in the first integral on the right-hand side, since the sequence of compactly supported infinitely differentiable test functions v_n decreases to $v \in \mathrm{sbh}^+_{00}(D \setminus D_0; \leq b)$, we obtain

$$\int_{D\setminus S} v \,\mathrm{d}\nu \leqslant \int_{D\setminus S} v \,\mathrm{d}\nu_M^+ - \int_{D\setminus S} v \,\mathrm{d}\nu_M^- + C = \int_{D\setminus S} v \,\mathrm{d}\nu_M + C. \tag{2.20}$$

Let us define constants $C_4, C_5 \in \mathbb{R}^+$ independent of v by the formulas

$$0 \leqslant \int_{D_0 \setminus S} v \, \mathrm{d}\nu \leqslant b\nu(D_0 \setminus S) =: C_4 < +\infty,$$

$$0 \leqslant \int_{D_0 \setminus S} v \, \mathrm{d}\nu_M^- \leqslant b\nu_M^-(D_0 \setminus S) =: C_5 < +\infty.$$

Then inequality (2.20) without the intermediate difference of integrals remains valid if the integration over $D \setminus S$ is replaced with the integration over $D \setminus D_0$ and the constant C is replaced with the constant $C + C_4 + C_5$. By virtue of the arbitrariness in the choice of the compactly supported test function $v \in \text{sbh}_{00}^+(D \setminus D_0; \leq b)$, inequality (2.4) with the new constant $C + C_4 + C_5$ instead of C is satisfied for all such v. This completes the proof of Theorem 3.

Remark 3. In the case of a function $M \in sbh_*(D)$, it suffices to require in Theorem 3 that the function r with property (1.13) be only locally separated from zero below in the sense that for each $z \in D$ there exists a number $t_z > 0$ such that

$$D(z,t_z) \subseteq D,$$
 $\sup_{z' \in D(z,t_z)} r(z') > 0.$

Indeed, elementary geometric considerations using compactness (for example, exhaustion of the domain D by a sequence of relatively compact subdomains) permit one to prove the following assertion.

Lemma 2. For the function r separated below from zero on D and satisfying condition (1.13), there exists a continuous and even infinitely differentiable function $\hat{r} \leq r$ that still satisfies condition (1.13).

By applying Theorem 3 with $\hat{r} \in C(D)$ instead of r, we construct the desired function $u \leq M^{*\hat{r}} \leq M^{*r}$, where (2.2) and the fact that the means (1.14) increase with respect to r for $M \in sbh_*(D)$ has been used.

2.3. Proof of the implication $h3 \Rightarrow h1$ with the lift $M^{\uparrow r}$. Under the assumptions of the "Conversely,..." part of Theorem 2, claim h3 and the implication $s3 \Rightarrow s1$ in Theorem 1 imply the existence of a subharmonic function $u \in sbh_*(D)$ with Riesz measure $\nu_u \ge n_Z$ satisfying the inequality $u \le M$ on D. Since there always exists a holomorphic function $f_Z \in Hol_*(D)$ with the sequence of zeros $Zero_{f_Z} = Z$ by the Weierstrass theorem, we see that the latter means that there exists a function $s \in sbh_*(D)$ with Riesz measure $\nu_s := \nu_u - n_Z \in Meas^+(D)$ such that

$$u = \ln |f_{\mathsf{Z}}| + s \leqslant M \quad \text{on } D. \tag{2.21}$$

The following Lemma 3 does not assume that the boundary ∂D is a nonpolar set.

Lemma 3. Assume that $D \subset \mathbb{C}_{\infty}$ is an arbitrary proper subdomain, $u_0, s, M \in \mathrm{sbh}_*(D)$, and

$$u_0 + s \leqslant M \quad on \ D. \tag{2.22}$$

Then there exists a function $g \in \operatorname{Hol}_*(D)$ such that

$$u_0 + \ln|g| \leqslant M^{\uparrow r} \quad on \ D, \tag{2.23}$$

where the lift $M^{\uparrow r}$ is defined in Sec. 1.2.1 depending on the type of domain D in (i)-(iii) based on the arbitrary choice of a continuous function $r: D \to \mathbb{R}^+$ satisfying condition (1.13) in (1.15) and (1.16), the number $\varepsilon > 0$ in (1.15), and the number P > 0 in (1.17).

