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Abstract. Let M be a subharmonic function in a domain D ⊂ Cn with Riesz measure νM ,
and let Z ⊂ D. As was shown in the first of the preceding papers, if there exists a holomorphic
function f �= 0 in D such that f(Z) = 0 and |f | � expM on D, then one has a scale of integral
uniform upper bounds for the distribution of the set Z via νM . The present paper shows that for
n = 1 this result “almost has a converse.” Namely, it follows from such a scale of estimates for
the distribution of points of the sequence Z := {zk}k=1,2,... ⊂ D ⊂ C via νM that there exists a
nonzero holomorphic function f in D such that f(Z) = 0 and |f | � expM↑r on D, where the
function M↑r � M on D is constructed from the averages of M over circles rapidly narrowing
when approaching the boundary of D with a possible additive logarithmic term associated with
the rate of narrowing of these circles.
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1. Introduction

The present paper uses the notation, definitions and conventions in [1] and [2] with their natural
adaptations for the complex plane C and its Aleksandrov one-point compactification C∞ := C∪{∞}.
The main goal is to give the converse of the results in the original paper [1] for domains D ⊂ C∞
in the form of a criterion in the subharmonic version and also in a form close to a criterion when
holomorphic functions in D are considered.

1.1. Notation, definitions, conventions. Throughout the paper, N := {1, 2, . . . } stands for
positive integers, R ⊂ C is the real line, R+ := {x ∈ R : x � 0} is the positive semiaxis, and

R
+
∗ := R

+ \ {0}, R±∞ := {−∞} ∪ R ∪ {+∞}, R
+
+∞ := R

+ ∪ {+∞}, (1.1)

where the order on R is supplemented with the natural inequalities −∞ � x � +∞ for any
x ∈ R±∞ . For r ∈ R

+∗ and z ∈ C, let D(z, r) := {z′ ∈ C : |z′ − z| < r} be the open disk with
center z and radius r, let D(r) := D(0, r), let D := D(1), and let D(z,+∞) := C. For z = ∞, it is
convenient for us to set D(∞, r) := {z ∈ C∞ : |z| > 1/r}, |∞| := +∞, and D(∞,+∞) := C∞\{0}.
The open disks D(z, r), r ∈ R

+∗ , form a base of open neighborhoods of a point z ∈ C∞. For
S ⊂ C∞ , by intS , closS , and ∂S we denote the interior, closure, and boundary of S in C∞. For
S ⊂ S′ ⊂ C∞ , we write S � S′ if S is a relatively compact subset of S′ . A (sub)domain in C∞ is
an open connected subset of C∞ . Throughout the following,

D �= ∅ is a proper subdomain of C∞ �= D . (1.2)

Just as in [1], by har(S), sbh(S), δ-sbh(S), Hol(S), and Ck(S), k ∈ N∪{∞}, we denote the classes
of harmonic, subharmonic ([3], [4]), δ-subharmonic [1, 3.1], holomorphic, and k times continuously
differentiable functions, respectively, on open subsets of C∞ containing S ⊂ C∞ ; however, C(S)
is the class of continuous functions on S . By −∞ and +∞ we denote the functions identically
equal to −∞ and +∞, respectively. In this notation,

sbh∗(S) := sbh(S) \ {−∞}, δ-sbh∗(S) := δ-sbh(S) \ {±∞},
Hol∗(S) := Hol(S) \ {0}. (1.3)
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The symbol 0 stands for the zero vector or the origin in a vector or an affine space. Positivity in an

ordered vector space X is everywhere understood as � 0; +∞ � 0 in∗
R
+
+∞

(1.1)⊂ R±∞ . For A ⊂ X ,
by A+ we denote the set of positive elements in A. The class of all functions f : X → Y is denoted
by Y X . If F (S) ⊂ R

S±∞ := (R±∞)S is any class of extended real functions, then F+(S) ⊂ (R+
+∞)S

is the subclass of all positive functions in F (S).
Further, Meas(S) is the class∗∗ of real Borel measures, also called charges [4], on Borel subsets of

a set S ⊂ C∞; Measc(S) is the subclass of measures ν ∈ Meas(S) with compact support supp ν � S ;
Meas+(S) is the subset of positive charges, i.e., just measures; λ is the Lebesgue measure in C; and
δz is the Dirac measure at a point z ∈ C∞.

Let f
(1.3)∈ Hol∗(D). We say that a function f vanishes on a sequence Z = {zk}k=1,2,... of points

lying in D (we write Z ⊂ D) if the multiplicity of zero, or root, of f at each point z ∈ D is not less
than the number of occurrences of this point in the sequence Z (we write f(Z) = 0). To a sequence
Z = {zk}k=1,2,... ⊂ D without limit points in D, we assign

[div] The divisor of the sequence Z on D, that is, the function (denoted by the same symbol)
Z : D → N0 := {0}∪N that takes each point z ∈ D to the number of occurrences of z in Z; namely,

Z(z) :=
∑

zk=z

1 =
∑

k

δzk({z}), z ∈ D. (1.4)

[cm] The counting measure

nZ(S) :=
∑

zk∈S
1 =

∑

k

δzk(S), S ⊂ D, (1.5)

i.e., the number of points of Z that lie in S . It is obvious that Z(z)
(1.4)≡ nZ({z}), z ∈ D.

Departing from the traditional interpretation of a sequence as a function of a positive integer
or integer argument, we say that two sequences are equal if their divisors (or, equivalently, their
counting measures) coincide. See [5, 1.1] and [6, 0.1.2] for more detail.

