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Abstract—We study one-dimensional f lows of an ideal (inviscid and non-heat-conducting) perfect gas
with an adiabatic exponent γ behind a shock wave moving toward the center (ν = 3) or axis (ν = 2) of
symmetry in a cold gas at rest. Flows with a reflected shock wave and f lows terminating with simulta-
neous arrival of a shock wave and a piston, which has compressed the gas into a point or line, to the
center of symmetry are admitted.
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The first self-similar solution with a reflected shock wave was found by Guderley. In his solution the
self-similarity exponent n = (ν, γ) < 1 is determined from the condition that the f low under consider-
ation does exist. At n = (ν, γ) there can also exist self-similar solutions with a piston expanding from the
center of symmetry after the arrival of a convergent shock wave to this point; these solutions have not been
considered earlier. The attention to the f lows with n ≠ (ν, γ) was attracted in 2015–2017 by V. Kuropat-
enko with his colleagues. An analysis of these f lows made below shows that the f lows with a reflected
shock wave constructed for n > (ν, γ) are self-similar only in a curvilinear triangle in the coordinate-
time plane. One of its sides is a segment of the trajectory of a self-similar shock wave that has not arrived
at the center of symmetry. At n < (ν, γ) these solutions become the completely self-similar f lows of gas
compression to a point constructed by Kuropatenko.

1. SELF-SIMILAR SOLUTIONS ON THE TIME-DEPENDENT SHOCK WAVE REFLECTION 
FROM AN AXIS OF CENTER OF SYMMETRY

In 1942 Guderley [1] (see also [2, 3]) solved the problem of the reflection of a shock wave (SW) from
the axis or center of symmetry (below, from the “center of symmetry” (CS)). As a SW approaches the CS,
its intensity increases without bound. It is possible that precisely for this reason the solutions searched
in [1] were self-similar solutions with a strong SW IS moving throughout a cold gas at rest at a velocity D =
D(t) < 0 with the time t reference point at the moment of SW IS arrival to the CS. For a perfect gas its radial
velocity u, speed of sound а, density ρ, and pressure p behind a strong SW are as follows [2–5]:

(1.1)

At a radial coordinate r the f low parameters can be represented in one of two equivalent forms with the
self-similar variable ξ or τ
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SELF-SIMILAR FLOWS WITH A SHOCK WAVE ADVANCING 865
In Guderley’s solution the exponent n is to be determined, U, A, and R are functions of ξ or τ, and the
constant С is arbitrary. Guderley worked with the coordinate ξ, which is finite on the SW IS, infinite at
the r axis, and zero at the semi-axis t > 0. The variable τ, the same for all t, with C > 0 increases mono-
tonically from a negative value on the SW IS to zero at the r axis and to infinity at the semi-axis t > 0.

The ordinary differential equations obtained by means of substituting the representations (1.2) with the
variable τ into the equations governing the time-dependent f lows of an ideal perfect gas having only one
nonzero r-component of the velocity vector u reduce to the system of equations

(1.3)

The substitution of the same representations into relations (1.1), in which, due to these representations,
D = rIS/(kt) = nrIS/t, yields

(1.4)

The constant С, which does not enter in Eqs. (1.3) and representations (1.4), can be chosen such that
the quantity τIS is equal to any number, for example, −1. The representation of the SW IS as a power-law
curve r k > 1 = −Ct, that arrives to the CS at t = 0, does not ensure the existence of such a f low. An analysis
of the integral curves and singular points of the first equation (1.3) can help to understand this fact.
At the r axis and r > 0 the variable τ = 0, while u and a are finite. According to Eq. (1.2), this is possible
only at U(0) = A(0) = 0. For this reason, for any k > 1 the integral curves of solutions containing the r axis
or its finite interval originating at a point on IS with U and A from Eq. (1.4) must arrive at the origin A =
U = 0 of the UA plane. However, the point on IS lies beneath the “sonic” line A = U − 1 presented by
dashes in Fig. 1. At this line the function f from the second equation (1.3) is zero, while the integral curve
proceeding from point IS must intersect it. For an arbitrary k the function  f1 ≠ 0 at the point of intersec-
tion between the integral curve and the sonic line and the function τ has a local maximum τ =  at this
point rather than increases monotonically; the occurrence of this maximum excludes the continuation of
the solution toward the region, where τ > . In Fig. 1 and in what follows the arrows on the integral
curves indicate the direction of the growth of the variable τ, while on the red curve the function f1(U, A) is
zero.