Proof. Case (i): Eq. (1.15). Since the function u_0 is subharmonic, we obtain, by averaging both sides of inequality (2.22) over the circles D(z, r) with the Lebesgue measure λ ,

$$u_0 + s^{*r} \leq u_0^{*r} + s^{*r} \leq M^{*r}$$
 on D . (2.24)

By [16, Theorem 3], there exists a function $g \in \operatorname{Hol}_*(D)$ such that

$$\ln|g(z)| \leq s^{*r}(z) + \ln\frac{1}{r(z)} + (1+\varepsilon)\ln(1+|z|), \qquad z \in D,$$
(2.25)

whence, according to (2.24) and definition (1.15), we obtain (2.23).

Case (ii): Eq. (1.16). The case of $\mathbb{C}_{\infty} \setminus \operatorname{clos} D \neq \emptyset$ is covered by [14, Theorem 1] and partly by [13, Theorem 1]. For a domain $D \subset \mathbb{C}$ that is simply connected in \mathbb{C}_{∞} , the proof follows the same scheme as in the previous case but with the use of the inequality

$$\ln|g(z)| \leqslant s^{*r}(z) + \ln\frac{1}{r(z)}, \qquad z \in D,$$

based on [16, Corollary 3(iii)], instead of (2.25).

Case (iii): Eq. (1.17). The case of $D = \mathbb{C}$ was analyzed in [14, Theorem 1] and partly in [13, Theorem 1].

By Lemma 3, inequality (2.21) written in the form (2.22) with $u_0 := \ln |f|$ implies the conclusion (2.23), which means that $\ln |f_{\mathsf{Z}}g| = \ln |f_{\mathsf{Z}}| + \ln |g| \leq M^{\uparrow r}$. Thus, the function $f := f_{\mathsf{Z}}g \in \operatorname{Hol}_*(D)$, which vanishes on Z , is the desired one.

3. Converse Theorem with Green Functions

The converse theorem in this section only uses the Green function [12], extended by zero, of a special system of relatively compact subdomains regular for the Dirichlet problem in D and containing a given subdomain $D_0 \Subset D$ with a fixed pole $z_0 \in D_0$. Note that each such Green function is a subharmonic compactly supported test function for the region D outside the subdomain D_0 . Here, unlike Theorems 1–3, the proper subdomain $D \subset \mathbb{C}_{\infty}$ is arbitrary. Throughout Sec. 3, in addition to (1.2), we assume that $z_0 \in D_0 \Subset D \subset \mathbb{C}_{\infty} \neq D$, where D_0 is a domain.

Definition 2 (see [5, Definition 1], [17, Definition 11]). A system of domains $\mathscr{U}_{D_0}(D) \subset \{D' \in D: D_0 \subset D'\}$ regular for the Dirichlet problem is called a regular optimally exhausting system of domains in D with center D_0 if $\bigcup \{D': D' \in \mathscr{U}_{D_0}(D)\} = D$ and the following two conditions hold for any domains D_1 and D_2 satisfying the inclusions $D_0 \subset D_1 \Subset D_2 \subset D$:

(1) There exists a domain $D' \in \mathscr{U}_{D'}(D)$ such that $D_1 \subseteq D' \subseteq D_2$ and each nonempty bounded connected component of the set $\mathbb{C}_{\infty} \setminus D'$ has a nonempty intersection with $\mathbb{C}_{\infty} \setminus D_2$.

(2) For any domain $D \in \mathscr{U}_{D_0}(D)$, there exists a domain $D'' \in \mathscr{U}_{D_0}(D)$ such that $D_1 \subseteq D'' \subseteq D_2$ and the union $D'' \cup D'$ lies in $\mathscr{U}_{D_0}(D)$ as well.

Finally, the system $\mathscr{U}_{D_0}(D)$ is assumed to be *conditionally invariant with respect to the shift in D*; i.e., the conditions $D' \in \mathscr{U}_{D_0}(D), z \in \mathbb{C}$, and $D_0 \subset D' + z \in D$ imply that $D' + z \in \mathscr{U}_{D_0}(D)$.

Example 1. A simple example of a regular optimally exhausting system of domains is given by the special system of all possible connected unions $D' \supset D_0$ of finitely many disks $D(z,t) \Subset$ D excluding those domains D' whose complements $\mathbb{C}_{\infty} \setminus D$ have isolated points. With the same exceptions, the disks in this example can be replaced with all possible *n*-gons relatively compact in D or, more generally, with simply connected subdomains ([3, Theorems 4.2.1 and 4.2.2], [12, 2.6.3]) of some special kind.