The sequence of zeros, or roots, of a function f ∈ Hol∗(D), renumbered in some way counting
multiplicities, is denoted by Zerof . Here ln |f | ∈ sbh∗(D), and for f �= 0 the relationship between
the Riesz measure νln |f | of the function ln |f | and the counting measure nZerof of the sequence of
zeros of f is given by the formula ([3, Theorem 3.7.8], [1, 1.2.4])

νln |f | =
1

2π
Δ ln |f | (1.5)= nZerof ∈ Meas+(D), where Δ is the Laplace operator. (1.6)

Obviously, f(Z) = 0 if and only if nZ � nZerof for nZ, nZerof ∈ Meas+(D) on D.

1.2. Main Results.

Definition 1 (a version of the notion of balayage ([3], [4], [7])). Let S � D, and let F
(1.1)⊂ R

D\S
±∞

be some class of extended real functions on D\S . A charge μ ∈ Meas(D) is called an affine balayage
of a charge ν ∈ Meas(D) for D outside S � D relative to F (and we write ν �S,F μ) if there exists
a number C ∈ R such that

∫

D\S
v dν �

∫

D\S
v dμ+ C for all v ∈ F , (1.7)

where the integrals in (1.7) are, generally speaking, upper integrals [8]. In particular, for a sequence
Z = {zk}k=1,2,... with counting measure nZ defined in (1.5), a charge μ ∈ Meas(D) is called an

∗A reference over a relation sign ((in)equality, inclusion, etc.) means that this relation is somehow connected
with the object being referenced.

∗∗The notation M (S) was used in [1].
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affine balayage of the sequence Z for D outside S � D with respect to the class F (and we write
Z �S,F μ) if nZ �S,F μ, i.e., if there exists a number C ∈ R such that

∑

zk∈D\S
v(zk)

(1.5)
:=:

∫

D\S
v dnZ

(1.7)

�
∫

D\S
v dμ+C for all v ∈ F . (1.8)

Obviously, the preorder relation �S,F on Meas(D) with F = F+ is weaker than the standard
order relation ν � μ on Meas(D). For a function v : D \ S → R±∞ with S � D, set

lim
∂D

v := lim
D�z′→z

v(z′) ∈ R, z ∈ ∂D, (1.9)

if the limit on the right-hand side exists and if it is the same for any point z ∈ ∂D.
To avoid some purely technical complications associated with the need to apply inversion of the

complex plane and the Kelvin transform of functions [1, 1.2.2], for the time being we only consider
domains D ⊂ C; i.e., ∞ /∈ D.

Theorem 1 (a criterion for subharmonic functions). Let D ⊂ C be a domain with a nonpolar
boundary ∂D ⊂ C∞ , let M be a function in sbh∗(D) ∩ C(D) with Riesz measure μ ∈ Meas+(D),
let ν ∈ Meas+(D), and let b ∈ R

+∗ . Then the following three assertions are equivalent.
s1. There exists a function u ∈ sbh∗(D) with Riesz measure νu � ν such that u � M on D .
s2. For any subset S � D satisfying the conditions

∅ �= intS ⊂ S = closS � D, (1.10)

the measure μ is an affine balayage of the measure ν for D outside S with respect to the class of
test∗ subharmonic positive functions

sbh+0 (D \ S;� b) :=
{
v ∈ sbh+(D \ S) : lim

∂D
v

(1.9)
= 0, sup

D\S
v � b

}
. (1.11)

s3. There exists a subset S � D satisfying condition (1.10) for which the measure μ is an affine
balayage of ν for D outside S with respect to the class sbh+00(D \ S;� b) ∩ C∞(D \ S), where

sbh+00(D \ S;� b) :=
{
v ∈ sbh+0 (D \ S;� b) : ∃Dv � D , v ≡ 0 on D \Dv

}
(1.12)

is the class of test subharmonic positive compactly supported functions.

Remark 1. The implication s2⇒ s3 is obvious for any domain D ⊂ C∞ and any measure
μ ∈ Meas+(D) without the condition of continuity of the function M on D. The same, as shown
in Sec. 2.1, is true for the implication s1 ⇒ s2. Only the proof of the implication s3 ⇒ s1 uses
both the continuity of the function M and the fact that the boundary ∂D ⊂ C∞ is a nonpolar set.
Recall that the latter is equivalent to the existence of a Green function gD for the domain D ([3,
4.4], [12, 3.7, 5.7.4]). The boundary ∂D is nonpolar, say, if at least one of its connected components
contains more than one point [3, Corollary 3.6.4] or if the Hausdorff dimension of ∂D is greater
than zero [12, 5.4.1].

The implication s3 ⇒ s1 is a special case of Theorem 3 in Sec. 2.2.

Let us proceed to the holomorphic version of Theorem 1, in which there arises a gap between
necessary and sufficient conditions. This gap, which is often insignificant, can hardly be bridged
even for the disk D = D in the general situation considered here. We denote by dist( · , · ) the
Euclidean distance between two points, between a point and a set, and between two sets in C. By
definition, we set dist( · ,∅) :=: dist(∅, · ) := inf ∅ := +∞ =: dist(z,∞) :=: dist(∞, z) for z ∈ C.

1.2.1. The choice of lift of the function M . In what follows, r : D → R
+ is an arbitrary

continuous function satisfying the condition

0 < r(z) < min{dist(z, ∂D), 1} for all z ∈ D. (1.13)

∗Similar classes of test subharmonic functions were studied and used in [1], [2], and [9]–[11].
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To a function M ∈ L1
loc(D), where L1

loc(D) ⊂ R
D±∞ is the class of functions locally integrable with

respect to the Lebesgue measure λ, we assign its variable means over disks,

M∗r(z) : =
1

λ(D(z, r(z)))

∫

D(z,r(z))
M dλ

=
1

πr2(z)

∫ 2π

0

∫ r(z)

0
M(z + teiθ) t dt dθ, D(z, r(z)) ⊂ D, (1.14)

and also, following [13] and [14], its lift M↑r , defined as follows:
(i) In the general case of D ⊂ C, we set

M↑r(z) := M∗r(z) + ln
1

r(z)
+ (1 + ε) ln(1 + |z|) for all z ∈ D, (1.15)

where the number ε ∈ R
+∗ can be chosen to be arbitrarily small.