Any point on the line A = U − 1 in the UA plane is associated with a curve with dr/dt = u − a in
the rt plane, as in the case of the С−-characteristics. However, these curves are the envelopes of the
С−-characteristics rather than the С−-characteristics themselves, since the compability conditions for
С−-characteristics are not fulfilled on these curves at  f1 ≠ 0. The envelope becomes a С−-characteristic,
if two conditions are fulfilled at the intersection point, namely,  f = 0 and  f1 = 0. Their consequence, that
is, the equality f2 = 0, makes the intersection point a singular point (saddle SP or node NP) of the first
equation (1.3). The passage through the sonic line becomes possible along the integral curve coinciding
with one of separatrices of the saddle or with the basic appendix of a node, while the choice n = (ν,γ)
makes it possible to join the singular point with the point IS by means of the integral curve. For ν = 3 and
γ = 5/3 precisely this situation with the saddle SP and  = 0.68838 is presented in Fig. 1. The origin A =
U = 0 is a node of the first equation (1.3) with the bald integral curve that interested the sonic line and
arrived at it. For ν = 2 and 3 and several values of γ the quantities  = (ν,γ) are presented in Table 1.

At k =  = 1/  > 1 the pressure р and the entropy function S = γр/ργ behind the SW IS are infinite
at the moment of its arrival at CS. With any increase in the reflected SW RS the function S remains infinite
in the CS (at r = 0 and t > 0). However, at р = ∞ the gas expands instantaneously to a finite pressure and
zero density, which, having conserved S = ∞, turn the speed of sound to infinity, a = (γp/ρ)1/2 =

(r/t)A = ∞, at the semiaxis t > 0. Thus, А(τ = ∞) = ∞ and transition from А to the variable δ = 1/А lead
to the equation

(1.5)
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Fig. 1. Integral curves, singular points, and “sonic” lines: f = 0 and SW RS (upper arrow) in Guderley’s solution for
ν = 3, γ = 5/3, and  = 0.68838.
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The U axis, at which δ = 0, is the integral curve of the first equation (1.5). The other integral curves can
arrive at this axis only through its singular points δ = 0, U = 1 and δ = 0, U = 2(  − 1)/(νγ). In Fig. 1b
the former point is a node and the latter one is a saddle. In view of the second equation (1.5), the
variable τ is finite at the node, whereas at the saddle τ = ∞. For this reason, a portion of the unknown
integral curve is a segment of the saddle separatrix. The solution arrives jumpwise from point RS− at point
RS+ on the separatrix (upper arrow in Fig. 1a), and for U+ and A+ behind the reflected SW RS the follow-
ing equations hold true [5]

(1.6)

When constructing the solution the point RS− with U− and A− on the integral curve that came from
point IS is so chosen that, in accordance with Eqs. (1.6), the point RS+ arrives at the separatrix of the sad-
dle of the first equation (1.5) that comes from above in Fig. 1b.

The fourth quadrant of Fig. 1a and a portion of the rt-diagram corresponding to the bold segment of
the integral curve connecting point IS with the origin U = A = 0 are presented in Fig. 2 on a larger scale.
In Fig. 2b the left (right) bold curve that proceeds from point 1 is the SW IS (piston trajectory), while the
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Table 1. Exponents n0 = n0(ν, γ) and  = (ν, γ)

ν γ n0

2 3 0.33333 0.77567
2 5/3 0.60000 0.81562
2 7/5 0.71429 0.83532
2 4/3 0.75000 0.84226
2 6/5 0.83333 0.86116
3 3 0.25000 0.63641
3 5/3 0.50000 0.68838
3 7/5 0.62500 0.71717
3 4/3 0.66667 0.72769
3 6/5 0.76923 0.75714

*n *n

*n
segments connecting them are С−-characteristics. One of these segments that connects point 0− with the
origin is a С−-characteristic corresponding to the saddle SP on the sonic line in Fig. 2a. On the semiaxis
t > 0, which is not presented on the rt-diagram, the gas velocity u = rU/t = 0, as it must be in the CS.

Although many researchers studied the Guderley solution, the most complete and important results
have been obtained by the authors of this paper [5–8]. It is true that, starting from Guderley all the authors
took no notice of the self-similar solutions with a piston that started its expansion from the CS at the
moment of the arrival of the SW IS from the Guderley solution. We will fill this gap.

Letting A− = U− = 0 in Eq. (1.6) we arrive at the following values

(1.7)

behind the strong SW moving from the CS; in Fig. 1a it is shown by an arrow between the origin and the
upper point IS. The SW with UIS and АIS from Eq. (1.7) is the most intense from the family of SWs, whose
values of U− and A− correspond to the points on the segment of the bold integral curve from the second
quadrant in Fig. 1a. The integral curves along which the values of U and А vary from the SW to the piston,
are terminated at the node U = 1, δ = 0 in Fig. 1b. Figure 3 presents the rt-diagram for one of these self-
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Fig. 2. Quadrant IV in the UA plane (а) and a part of the rt-diagram (b) of Guderley’s solution with SW reflection from
the CS for ν = 3, γ = 5/3, and  = 0.68838.