Theorem 4. Let $M = M_+ - M_- \stackrel{(1.3)}{\in} \delta \operatorname{-sbh}_*(D)$ with Riesz charge $\nu_M \in \operatorname{Meas}(D)$, where $M_+ \in \operatorname{sbh}_*(D) \cap C(D)$ and $M_- \in \operatorname{sbh}_*(D)$, and let $z_0 \in D_0 \cap \operatorname{dom} M \subseteq D$. Suppose that (2.5) holds for the measure $\nu \in \operatorname{Meas}^+(D)$ for some $r_0 \in \mathbb{R}^+_*$. Let $\mathscr{U}_{D_0}(D)$ be a regular optimally exhausting system of domains in D with center D_0 for which the inequalities

$$\int_{D\setminus\{z_0\}} g_{D'}(\cdot, z_0) \,\mathrm{d}\nu \leqslant \int_{D\setminus\{z_0\}} g_{D'}(\cdot, z_0) \,\mathrm{d}\nu_M + C, \qquad D' \in \mathscr{U}_{D_0}(D), \tag{3.1}$$

hold with some constant $C \in \mathbb{R}$; i.e., the charge ν_M is an affine balayage of the measure ν for D outside z_0 with respect to the class of Green functions $g_{D'}(\cdot, z_0)$ with $D' \in \mathscr{U}_{D_0}(D)$. Then there exists a function $u \in \mathrm{sbh}_*(D)$ with Riesz measure $\nu_u \geq \nu$ satisfying the inequality $u \leq M$ on D.

Proof. Let ν_{M_+} and ν_{M_-} be the Riesz measures of the functions M_+ and M_- , respectively. Then a series of inequalities (3.1) uniform in the constant C can be written, setting $\nu_1 := \nu + \nu_{M_-}$, in the form

$$\int_{D\setminus\{z_0\}} g_{D'}(\cdot, z_0) \,\mathrm{d}\nu_1 \leqslant \int_{D\setminus\{z_0\}} g_{D'}(\cdot, z_0) \,\mathrm{d}\nu_{M_+} + C, \qquad D' \in \mathscr{U}_{D_0}(D), \tag{3.2}$$

where $\nu_1, \nu_{M_+} \in \text{Meas}^+(D)$ are already *positive measures*. Take some subharmonic function $u_1 \in \text{sbh}_*(D)$ in D with Riesz measure ν_1 . In view of the condition $z_0 \in \text{dom } M$ and also the equivalent conditions (2.5) on z_0 , the Riesz measure ν_1 satisfies conditions (2.5) with ν replaced with ν_1 . Therefore, $M_-(z_0) \neq -\infty$ and necessarily $u_1(z_0) \neq -\infty$. Further, we need the following variations of the assertions in [5, Main Theorem, Theorem 6]:

Theorem B (a special case of [17, Theorem (main)]). Let a function $M \in sbh_*(D)$ with Riesz measure ν_M be bounded below in some open neighborhood of the closure $clos D_0$, let $u \in sbh_*(D)$ be a function with Riesz measure ν on D, let $u(z_0) \neq -\infty$, and let $\mathscr{U}_{D_0}(D)$ be a regular optimally exhausting system of domains for D with center $D_0 \ni z_0$. If*

$$-\infty < \inf_{D' \in \mathscr{U}_{D_0}(D)} \left(-\int_{D \setminus \{z_0\}} g_{D'}(\cdot, z_0) \,\mathrm{d}\nu_u + \int_{D \setminus \{z_0\}} g_{D'}(\cdot, z_0) \,\mathrm{d}\nu_M \right), \tag{3.3}$$

then for any continuous function $r: D \to \mathbb{R}^+$ satisfying condition (1.13) there exists a function $v \in \mathrm{sbh}_*(D)$ harmonic in an open neighborhood of the point z_0 such that $u + v \leq M^{*r}$ on D with the averaging in (1.14). Moreover, if, in addition, $M \in C(D)$, then the variable averaging M^{*r} on the right-hand side in the last inequality can be replaced with M.