(ii) If C∞ \ closD �= ∅ or the domain D ⊂ C is simply connected in C∞, then

M↑r(z) := M∗r(z) + ln
1

r(z)
for all z ∈ D. (1.16)

(iii) If D = C, then for an arbitrarily large number P > 0 we can set

M↑r(z) := M∗r(z), r(z) :=
1

(1 + |z|)P for all z ∈ C = D. (1.17)

Theorem 2 (necessary/sufficient conditions for holomorphic functions). Let D be a domain in
C, let M be a function in sbh∗(D) with Riesz measure μ ∈ Meas+(D), let Z = {zk}k=1,2,... ⊂ D ,
and let b ∈ R

+∗ . Each of the following three assertions h1–h3 follows from the preceding one.
h1. There exists a function f ∈ Hol∗(D) such that f(Z) = 0 and |f | � expM on D .
h2. For any set S satisfying condition (1.10), the measure μ is an affine balayage of the sequence

Z for D outside S with respect to the class of test subharmonic functions (1.11).
h3. There exists a set S satisfying condition (1.10) such that μ is an affine balayage of the

sequence Z for D outside S with respect to the class sbh+00(D \ S;� b) ∩ C∞(D \ S).
Conversely, if, in addition, the boundary ∂D is a nonpolar set in C∞ and M ∈ C(D), then assertion
h3 implies the existence of a function f ∈ Hol∗(D) vanishing on Z and satisfying the inequality
|f | � expM↑r on D with lifts M↑r in (i)–(iii) defined by formulas (1.15)–(1.17).

Remark 2. The implication h2⇒ h3 is obvious. Sections 3 and 4 contain the converse Theo-
rems 4 and 5 exclusively in terms of affine balayage with respect to the classes of Green functions
and certain logarithmic potentials of analytic disks, respectively. Corollaries 1 and 2 of Theorems 4
and 5 give other versions of the implication h3⇒ h1.

2. Proofs of Theorems 1 and 2

2.1. Proof of the implications s1⇒s2 and h1⇒h2. This section does not assume that
the function M is continuous. The nonempty domain D ⊂ C is arbitrary.

Take a z0 ∈ D such that u(z0) �= −∞ and M(z0) �= −∞. The choice of the domain D̃,

S � D̃ � D, regular for the Dirichlet problem in the statement of the main theorem in [1] is
arbitrary. Then, by condition s1 of the main theorem in [1], there exist numbers C,CM ∈ R

+ such
that [1, (3.3)]

Cu(x0) +

∫

D\S
v dνu �

∫

D\S
v dμ+ C CM for all v ∈ sbh+0 (D \ S;� b).

Since ν � νu , this shows by Definition 1 that ν �S,F νu �S,F μ for the affine balayage operation

�S,F for D outside S with respect to the class F
(1.11)
= sbh+0 (D \ S;� b).
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The implication h1⇒ h2 is a special case of the implication s1⇒ s2 for u := ln |f | with the
Riesz measure nZerof � nZ in the framework of Definition (1.8) of the affine balayage μ of the
sequence Z.

2.2. Proof of the implication s3⇒s1. Let us prove a more general assertion.

Theorem 3. Let D ⊂ C∞ be a domain with nonpolar boundary ∂D , let S � D be a subset

satisfying condition (1.10), let M
(1.3)∈ δ-sbh∗(D) be a δ-subharmonic function with Riesz charge

νM ∈ Meas(D), let ν ∈ Meas+(D), and let b ∈ R
+∗ . If the charge νM is an affine balayage of the

measure ν for D outside S with respect to the class sbh+00(D\S;� b)∩C∞(D\S) defined according
to formula (1.12), i.e., if there exists a number C ∈ R such that

∫

D\S
v dν �

∫

D\S
v dνM + C for all v

(1.12)∈ sbh+00(D \ S;� b) ∩ C∞(D \ S), (2.1)

then for each continuous function r : D → R
+ satisfying condition (1.13) there exists a function

u ∈ sbh∗(D) with Riesz measure νu � ν such that

u(z)
(1.14)

� M∗r(z) for all z ∈ D. (2.2)

If M ∈ δ-sbh∗(D) ∩ C(D), i.e., if the function M is also continuous, then under condition (2.1)
there exists a function u ∈ sbh ∗(D) with Riesz measure νu � ν such that u � M on D .

Proof. First, assume that, instead of condition (2.1), in addition to condition (1.10), for some
nonempty subdomain

D0 � intS (2.3)

and some number C ∈ R one has the inequality
∫

D\D0

v dν �
∫

D\D0

v dνM +C for all v
(1.12)∈ sbh+00(D \D0;� b); (2.4)

i.e., the compactly supported test functions v are not necessarily differentiable, and S � D is
somewhat narrowed to a subdomain D0 � D. For the measure ν on D ⊃ D0 , there always exists
a point z0 ∈ D0 such that the value M(z0) �= ∞ is well defined; i.e., z0 ∈ D0 ∩ domM in the
notation of [1, 3.1], and the equivalent conditions
(∫ r0

0

ν(z0, t)

t
dt < +∞

)
⇐⇒

(∫

D(z0,r0)
ln |z′ − z0|dν(z′) > −∞

)
, D(z0, 3r0) � D0, (2.5)

hold for some number r0 > 0. Conditions (2.5), in particular, ensure the existence of a function
u0 ∈ sbh∗(D) with Riesz measure νu0 = ν and with the property u0(z0) �= −∞ [1, 3.1].