0

�0.5

�1.0

 

 

1.00.5

IS  

0.5 1.0

0 �

r  

IS  

U  

A

 

t

 0

�0.5 

�1.0 

NP  

NP  

SP  

1  

(а) (b)

*n
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Fig. 3. rt-Diagram of the self-similar f low with a piston that began to expand from the CS with arrival the SW IS to it for
ν = 3, γ = 5/3, and n =  = 0.68838.
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similar f lows with the former values of ν, γ, and  but with U− ≈ –0.32 and A− = 0.50 and one more arrow
in Fig. 1a. The left upper curve in Fig. 3 is the trajectory of a piston expanding from CS at t ≥ 0.

2. KUROPATENKO’s SELF-SIMILAR SOLUTIONS WITH A SHOCK WAVE PROPAGATING 
TOWARD THE AXIS OR CENTER OF SYMMETRY

We will continue an investigation of f lows with a SW propagating toward a CS in the case of the self-
similarity exponent 1 < k ≠  = 1/ . They were studied by Kuropatenko with his colleagues [9–13] who
used, together with r, the Lagrangian mass variable m, where the self-similarity index is l = νn rather
than n itself. Then it was accepted that the f lows under consideration with a strong SW in motion in a cold
gas at rest are generated by a piston traveling from point 1 with r = r1, m = m1, and t = t1 < 0 toward the CS.
In this case, the gas density ρ and velocity u, as well as the coordinate r, were sought using the separation
of variables and invoking conditions (1.1) valid in the case of strong SWs, in the form:

(2.1)
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Here, u1 is the gas velocity behind the SW IS at point 1.
Substituting conditions (2.1) in the Euler equations governing the f lows under consideration in the

variables t and m leads to ordinary differential equations (the primes denote the differentiation with
respect to ξ ≥ 1)

(2.3)

In [9–13] the solution of the Cauchy problem for Eqs. (2.3) with the initial conditions (2.2) led to dif-
ferent results for n (or l = νn) greater or smaller than  (or  = ν ). For n >  the function  always
turned to zero at a certain  > 1, the function  being in the general case different from zero. The asser-
tion of the authors of [8–12] that in this case the curve m/m1 = (t/t1)l arriving at the CS is a С–-char-
acteristic is erroneous. The equality  = 0 means that on this curve there holds the equality dr/dt = u – a,
that is, the С–-characteristics are only tangent to it. It becomes a С–-characteristic only when the equality

 = 0, equivalent to the compatibility condition for С–characteristics, holds true on it, along with
 = 0. At  ≠ 0 it is their envelope making impossible the construction of self-similar piston trajec-

tories at ξ >  and t > , which indicates also the formation at point  of a non-self-similar SW repre-
sented by the third segment of the boundary which does not reach the CS of the self-similar f low region,
which is triangular in the rt plane.

The indices (ν, γ) found in [9–13], at which the functions  and  turn simultaneously to zero
for all ν and γ considered, are the same as those obtained in [1, 2, 5–8]. With account for this fact, which
was not anyway mentioned in [9–13], and the greater simplicity of the customary self-similar approach
we will continue an analysis of solutions for n ≠  within the framework of equations and conditions
(1.2)–(1.4), assuming, following Kuropatenko, that the f lows under study are produced by a piston that
starts its motion toward the CS from point 1 in the rt plane, on the SW IS. In view of Eqs. (1.2) and (1.3),
the following equalities hold on the piston trajectory dr/dt = u

(2.4)

According to these equalities, the variations in time and the piston tralectory coordinate at 0 < U < 1
are analogous to the variation in the variable τ. Thus, if |τ0| > 0 at the end of an integral curve, then |t0| > 0
and r0 > 0, that is, the piston does not reach the CS. If, on the contrary, τ0 = 0, then t0 = r0 = 0 and these
solutions describe the gas compression to a point.

The f lows with |τ0| > 0 are realized, if the integral curve of the first equation (1.3) started at point IS
arrives at point  on the line A = U − 1 in the UA plane with  f1( , ) ≠ 0. The quantity  < 0 reaches
a local minimum at this point; in view of this fact, the contibuation of the self-similar solution toward the
values of τ greater than  turns out to be impossible. As in [9–13], this situation takes place always for
1 > n > (ν, γ). The typical field of the integral curves and singular points of the first equations (1.3) in
the fourth quadrant of the UA plane and an incomplete rt-diagram for this case are presented in Fig. 4.

