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Abstract—Based on realistic traffic conditions, the macroscopic traffic f low model that considers the
driver’s anticipation and traffic jerk effect is improved, and the bifurcation theory is used to describe
and predict nonlinear traffic phenomena on the road from the perspective of global stability. Firstly,
the linear stability conditions and the Korteweg–de Vries–Burgers equation are derived using linear
and nonlinear methods to characterize the evolution of traffic f low. The type and stability of the equi-
librium solution are discussed using the bifurcation analysis method, and the conditions of existence
of the Hopf bifurcation and saddle-node bifurcation are proved. Numerical simulations show that the
model can describe the complex nonlinear dynamic phenomena observed on the road. The bifurcation
analysis will be helpful for improving our understanding of stop-and-go and sudden changes in stabil-
ity in real traffic f low.
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Nowadays, traffic congestion became one serious social problem, which has attracted researchers to
develop various models to study it. These include microscopic traffic f low models represented by cellular
automata models and car-following models [1–3], as well as macroscopic traffic f low model represented
by the continuous models [4, 5].

In 1995, in [6] the optimal velocity model was proposed. This model can be used to explain the quali-
tative characteristics of the actual traffic f low, such as the stop-and-go phenomenon, the traffic instability
and congestion evolution, and so on. Based on the optimal velocity model, many new car-following mod-
els have been improved and proposed [7–9].

A macroscopic traffic f low model was first proposed by Lighthill and Whitham [10] in 1955, followed
by a similar model by Richards [11], and these two models have been known as the Lighthill, Whitham,
and Richards model. This is the forerunner of the macroscopic model, which is simple but has the basic
properties of nonlinear traffic f low. Subsequently, in [12, 13] the Payne–Whitham model was con-
structed. In [14], it was propose to replace the null derivative of the “pressure” with the convective deriv-
ative in the acceleration equation, and later, in [15], the model was improved by introducing a relaxation
term to obtain the improved Aw–Rascle model. In [16], a new model with introduction of the velocity
field and the shop distance function was proposed, and in [17] a speed gradient model for anisotropic traf-
fic f low was proposed. Subsequent researchers have made various improvements to the base model and
obtained various macroscopic models that fit various traffic situations.

Different from the traditional f luid force model, in [18, 19] two models, namely, the instantaneous sin-
gle-lane traffic f low model and the two-lane unsteady traffic f low model controlled by traffic signals, were
proposed. Both models consider self-organization and can describe, both qualitatively and quantitatively,
the conditions required for the maximum capacity, and make it possible to analyze the occurrence and
evolution of “moving traffic jams” on the road, as well as the impact of road traffic control units.

In recent years, the study of traffic f low evolution on circular roads has become a hot topic. Previous
hydrodynamic models could not represent the unidirectional propagation of weak perturbations, nor the
constraints on the velocity and acceleration. In [20], the properties of compressible media were intro-
duced to solve the above problem, and a model of irregular single-lane traffic f low model on a circular
road was proposed. This model can correctly (qualitatively and quantitatively) describe “the conditions
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that ensure the maximum traffic capacity” and “the occurrence and evolution of road traffic jams.” Anal-
ogous to non-Newtonian fluids, viscoelastic traffic f low modeling has been used to develop macroscopic
continuum models. In [21, 22] the viscoelastic effect in the loop traffic f low model was considered and
the sensitivity of traffic f low to viscoelasticity was discussed. This illustrated the potential of viscoelastic
traffic f low in predicting actual traffic f low. Over the years (see, e.g., [23, 24]), viscoelastic loop traffic
flow models have been continued to explore for successively predicting travel times for loops and factoring
traffic stress (emergency and moderate) into loop travel times. Thereafter, in [25] complex factors such as
ramps, tunnels, as well as uphill and downhill slopes were considered and a composite ring road model
was developed to study the evolution of its traffic f low congestion wave. In [26], a new macroscopic traffic
flow model for multi-lane loops was proposed and the impact of freeway operating areas on traffic f low
was analyzed.

Many researchers [27–29] have built simulation platforms based on the models in order to study the
effects of specific conditions on traffic f low, calculated numerical f luxes using the 5th-order weighted
essentially non-oscillatory scheme for spatial discretization, and processed the time derivative term using
the 3rd-order Runge–Kutta scheme for the time derivative term.