In what follows, we temporarily need the boundedness of the function M in a neighborhood
of the point z0 . To this end, we so far transform it locally while preserving condition (2.4). Using
(2.5) and the representation M = u+−u− of M as a difference of subharmonic functions u+, u− ∈
sbh∗(D), one can locally change the values of M in D(z0, 2r0) � D0 , namely, continue the functions
u+ and u− into D(z0, 2r0) harmonically by the Poisson integral. We denote them by u◦+ and u◦− ,
respectively. Then M◦ := u◦+ − u◦− ∈ δ-sbh∗(D) is a bounded function in a neighborhood of the

closed disk closD(z0, r0), and (2.4) is still true for all v ∈ sbh+00(D \D0;� b). For now, we denote
the function M◦ by the same symbol M . By Jz0(D), as in [1], we denote the class of all Jensen
measures μ ∈ Meas+c (D) satisfying the condition u(z0) �

∫
udμ for all u ∈ sbh(D). We need the

following theorem.

Theorem A (a special case of Theorem 6 in [5]). Assume that M ∈ L1
loc(D), z0 ∈ D , u0 ∈

sbh(D), and u0(z0) �= −∞. If the function M is bounded in an open neighborhood of the closure
closD1 of some subdomain D1 � D containing z0 and there exists a number C0 ∈ R such that

∫

D
u0 dμ �

∫

D
M dμ+ C0 for any Jensen measure μ ∈ Jz0(D), (2.6)
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then for each continuous function r : D → R
+ satisfying condition (1.13) there exists a function

w ∈ sbh∗(D) such that

u0 + w
(1.14)

� M∗r on D. (2.7)

In our case, the role of the domain D1 will be played by the disk D(z0, r0). In addition, the
following notion is required.

2.2.1. Jensen potentials. A function V ∈ sbh+(C∞ \ {z0}) is called a Jensen potential inside D
with pole at z0 ∈ D [1, Definition 3] if the following two conditions are satisfied:

(1) There exists a domain DV � D containing z0 ∈ DV such that V (z) ≡ 0 for z ∈ C∞ \DV .
(2) One has a logarithmic seminormalization at z0 ; namely,

lim sup
z0 
=z→z0

V (z)

lz0(z)
� 1, (2.8o)

where lz0(z) :=

{
ln 1

|z−z0| for z0 �= ∞,

ln |z| for z0 = ∞.
(2.8l)

The class of all such Jensen potentials will be denoted by PJz0(D).
The logarithmic potential of genus 0 of a probability measure μ ∈ Meas+c (C∞) with a pole at

z0 ∈ C∞ is defined for all w ∈ C∞ \ {z0} as the function

Vμ(w) :=

∫

D
ln
∣∣∣
w − z

w − z0

∣∣∣ dμ(z) =
∫

D
ln
∣∣∣1− z − z0

w − z0

∣∣∣dμ(z) for z0 �= ∞, (2.9o)

where for w = ∞ the integrands are defined to be 0;

Vμ(w) :=

∫

D
ln
∣∣∣
w − z

z

∣∣∣dμ(z) =
∫

D
ln
∣∣∣1− w

z

∣∣∣dμ(z) for z0 = ∞, (2.9∞)

where for z = ∞ the integrands are defined to be 0.
Recall the main relationships between the classes Jz0(D) and PJz0(D). The first is the following

duality statement.

Proposition 1 [15, Proposition 1.4, duality theorem]. The mapping

P : Jz0(D) → PJz0(D), P(μ)
(2.9)
:= Vμ, μ ∈ Jz0(D),

is a bijection for which P
(
tμ1 + (1 − t)μ2

)
= tP(μ1) + (1 − t)P(μ2) for all t ∈ [0, 1] (affinity),

and the inverse bijection P−1 is defined by the formula

P−1(V )
(2.8l)
=

1

2π
ΔV

∣∣∣∣
D\{z0}

+

(
1− lim sup

z0 
=z→z0

V (z)

lz0(z)

)
· δz0 , V ∈ PJz0(D). (2.10)

The second is the extended Poisson–Jensen formula (2.11).

Proposition 2 [15, Proposition 1.2]. Let μ ∈ Jz0(D). Then for any function u ∈ sbh(D) with
Riesz measure νu and with u(z0) �= −∞ one has

u(z0) +

∫

D\{z0}
Vμ dνu =

∫

D
udμ. (2.11)

Lemma 1. Assume that M ∈ δ-sbh∗(D) with Riesz charge νM , z0 ∈ domM , u0 ∈ sbh(D)
with Riesz measure ν , u0(z0) �= −∞, V ∈ PJz0(D) is a Jensen potential, and C1 ∈ R. If

∫

D\{z0}
V dν �

∫

D\{z0}
V dνM + C1, (2.12)

then for the Jensen measure μ
(2.10)
= P−1(V ) ∈ Jz0(D) one has the inequality

∫
u0 dμ �

∫
M dμ+C0, where C0 = C1 −M(z0) + u0(z0). (2.13)
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Proof of Lemma 1. Under the condition z0 ∈ domM , the function M can be represented
by the difference M = u+ − u− of functions u± ∈ sbh∗(D) with respective Riesz measures ν±M ∈
Meas+(D) such that u±(z0) �= −∞. The extended Poisson–Jensen formula in Proposition 2 applies

to each of the functions u± and hence to the function M . Thus, for the Jensen measure μ
(2.10)
:=

P−1(V ) we obtain
∫

D
u0 dμ

(2.11)
=

∫

D\{z0}
V dν + u0(z0)

(2.12)

�
∫

D\{z0}
V dνM +C1 + u0(z0)

(2.11)
=

∫
M dμ−M(z0) + C1 + u0(z0),

which proves the desired inequality (2.13).

Let us return directly to the proof of Theorem 3. For a domain D with nonpolar boundary
∂D ⊂ C∞ , there always exists a Green function gD( · , z0) with a pole at z0 . Throughout the
subsequent proof, for brevity we write

g := gD( · , z0) is the Green function for D with a pole at z0 ∈ D0 .