By Theorem B applied to the function u_1 and the *continuous* function M_+ instead of u and M, respectively, owing to inequality (3.2) corresponding to condition (3.3), there exists a function $v \in \mathrm{sbh}_*(D)$ harmonic in a neighborhood of z_0 such that $u_1 + v \leq M_+$ on D. By construction, $u_1 \in \mathrm{sbh}_*(D)$ with Riesz measure $\nu_1 := \nu + \nu_{M_-}$. Consequently, the Riesz measure of the function $u_0 := u_1 - M_-$ is the measure ν ; i.e., there exists a function $u := u_0 + v \in \mathrm{sbh}_*(D)$ with Riesz measure $\nu_u \geq \nu$ such that $u \leq M_+ - M_- = M$ on D, which completes the proof of Theorem 4. \Box

Corollary 1. Suppose that, under the assumptions of Theorem $4D \subset \mathbb{C}$, $M \in \mathrm{sbh}_*(D) \cap C(D)$ and the measure ν_M is the affine balayage of the sequence $\mathsf{Z} = \{\mathsf{z}_k\}_{k=1,2,\ldots} \subset D, z_0 \notin \mathsf{Z}$, for D outside the singleton $S := \{z_0\}$ with respect to the class of Green functions $g_{D'}(\cdot, z_0)$ with $D' \in \mathscr{U}_{D_0}(D)$; i.e., for some number $C \in \mathbb{R}$, according to (1.6)–(1.8), condition (3.1) is satisfied

^{*}Unfortunately, in the statement of the main theorem from our work [5], on the intermediate stage of whose proof [17, Theorem (Main)] is based, an annoying typo in the \pm signs crept in. Thus, the ratio used in its statement [5, item (h1), (2.11)] must look exactly like (3.3). Further comment can be found in the footnote to [17, Main Theorem].

in the following form:

$$\sum_{\mathsf{z}_k \in D'} g_{D'}(\mathsf{z}_k, z_0) \leqslant \int_{D \setminus \{z_0\}} g_{D'}(\cdot, z_0) \,\mathrm{d}\nu_M + C, \qquad D' \in \mathscr{U}_{D_0}(D).$$

Then there exists a function $f \in \operatorname{Hol}_*(D)$ such that $f(\mathsf{Z}) = 0$ and the inequality $|f| \leq \exp M^{\uparrow r}$ holds on D, where the lift $M^{\uparrow r}$ is defined in Sec. 1.2.1 depending on the type of domain D in (i)-(iii), based on an arbitrary choice of the continuous function $r: D \to \mathbb{R}^+$ satisfying condition (1.13) in (1.15), (1.16), the number $\varepsilon > 0$ in (1.15) and the numbers P > 0 in (1.17).

This corollary can be derived from Theorem 4 in the same way as the proof of the implication $h3 \Rightarrow h1$ with lift $M^{\uparrow r}$ can be derived from Theorem 3 in section 2.3.

Remark 4. Based on the analysis of the subtle results of Hansen and Netuka [18] about the approximation of Jensen measures by harmonic measures, the regular optimally exhausting system of domains $\mathscr{U}_{D_0}(D)$ with center $D_0 \subset D$ in Theorem 4 and Corollary 1 can be replaced by a system of domains $D' \subseteq D$ that include the domain $D_0 \subseteq D$ and are obtained from a sequence, exhausting D, of domains $D_n \subseteq D$, $n \in \mathbb{N}$, regular for the Dirichlet problem and having analytic, or piecewise linear, or another "good" boundary by removing various finite sets of pairwise disjoint closed disks from the domains D_n . In addition, for the resulting system of domains it is nevertheless necessary to require conditional invariance with respect to the shift in D in Definition 2.

4. Converse Theorem with Analytic and Polynomial Disks

An important subclass of Jensen measures in the class $J_{z_0}(D)$ is generated by analytic disks in D with center z_0 . An analytic closed disk in the domain D with center $z_0 \in D$ is a function $g: \operatorname{clos} \mathbb{D} \to D$ continuous on $\operatorname{clos} \mathbb{D}$ whose restriction to \mathbb{D} is holomorphic and for which $g(0) = z_0$ ([19, Ch. 3], [20]–[23]). In particular, $g(\operatorname{clos} \mathbb{D}) \Subset D$. For any such analytic closed disk g, one can readily show that the function $w \in \mathbb{C}_{\infty} \setminus \{z_0\}$ given by

$$\frac{1}{2\pi} \int_0^{2\pi} \ln \left| \frac{w - g(e^{i\theta})}{w - z_0} \right| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \ln \left| 1 - \frac{g(e^{i\theta}) - z_0}{w - z_0} \right| d\theta \quad \text{for } z_0 \neq \infty, \tag{4.10}$$