In many situations, sudden braking and acceleration can lead to a large waste of energy, as well as dam-
age to the car itself, increase exhaust emissions to pollute the environment, and even cause traffic acci-
dents. The temporal dynamics of the acceleration and deceleration of a vehicle are represented by the jerk
profile, where jerk [30] is the derivative of the acceleration with respect to time. In this direction, in [31]
the jerk in the lattice model was introduced and it was confirmed that the jerk parameter plays an import-
ant role in stabilizing the traffic jam efficiently in sensing the f lux difference of leading sites. In addition,
in [32] a new model for following the chase by considering non-motorized vehicles on the traffic jerk was
proposed and it was found that this effect can increase traffic congestion. In a real-world driving environ-
ment, drivers often observe the surrounding traffic and adjust their speed according to their expectations.
For example, in [33] the traffic anticipation into the car-following model was introduced and a new car-
following model for traffic anticipation was proposed and the stability of traffic f low was studied. In [34],
the anticipation effects into the two-lane lattice model were introduced and the new model to effectively
suppress traffic congestion was obtained.

Up to now, there have been few studies on incorporating the driver’s jerk and anticipation into the con-
tinuum model. The traffic jerk and driver anticipation will have a significant impact on the traffic move-
ment. Therefore, this paper establishes a new macro traffic f low model considering both driver’s antici-
pation and the traffic jerk.

The Burgers equation, as a classical nonlinear development equation, originated from the turbulence
theory, which describes a viscous nonlinear transport problem and is used to study the phenomena of
surge waves and eddies, etc. In the field of traffic, the Burgers equation is used to describe the propagation
behavior of density waves. Before the formation of traffic congestion, nonlinear instability phenomenon
will inevitably appear, and various “traffic isolated waves” will appear. In [35], an improved lattice model
of traffic f low was proposed and the Burgers equation were derived to describe the density wave in the
steady zone, proving that the density difference has an important role in the lattice model. In [36], the
Burgers equation was derived for a new hydrodynamic model to describe the propagation behavior of the
traffic f low density wave in the stable zone. In [37], the triangular shock wave in the stable zone deter-
mined by the Burgers equation by the simplified uptake method was discussed, and it was proved that the
model has a positive role in reduction of local clusters.

In contrast to the Burgers equation, the Korteweg–de Vries–Burgers equation, which incorporates the
convective and viscous effects of the Burgers equation, as well as the nonlinear dispersion term, permits
to study more complex f luctuation phenomena, such as isolated waves and the stability of f luctuating
solutions, etc. In 1895, Dutch mathematicians Korteweg and De Vries have studied the motion of small-
and medium-amplitude long waves in shallow water, and jointly discovered a partial differential equation
of one-way motion of diving waves, called the Korteweg–de Vries equation. The Korteweg–de Vries–
Burgers equation has been proposed in the study of liquid f low with bubbles and liquid f low in elas-
tic pipes [38]. In [39], a modified velocity gradient model was proposed and the Korteweg–de Vries–
Burgers equation was derived to describe traffic f low near the neutral stability line, which proved that the
new model is able to simulate complex traffic phenomena, such as local clustering effects and so on.
In [40], an improved traffic f low model was used to derive the Korteweg–de Vries–Burgers equation near
the neutral stable line, indicating that the new model can detect the local clustering phenomenon under
certain conditions. In [41], the neutral stability condition in the improved macroscopic traffic f low model
was obtained and the Korteweg–de Vries–Burgers equation, that proves the rationality of the new model,
was derived.
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Most of the traffic f low models represent nonlinear equations with parameters, and the study of these
models reveals that when the parameters in the models change and cross a certain critical value, the qual-
itative nature of the traffic system also changes in nature. This is highly consistent with the sudden changes
among various traffic phenomena in real traffic, such as the free-flowing state, the vehicle stop-and-go
state, the steep traffic capacity reduction, the cluster effect, etc. This transformation between different
traffic f low states represents essentially the bifurcation behavior of traffic f low caused by various rea-
sons [42].