Here only the following properties (see [3, 4.4] and [12, 3.7, 5.7]) of the function g are important.

g1. The normalization condition lim
z0 
=z→z0

g(z)

lz0(z)

(2.8l)
= 1 at the point z0 , which is stronger than

(2.8o).
g2. g ∈ har+(D \ {z0}): the harmonicity and positivity in D \ {z0}.

In particular, it follows from the maximin principle owing to inclusion z0 ∈ D0 � D that

0 < constz0,D0,D := B0 := sup
z∈∂D0

g(z) < +∞. (2.14)

Let V ∈ PJz0(D) be an arbitrary Jensen potential. Then, in view of properties g1–g2,

lim sup
D�z→z0

(V − g)(z)

lz0(z)

g1
� 0, V − g

g2∈ sbh∗(D \ {z0}).

It follows that the point z0 is a removable singularity of the function V − g ∈ sbh∗(D \ {z0}), and
since

lim sup
D�z′→z

(V − g)(z′) � lim sup
D�z′→z

V (z′) = 0, z ∈ ∂D,

it follows by the maximum principle that the inequality V −g � 0 is satisfied on D for the function
V − g ∈ sbh∗(D); i.e.

V � g on D, V
(2.14)

� B0 on ∂D0 . (2.15)

Consequently, inequality (2.4) holds for the function

v :=
b

B0
V ∈ sbh+00

(
D \D0;� b

)

considered in the open neighborhood D \D0 . Multiplying both sides by B0/b, we obtain
∫

D\D0

V dν �
∫

D\D0

V dνM +
B0

b
C, V ∈ PJz0(D).

This inequality can be rewritten as
∫

D\{z0}
V dν �

∫

D\{z0}
V dνM +

B0

b
C +

∫

D0\{z0}
V dν +

∫

D0\{z0}
V dν−M

(2.15)

�
∫

D\{z0}
V dνM +

(
B0

b
C +

∫

D0\{z0}
(g dν + g dν−M)

)
, V ∈ PJz0(D). (2.16)
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Here the last integral is finite in view of (2.5) and the fact that z0 ∈ D0 ∩ domM and also does
not depend on V ∈ PJz0(D). Thus, inequality (2.12) holds with a constant C1 equal to the value
of the “big” bracket on the right-hand side in formula (2.16) for any potential V ∈ PJz0(D).
Then, by Lemma 1, (2.13) holds for any Jensen measure μ ∈ Jz0(D). Therefore, for any potential
V ∈ PJz0(D), condition (2.6) of Theorem A is satisfied and there exists a function w ∈ sbh∗(D)
for which inequality (2.7) holds. Further, the inequality ν + νw � ν on D obviously holds with the
Riesz measure νw of the function w. Therefore, the function u◦ := u0 +w with the Riesz measure
νu◦ = ν+νw is the function needed in (2.2), so far for the function M◦ , which is different from M in
the disk D(z0, 2r0). Consider M � M◦ . For a continuous function r, the functions M∗r and (M◦)∗r
are continuous in D as well, since both lie in the class L1

loc(D). At the same time, the subharmonic
function u◦ �= −∞ is bounded above in D(z0, 3r0) � D. Therefore, there exists a sufficiently large
constant C2 � 0 such that u0 := u◦ − C2 � (M◦)∗r on D with Riesz measure νu0 = νu◦ � ν .
Under the conditions on the function r, there exists a subdomain D2 � D that includes D(z0, r0)
and for which, by the construction of the function M◦ and the definition of averaging on D \D2 ,
one has (M◦)∗r = M∗r and hence the inequality u0 � M∗r on D \D2 . Since the function M∗r is
continuous on D and u0 is bounded above on D1 , it follows that there exists a sufficiently large
number C3 � 0 such that u := u0 − C3 � M∗r on D with Riesz measure νu = νu0 � ν , which
gives (2.2).

If the function M ∈ δ-sbh∗(D) is continuous, then it is necessarily locally bounded below, which
allows avoiding the intermediate use of the function M◦ in the proof. In addition, the continuous
function M is locally uniformly continuous, which allows choosing a continuous function r satisfying
condition (1.13) for which M∗r � M + 1 on D. This permits one to replace the right-hand side
M∗r in (2.2) with M .

Now assume that condition (2.1) of Theorem 3 is satisfied. From this condition, we derive
condition (2.4), under which all the conclusions of Theorem 3 have already been proved.

Let v ∈ sbh+00(D \ D0;� b) be an arbitrary compactly supported test function, where the
subdomain D0 � intS is chosen as in (2.3). Since the function v is compactly supported, it follows
that there exists a subdomain Dv � D such that D0 � Dv and the function v is subharmonic on
D \D0 and identically zero on D \Dv . In this case, we set

ε0 :=
1

2
min{dist(Dv, ∂D),dist(D0,D \ S)} > 0. (2.17)

Consider an infinitely differentiable function a : RR+ → R
+

with support supp a ⊂ (0, 1) and normalization 2π

∫ +∞

0
a(x)xdx = 1, (2.18)

and also the measures αε ∈ Meas+(C) determined by the densities

dαε(z)
(2.18)
:=

1

ε2
a

( |z|
ε

)
dλ(z), 0 < ε < ε0, z ∈ C. (2.19)

It is well known ([3, 2.7], [12, 3.4.1]) that, for a decreasing sequence of numbers 0 < εn −→
n→∞0,

εn
(2.17)

� ε0 , the sequence of subharmonic infinitely differentiable convolution functions vn := v ∗αεn

decreases in n ∈ N and is pointwise convergent to the function v on D \S . In particular, according
to (2.17), v � vn on D \ S and vn � b on D \ S as the averages over the measures (2.19),
which are probability measures in view of (2.18). By construction, all the functions vn belong to
sbh+00(D \ S;� b) ∩ C∞(D \ S). By condition (2.1), there exists a number C such that

∫

D\S
vn dν �

∫

D\S
vn dνM + C
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for all functions vn constructed above for all n ∈ N. Hence, by the Hahn–Jordan decomposition for
the Riesz charge νM = ν+M − ν−M , ν±M ∈ Meas+(D), we have

∫

D\S
vn d(ν + ν−M ) �

∫

D\S
vn dν

+
M + C ′, n ∈ N,

which, since v � vn on D \ S , gives
∫

D\S
v dν �

∫

D\S
vn dν

+
M −

∫

D\S
v dν−M +C, n ∈ N.