where, by analogy with (2.90), the integrands are defined to be 0 at $w = \infty$, and

$$\frac{1}{2\pi} \int_0^{2\pi} \ln \left| \frac{w - g(e^{i\theta})}{g(e^{i\theta})} \right| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \ln \left| 1 - \frac{w}{g(e^{i\theta})} \right| d\theta \quad \text{for } z_0 = \infty,$$
(4.1\infty)

where, by analogy with (2.9∞) , the integrands are defined to be 0 for $g(e^{i\theta}) = \infty$, is a Jensen potential inside D with a pole at z_0 . In particular, (4.1) defines a subharmonic positive compactly supported test function for D outside $\{z_0\}$. In Remark 2, we dubbed the functions (4.1) the logarithmic potentials of analytic disks. If an analytic closed disk g in a domain D with center $z_0 \in D$ is a polynomial in the complex variable, then it is natural to call it a polynomial disk in Dcentered at $z_0 \in D$.

Theorem 5. Let the function $M \stackrel{(1.3)}{\in} \delta$ -sbh_{*}(D) with a Riesz charge ν_M , $z_0 \neq \infty$ and the measure $\nu \in \text{Meas}^+(D)$ be the same as in Theorem 4. If the charge ν_M is an affine balayage of the measure ν for D outside $S := \{z_0\}$ with respect to the function class (4.10), i.e., if there exists a constant $C \in \mathbb{R}$ such that

$$\int_{D} \frac{1}{2\pi} \int_{0}^{2\pi} \ln \left| 1 - \frac{g(e^{i\theta}) - z_{0}}{z - z_{0}} \right| d\theta d\nu(z)$$

$$\leq \int_{D} \frac{1}{2\pi} \int_{0}^{2\pi} \ln \left| 1 - \frac{g(e^{i\theta}) - z_{0}}{z - z_{0}} \right| d\theta d\nu_{M}(z) + C$$

for all analytic closed or only polynomial disks g in D with center z_0 , then there exists a function $u \in sbh_*(D)$ with Riesz measure $\nu_u \ge \nu$ such that $u \le M$ on D.

In the case of a subharmonic function M, a discussion of the scheme of proof of Theorem 5 is contained in [6, 1.2.1–2, Suppl. 1.2.3, 1.2.4]. This is one of the reasons why we omit the proof of Theorem 5 here. Another reason is that the multidimensional version of Theorem 5 in \mathbb{C}^n is more natural and will be considered together with applications elsewhere.

Arguing in almost the same way as in the proof of the implication $h3 \Rightarrow h1$ with the lift $M^{\uparrow r}$ in Sec. 2.3, by analogy with Corollary 1 of Theorem 5, one can derive the following assertion.

Corollary 2. Under the conditions of Theorem 5, consider a sequence of points $Z = \{z_k\}_{k=1,2,...}$ $\subset D \subset \mathbb{C}, z_0 \in D \setminus Z$, instead of the measure ν and assume that $M \in \mathrm{sbh}_*(D) \cap C(D)$. If the measure ν_M is an affine balayage of the sequence Z for D outside $S := \{z_0\}$ with respect to the function class (4.10), i.e., there exists a constant $C \in \mathbb{R}$ such that the inequality

$$\sum_{\mathbf{z}_k \in D} \int_0^{2\pi} \log \left| 1 - \frac{g(e^{i\theta}) - z_0}{\mathbf{z}_k - z_0} \right| \mathrm{d}\theta \leqslant \int_D \int_0^{2\pi} \log \left| 1 - \frac{g(e^{i\theta}) - z_0}{z - z_0} \right| \mathrm{d}\theta \,\mathrm{d}\nu_M(z) + C$$

holds for all analytic closed or only polynomial disks g in D with center z_0 , then there exists a function $f \in \operatorname{Hol}_*(D)$ for which $f(\mathsf{Z}) = 0$ and $|f| \leq \exp M^{\uparrow r}$ on D, where the lift $M^{\uparrow r}$ is defined in Sec. 1.2.1 with the same refinements as in the conclusion of Corollary 1.

Funding

The first author's studies (Secs. 1, 3, and 4) were supported by the Russian Science Foundation (project no. 18-11-00002). The second author's studies (Sec. 2) were supported by the Russian Foundation for Basic Research (project no. 18-51-06002).