As noted above, at f1 ≠ 0 the point  of the integral curve arriving onto the sonic line in the UA plane
is associated with envelope Ct = rk  of the С−-characteristics presented as a dashed line in the rt-diagram
in Fig. 4b. This envelope, as the self-similar SW IS that has come from point 1 simulataneously with the
piston along the trajectory with the equation Ct = −rk, may at first glance arrive at CS. However, this will
not happen, since the appearance of the envelope indicates the formation of a non-self-similar SW at the
point  of the piston trajectory. The SW that appeared at t < tS outdistancing the С−-characteristic –S
and annealing it will overtake the self-similar SW IS before its arrival at CS. Therefore, at n >  the self-
similar solution can be realized only in a curvilinear triangle in the rt plane distant from the CS and con-
fined by the piston trajectory 1–  and the segements of the self-similar SW IS and the non-self-similar
SW that appeared at point  of the piston trajectory and overtook it. In a much smaller vicinity of the CS
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Fig. 4. UA plane (a) and incomplete rt-diagram (b) for a f low with a SW moving toward the CS for ν = 3, γ = 5/3, and
n = 0.8 >  = 0.68838.
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the non-self-similar SW moving in the cold gas becomes the self-similar SW of Guderley’s solution with
n = (ν, γ).

More interesting self-similar solutions with the SW IS coming to the CS and a piston compressing the
gas to a point are obtained in the case of the exponents n < (ν, γ). At  > n > n0, where n0 = n0(ν, γ) is
determined below (certain values of n0 are given in Table 1), the solution is given by a segment of an inte-
gral curve of the first equation (1.3) with the origin at the point on IS with U and A from Eq. (1.4) and the
end in a node beneath the sonic line from the fourth quadrant in the UA plane. The values of U and A at
the node are determined by the equations f1(U, A) = 0 and  f2(U, A) = 0. In accordance with these equa-
tions, the following equalities and inequalities hold true for these n

The quantity τ in the node turns out to be zero, thus leading, by virtue of Eqs. (2.4), to t = 0 and r = 0,
that is, to a self-similar f low with a piston and a strong SW that compress the gas to a point. The above-
said is illustrated in Fig. 5. The meaning of the lines and points presented in this figure is the same as in
Figs. 1–4. Thus, in Fig. 5b the thin segments are the С–-characteristics coming from the piston trajectory
toward the SW IS.

At even smaller values of the exponent n, 0 < n < n0 < , it is the degenerate singular point U = 1 and
A = 0 that becomes the singular point, where the integral curve of the first equation (1.3) with the origin
at the point on IS with U and A from Eq. (1.4) arrives. In accordance with [14] and the calculations made
by us, the integral curves that gives the solution enters to this singular point being tangent to the vertical
integral line U = 1 and realizing, as in the case presented in Fig. 5, the self-similar solution of the shock
compression of the gas to a point (r = t = 0). In the vicinity of this singular point we obtain

with the integration constant K.
The results of the calculations performed for two such values of n, are presented in Figs. 6 and 7, which

are similar with Fig. 5.

3. SUMMARY
The self-similar solutions with n =  and a piston starting its expansion from the CS, where the SW

IS comes, and the self-similar solutions obtained at 1 > n >  in a curvilinear triangle in the rt plane with
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Fig. 5. UA plane (a) and rt-diagram (b) for a f low with a piston and a SW, which compress the gas to a point, for ν = 3,
γ = 5/3, and n0 = 0.5 < n = 0.6 <  = 0.68838.
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Fig. 6. UA plane (a) and rt-diagram (b) for a f low with a piston and a SW which compress the gas to a point, for ν = 3,
γ = 5/3, and n = 0.49 < n0 = 0.5 <  = 0.68838.
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Fig. 7. UA plane (a) and rt-diagram (b) for a f low with a piston and SW, which compress the gas to a point, for ν = 3, γ =
5/3, and n = 0.4 < n0 = 0.5 <  = 0.68838.
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r > 0 present an unterest exceptionally for the theory. The self-similar solutions of shock compression of
a gas to a point, which are obtained at  > n > 0, present an interest also mainly for the theory, since in
these cases the greater portion of the pistom work, and at n0 > n even its entire work, is spent for an increase
in the kinetic energy of the compressed gas.

In connection with the solutions for n ≠ , the study made above, having specified certain details [9–
13], demonstrates the applicability and a greater simplicity of the habitual self-similar approach with one
equation (1.3) and the qualitative analysis of the integral curves in the UA plane, as compared with the sep-
aration of variables and the solution of the system of three equations (2.3). The main merit of Kuropatenko
and his colleagues lies in the fact that they have found new self-similar solutions describing the compres-
sion of a cold gas at rest to a point.
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