By letting n → +∞ in the first integral on the right-hand side, since the sequence of compactly
supported infinitely differentiable test functions vn decreases to v ∈ sbh+00(D \D0;� b), we obtain

∫

D\S
v dν �

∫

D\S
v dν+M −

∫

D\S
v dν−M + C =

∫

D\S
v dνM +C. (2.20)

Let us define constants C4, C5 ∈ R
+ independent of v by the formulas

0 �
∫

D0\S
v dν � bν(D0 \ S) =: C4 < +∞,

0 �
∫

D0\S
v dν−M � bν−M (D0 \ S) =: C5 < +∞.

Then inequality (2.20) without the intermediate difference of integrals remains valid if the integra-
tion over D \ S is replaced with the integration over D \D0 and the constant C is replaced with
the constant C +C4 +C5 . By virtue of the arbitrariness in the choice of the compactly supported
test function v ∈ sbh+00(D \D0;� b), inequality (2.4) with the new constant C + C4 + C5 instead
of C is satisfied for all such v. This completes the proof of Theorem 3.

Remark 3. In the case of a function M ∈ sbh∗(D), it suffices to require in Theorem 3 that
the function r with property (1.13) be only locally separated from zero below in the sense that for
each z ∈ D there exists a number tz > 0 such that

D(z, tz) � D, sup
z′∈D(z,tz)

r(z′) > 0.

Indeed, elementary geometric considerations using compactness (for example, exhaustion of the
domain D by a sequence of relatively compact subdomains) permit one to prove the following
assertion.

Lemma 2. For the function r separated below from zero on D and satisfying condition (1.13),
there exists a continuous and even infinitely differentiable function r̂ � r that still satisfies condi-
tion (1.13).

By applying Theorem 3 with r̂ ∈ C(D) instead of r, we construct the desired function u �
M∗r̂ � M∗r , where (2.2) and the fact that the means (1.14) increase with respect to r for M ∈
sbh∗(D) has been used.

2.3. Proof of the implication h3⇒ h1 with the lift M↑r . Under the assumptions of the
“Conversely,. . . ” part of Theorem 2, claim h3 and the implication s3⇒ s1 in Theorem 1 imply
the existence of a subharmonic function u ∈ sbh∗(D) with Riesz measure νu � nZ satisfying the
inequality u � M on D. Since there always exists a holomorphic function fZ ∈ Hol∗(D) with the
sequence of zeros ZerofZ = Z by the Weierstrass theorem, we see that the latter means that there
exists a function s ∈ sbh∗(D) with Riesz measure νs := νu − nZ ∈ Meas+(D) such that

u = ln |fZ|+ s � M on D. (2.21)

The following Lemma 3 does not assume that the boundary ∂D is a nonpolar set.
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Lemma 3. Assume that D ⊂ C∞ is an arbitrary proper subdomain, u0, s,M ∈ sbh∗(D), and

u0 + s � M on D . (2.22)

Then there exists a function g ∈ Hol∗(D) such that

u0 + ln |g| � M↑r on D, (2.23)

where the lift M↑r is defined in Sec. 1.2.1 depending on the type of domain D in (i)-(iii) based on
the arbitrary choice of a continuous function r : D → R

+ satisfying condition (1.13) in (1.15) and
(1.16), the number ε > 0 in (1.15), and the number P > 0 in (1.17).

Proof. Case (i): Eq. (1.15). Since the function u0 is subharmonic, we obtain, by averaging
both sides of inequality (2.22) over the circles D(z, r) with the Lebesgue measure λ,

u0 + s∗r � u∗r0 + s∗r � M∗r on D. (2.24)

By [16, Theorem 3], there exists a function g ∈ Hol∗(D) such that

ln |g(z)| � s∗r(z) + ln
1

r(z)
+ (1 + ε) ln(1 + |z|), z ∈ D, (2.25)

whence, according to (2.24) and definition (1.15), we obtain (2.23).
Case (ii): Eq. (1.16). The case of C∞ \ closD �= ∅ is covered by [14, Theorem 1] and partly by

[13, Theorem 1]. For a domain D ⊂ C that is simply connected in C∞ , the proof follows the same
scheme as in the previous case but with the use of the inequality

ln |g(z)| � s∗r(z) + ln
1

r(z)
, z ∈ D,

based on [16, Corollary 3(iii)], instead of (2.25).
Case (iii): Eq. (1.17). The case of D = C was analyzed in [14, Theorem 1] and partly in [13,

Theorem 1].

By Lemma 3, inequality (2.21) written in the form (2.22) with u0 := ln |f | implies the con-
clusion (2.23), which means that ln |fZg| = ln |fZ| + ln |g| � M↑r . Thus, the function f := fZg ∈
Hol∗(D), which vanishes on Z, is the desired one.

3. Converse Theorem with Green Functions

The converse theorem in this section only uses the Green function [12], extended by zero, of
a special system of relatively compact subdomains regular for the Dirichlet problem in D and
containing a given subdomain D0 � D with a fixed pole z0 ∈ D0 . Note that each such Green
function is a subharmonic compactly supported test function for the region D outside the subdomain
D0 . Here, unlike Theorems 1–3, the proper subdomain D ⊂ C∞ is arbitrary. Throughout Sec. 3,
in addition to (1.2), we assume that z0 ∈ D0 � D ⊂ C∞ �= D, where D0 is a domain.