References

- B. N. Khabibullin and A. P. Rozit, "On the distribution of zero sets of holomorphic functions," Funkts. Anal. Prilozhen., 52:1 (2018), 26–42; English transl.: Funct. Anal. Appl., 52:1 (2018), 21–34.
- [2] E. B. Menshikova and B. N. Khabibullin, "On the distribution of zero sets of holomorphic functions. II," Funkts. Anal. Prilozhen., 53:1 (2019), 84–87; English transl.: Functional Anal. Appl., 53:1 (2019), 65–68.
- [3] Th. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
- [4] N. S. Landkof, Fundamentals of Modern Potential Theory, Springer-Verlag, Berlin-Heidelberg, 1972.
- [5] B. N. Khabibullin, "Zero sequences of holomorphic functions, representation of meromorphic functions, and harmonic minorants," Mat. Sb., 198:2 (2007), 121–160; English transl.: Russian Acad. Sci. Sb. Math., 198:2 (2007), 261–298.
- [6] B. N. Khabibullin, Completeness of Systems of Exponentials and Uniqueness Sets [in Russian], 4th ed., extended, RITs BashGU, Ufa, 2012.
- [7] J. Bliedtner and W. Hansen, Potential Theory. An Analytic and Probabilistic Approach to Balayage, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
- [8] N. Bourbaki, Integration. I. Chap. 1–6, Springer-Verlag, Berlin, 2004.
- [9] B. N. Khabibullin and N. R. Tamindarova, "Uniqueness theorems for subharmonic and holomorphic functions of several variables on a domain," Azerb. J. Math., 7:1 (2017), 70–79.
- [10] B. N. Khabibullin and N. R. Tamindarova, "Subharmonic test functions and the distribution of zero sets of holomorphic functions," Lobachevskii J. Math., 38:1 (2017), 38–43.
- [11] B. N. Khabibullin, Z. F. Abdullina, and A. P. Rozit, "A uniqueness theorem and subharmonic test functions," Algebra i Analiz, 30:2 (2018), 318–334.
- [12] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, London, 1976.
- [13] B. N. Khabibullin, "Sequences of non-uniqueness for weight spaces of holomorphic functions," Izv. Vyssh. Uchebn. Zaved. Mat., 2015, No. 4, 75–84; English transl.: Russian Math. (Iz. VUZ), 59:4 (2015), 63–70.

- [14] B. N. Khabibullin and F. B. Khabibullin, "On non-uniqueness sets for spaces of holomorphic functions," Vestnik Volgogradsk. Gos. Univ. Ser. 1. Math., Phys., 2016, No. 4(35), 108–115.
- [15] B. N. Khabibullin, "Criteria for (sub-)harmonicity and continuation of (sub-)harmonic functions," Sibirsk. Mat. Zh., 44:4 (2003), 905–925; English transl.: Siberian Math. J., 44:4 (2003), 713–728.
- [16] B. N. Khabibullin and T. Yu. Baiguskarov, "The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function," Mat. Zametki, 99:4 (2016), 588–602; English transl.: Math. Notes, 99:4 (2016), 576–589.
- [17] B. N. Khabibullin, "Zeros of holomorphic functions with restrictions on growth in the domain [in Russian]," in: Research on Math. Analysis, Mat. Forum. The Results of Science, vol. 3, VSC RAS & RNO-A, Vladikavkaz, 2009, 282–291.
- [18] W. Hansen and I. Netuka, "Convexity properties of harmonic measures," Adv. Math., 218:4 (2008), 1181–1223.
- [19] S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., Amer. Math. Soc, Providence, RI, 2001.
- [20] S. Bu and W. Schachermayer W., "Approximation of Jensen measures by image measures under holomorphic functions and applications," Trans. Amer. Math. Soc., 331:2 (1992), 585–608.
- [21] E. A. Poletsky, "Holomorphic currents," Indiana Univ. Math. J., 42:1 (1993), 85–144.
- [22] E. A. Poletsky, "Disk envelopes of functions II," J. Funct. Anal., 163:1 (1999), 111–132.
- [23] B. J. Cole and T. J. Ransford, "Jensen measures and harmonic measures," J. Reine Angew. Math., 541 (2001), 29–53.

BASHKIR STATE UNIVERSITY, UFA, RUSSIA e-mail: khabib-bulat@mail.ru BASHKIR STATE UNIVERSITY, UFA, RUSSIA e-mail: khabibullinfb@mail.ru

Translated by V. E. Nazaikinskii