Definition 2 (see [5, Definition 1], [17, Definition 11]). A system of domains UD0(D) ⊂ {D′ �
D : D0 ⊂ D′} regular for the Dirichlet problem is called a regular optimally exhausting system of
domains in D with center D0 if

⋃{D′ : D′ ∈ UD0(D)} = D and the following two conditions hold
for any domains D1 and D2 satisfying the inclusions D0 ⊂ D1 � D2 ⊂ D:

(1) There exists a domain D′ ∈ UD′(D) such that D1 � D′ � D2 and each nonempty bounded
connected component of the set C∞ \D′ has a nonempty intersection with C∞ \D2 .

(2) For any domain D ∈ UD0(D), there exists a domain D′′ ∈ UD0(D) such that D1 � D′′ � D2

and the union D′′ ∪D′ lies in UD0(D) as well.

Finally, the system UD0(D) is assumed to be conditionally invariant with respect to the shift in D;
i.e., the conditions D′ ∈ UD0(D), z ∈ C, and D0 ⊂ D′ + z � D imply that D′ + z ∈ UD0(D).

Example 1. A simple example of a regular optimally exhausting system of domains is given
by the special system of all possible connected unions D′ ⊃ D0 of finitely many disks D(z, t) �
D excluding those domains D′ whose complements C∞ \ D have isolated points. With the same
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exceptions, the disks in this example can be replaced with all possible n-gons relatively compact
in D or, more generally, with simply connected subdomains ([3, Theorems 4.2.1 and 4.2.2], [12,
2.6.3]) of some special kind.

Theorem 4. Let M = M+ − M−
(1.3)∈ δ-sbh∗(D) with Riesz charge νM ∈ Meas(D), where

M+ ∈ sbh∗(D) ∩ C(D) and M− ∈ sbh∗(D), and let z0 ∈ D0 ∩ domM � D . Suppose that (2.5)
holds for the measure ν ∈ Meas+(D) for some r0 ∈ R

+∗ . Let UD0(D) be a regular optimally
exhausting system of domains in D with center D0 for which the inequalities

∫

D\{z0}
gD′( · , z0) dν �

∫

D\{z0}
gD′( · , z0) dνM + C, D′ ∈ UD0(D), (3.1)

hold with some constant C ∈ R; i.e., the charge νM is an affine balayage of the measure ν for D
outside z0 with respect to the class of Green functions gD′( · , z0) with D′ ∈ UD0(D). Then there
exists a function u ∈ sbh∗(D) with Riesz measure νu � ν satisfying the inequality u � M on D .

Proof. Let νM+ and νM− be the Riesz measures of the functions M+ and M− , respectively.
Then a series of inequalities (3.1) uniform in the constant C can be written, setting ν1 := ν+νM− ,
in the form

∫

D\{z0}
gD′( · , z0) dν1 �

∫

D\{z0}
gD′( · , z0) dνM+ + C, D′ ∈ UD0(D), (3.2)

where ν1, νM+ ∈ Meas+(D) are already positive measures. Take some subharmonic function u1 ∈
sbh∗(D) in D with Riesz measure ν1 . In view of the condition z0 ∈ domM and also the equivalent
conditions (2.5) on z0 , the Riesz measure ν1 satisfies conditions (2.5) with ν replaced with ν1 .
Therefore, M−(z0) �= −∞ and necessarily u1(z0) �= −∞. Further, we need the following variations
of the assertions in [5, Main Theorem, Theorem 6]:

Theorem B (a special case of [17, Theorem (main)]). Let a function M ∈ sbh∗(D) with Riesz
measure νM be bounded below in some open neighborhood of the closure closD0 , let u ∈ sbh∗(D)
be a function with Riesz measure ν on D , let u(z0) �= −∞, and let UD0(D) be a regular optimally
exhausting system of domains for D with center D0 � z0 . If

∗

−∞ < inf
D′∈UD0

(D)

(
−

∫

D\{z0}
gD′( · , z0) dνu +

∫

D\{z0}
gD′( · , z0) dνM

)
, (3.3)

then for any continuous function r : D → R
+ satisfying condition (1.13) there exists a function

v ∈ sbh∗(D) harmonic in an open neighborhood of the point z0 such that u+ v � M∗r on D with
the averaging in (1.14). Moreover, if, in addition, M ∈ C(D), then the variable averaging M∗r on
the right-hand side in the last inequality can be replaced with M .

By Theorem B applied to the function u1 and the continuous function M+ instead of u and
M , respectively, owing to inequality (3.2) corresponding to condition (3.3), there exists a function
v ∈ sbh∗(D) harmonic in a neighborhood of z0 such that u1 + v � M+ on D. By construction,
u1 ∈ sbh∗(D) with Riesz measure ν1 := ν + νM− . Consequently, the Riesz measure of the function
u0 := u1 − M− is the measure ν ; i.e., there exists a function u := u0 + v ∈ sbh∗(D) with Riesz
measure νu � ν such that u � M+−M− = M on D, which completes the proof of Theorem 4.

Corollary 1. Suppose that, under the assumptions of Theorem 4D ⊂ C, M ∈ sbh∗(D)∩C(D)
and the measure νM is the affine balayage of the sequence Z = {zk}k=1,2,... ⊂ D , z0 /∈ Z, for
D outside the singleton S := {z0} with respect to the class of Green functions gD′( · , z0) with
D′ ∈ UD0(D); i.e., for some number C ∈ R, according to (1.6)–(1.8), condition (3.1) is satisfied

∗Unfortunately, in the statement of the main theorem from our work [5], on the intermediate stage of whose proof
[17, Theorem (Main)] is based, an annoying typo in the ± signs crept in. Thus, the ratio used in its statement [5,
item (h1), (2.11)] must look exactly like (3.3). Further comment can be found in the footnote to [17, Main Theorem].
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in the following form :
∑

zk∈D′
gD′(zk, z0) �

∫

D\{z0}
gD′( · , z0) dνM + C, D′ ∈ UD0(D).

Then there exists a function f ∈ Hol∗(D) such that f(Z) = 0 and the inequality |f | � expM↑r
holds on D , where the lift M↑r is defined in Sec. 1.2.1 depending on the type of domain D in (i)-
(iii), based on an arbitrary choice of the continuous function r : D → R

+ satisfying condition (1.13)
in (1.15), (1.16), the number ε > 0 in (1.15) and the numbers P > 0 in (1.17).

This corollary can be derived from Theorem 4 in the same way as the proof of the implication
h3 ⇒ h1 with lift M↑r can be derived from Theorem 3 in section 2.3.

Remark 4. Based on the analysis of the subtle results of Hansen and Netuka [18] about the
approximation of Jensen measures by harmonic measures, the regular optimally exhausting system
of domains UD0(D) with center D0 ⊂ D in Theorem 4 and Corollary 1 can be replaced by a
system of domains D′ � D that include the domain D0 � D and are obtained from a sequence,
exhausting D, of domains Dn � D, n ∈ N, regular for the Dirichlet problem and having analytic,
or piecewise linear, or another “good” boundary by removing various finite sets of pairwise disjoint
closed disks from the domains Dn . In addition, for the resulting system of domains it is nevertheless
necessary to require conditional invariance with respect to the shift in D in Definition 2.

4. Converse Theorem with Analytic and Polynomial Disks

An important subclass of Jensen measures in the class Jz0(D) is generated by analytic disks
in D with center z0 . An analytic closed disk in the domain D with center z0 ∈ D is a function
g : closD → D continuous on closD whose restriction to D is holomorphic and for which g(0) = z0
([19, Ch. 3], [20]–[23]). In particular, g(closD) � D. For any such analytic closed disk g, one can
readily show that the function w ∈ C∞ \ {z0} given by

1

2π

∫ 2π

0
ln

∣∣∣∣
w − g(eiθ)

w − z0

∣∣∣∣dθ =
1

2π

∫ 2π

0
ln

∣∣∣∣1−
g(eiθ)− z0
w − z0

∣∣∣∣ dθ for z0 �= ∞, (4.1o)

where, by analogy with (2.9o), the integrands are defined to be 0 at w = ∞, and

1

2π

∫ 2π

0
ln

∣∣∣∣
w − g(eiθ)

g(eiθ)

∣∣∣∣dθ =
1

2π

∫ 2π

0
ln

∣∣∣∣1−
w

g(eiθ)

∣∣∣∣ dθ for z0 = ∞, (4.1∞)

where, by analogy with (2.9∞), the integrands are defined to be 0 for g(eiθ) = ∞, is a Jensen
potential inside D with a pole at z0 . In particular, (4.1) defines a subharmonic positive compactly
supported test function for D outside {z0}. In Remark 2, we dubbed the functions (4.1) the
logarithmic potentials of analytic disks. If an analytic closed disk g in a domain D with center
z0 ∈ D is a polynomial in the complex variable, then it is natural to call it a polynomial disk in D
centered at z0 ∈ D.

Theorem 5. Let the function M
(1.3)∈ δ-sbh∗(D) with a Riesz charge νM , z0 �= ∞ and the

measure ν ∈ Meas+(D) be the same as in Theorem 4. If the charge νM is an affine balayage of the
measure ν for D outside S := {z0} with respect to the function class (4.1o), i.e., if there exists a
constant C ∈ R such that

∫

D

1

2π

∫ 2π

0
ln

∣∣∣∣1−
g(eiθ)− z0
z − z0

∣∣∣∣ dθ dν(z)

�
∫

D

1

2π

∫ 2π

0
ln

∣∣∣∣1−
g(eiθ)− z0
z − z0

∣∣∣∣ dθ dνM(z) + C

for all analytic closed or only polynomial disks g in D with center z0 , then there exists a function
u ∈ sbh∗(D) with Riesz measure νu � ν such that u � M on D .
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In the case of a subharmonic function M , a discussion of the scheme of proof of Theorem 5 is
contained in [6, 1.2.1–2, Suppl. 1.2.3, 1.2.4]. This is one of the reasons why we omit the proof of
Theorem 5 here. Another reason is that the multidimensional version of Theorem 5 in C

n is more
natural and will be considered together with applications elsewhere.

Arguing in almost the same way as in the proof of the implication h3⇒ h1 with the lift M↑r
in Sec. 2.3, by analogy with Corollary 1 of Theorem 5, one can derive the following assertion.

Corollary 2. Under the conditions of Theorem 5, consider a sequence of points Z = {zk}k=1,2,...

⊂ D ⊂ C, z0 ∈ D \ Z, instead of the measure ν and assume that M ∈ sbh∗(D) ∩ C(D). If the
measure νM is an affine balayage of the sequence Z for D outside S := {z0} with respect to the
function class (4.1o), i.e., there exists a constant C ∈ R such that the inequality

∑

zk∈D

∫ 2π

0
log

∣∣∣∣1−
g(eiθ)− z0
zk − z0

∣∣∣∣dθ �
∫

D

∫ 2π

0
log

∣∣∣∣1−
g(eiθ)− z0
z − z0

∣∣∣∣dθ dνM (z) + C

holds for all analytic closed or only polynomial disks g in D with center z0 , then there exists a
function f ∈ Hol∗(D) for which f(Z) = 0 and |f | � expM↑r on D , where the lift M↑r is defined
in Sec. 1.2.1 with the same refinements as in the conclusion of Corollary 1.
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