Bifurcation is a common class of nonlinear phenomena. For nonlinear dynamical systems, the bifur-
cation is a phenomenon in which the topology of the system’s motion trajectory changes in nature when
the system’s parameters change and cross a critical value. The research on the bifurcation behavior in traf-
fic f low can well explain various nonlinear phenomena in real traffic, and provide an effective theoretical
basis for guiding and developing the planning and control management of traffic systems, to fundamen-
tally alleviate and prevent traffic congestion. In [43], the existence of subcritical Hopf bifurcations was
established by showing the coexistence of stable and unstable solutions in the optimal velocity model.
In [44], a discrete form of the Payne model was derived and the phenomenon of period-doubling bifur-
cation and the transformation of traffic f low states in the model was investigated. In [45], the existence of
the generalized Hopf or Bautin bifurcations in the Kerner–Konhauser model was illustrated. In [46] the
conditions of existence of the Hopf bifurcation of the velocity gradient macroscopic model were derived,
the Hopf bifurcation types and their stability were studied, and the bifurcation theory was used to innova-
tively explain the nonlinear traffic phenomena in complex ground transportation systems. In [47], the
bifurcation analysis was taken into account in railroad models to explore the impact of Hopf bifurcation
limit cycles on improving railroad models. In [48], the bifurcation theory was used to analyze a heteroge-
neous traffic f low model considering transverse time headway. In [49], the existence of bifurcation in the
improved model was proved and the traffic phenomena caused by it were analyzed. However, there are
a few studies based on macroscopic traffic f low models to analyze traffic f low bifurcation phenomena,
and some literature only partially covers this aspect. The bifurcation analysis method has not been widely
used in traffic f low theory. Based on the background of the current realistic needs of highway traffic pre-
vention and control, there are problems such as frequent changes in the traffic operation state, the diffi-
culty in determining the mutation point, and the inability to control the mutation point effectively. There-
fore, it is of great theoretical value and practical significance to carry out stability modeling of road traffic
system and analyze the bifurcation behavior by using the bifurcation theory in nonlinear dynamics.

In the present paper, a macroscopic hydrodynamic model based on the optimal speed model was pro-
posed considering the effects of driver’s anticipation and traffic jerk. Linear and bifurcation analyses were
performed for this new model using linear and nonlinear theories. Neutral stability conditions were
derived using the linear analysis, and the Korteweg–de Vries–Burgers equation was derived to describe
variation in the traffic f low congestion density waves near the neutral stability line. In addition, the bifur-
cation theory within framework of nonlinear dynamics was applied to analyze the congestion and sudden
change in stability of the road traffic system caused by bifurcation.

1. MACRO TRAFFIC FLOW MODEL

Each vehicle has an optimal speed, which is determined by the distance between the vehicle itself and
the vehicle in front. Based on this concept, in [6] a very classic microscopic traffic f low model, called the
optimal velocity model, was proposed. The expression of the model can be written as follows:

(1.1)

where a is the sensitivity of a driver,  is the instantaneous speed of the vehicle n at time t,
 is the headway time distance between vehicle n and vehicle  at the instant ,

and  is the optimal velocity function defined as follows:

(1.2)

where Vmax and  are the maximum speed of the vehicle and the allowed safety distance, respectively.
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The driver’s anticipation  and the traffic jerk term are incorporated into the optimal velocity model,
at which point a new dynamics equation is obtained as follows:

(1.3)

where  is the speed difference between the front car n + 1 and the rear car n,  is the
jerk factor, represents the jerk effect term for the nth vehicle in traffic at time . Here,  represents the jerk
parameter, and τ represents the anticipation time. Equation (1.3) shows that the acceleration of the
nth vehicle at time t is determined not only by the velocity , but also by the anticipation time and
the traffic jerk.

Before deriving the continuous medium model, we perform the Taylor expansion on the microscopic
variables  and ignore the higher-order terms, i.e.

(1.4)

thus,  can be written as the following relation:

(1.5)
To facilitate the derivation, we first rewrite Eq. (1.3), i.e., write it in the form:

(1.6)

To transform the above micro traffic f low model into a macro traffic f low model, the following vari-
ables are introduced [50]:

where Δ represents the distance between two adjacent vehicles,  and  means the macroscopic
density and the velocity at position (x, t). By the density  and the average head time distance , we
define the equilibrium velocity  as well as have . Substituting the above macro vari-
ables into Eq. (1.6), we can derive the following equation:

(1.7)

Expanding Eq. (1.7) and neglecting the nonlinear terms, an approximation of Eq. (1.7) can be obtained
as follows:

(1.8)

The above equation is reorganized as:

(1.9)

The second term on the right-hand side of Eq. (1.9) is a simplification of the jerk factor, and the mixed
partial derivative can be thought of as  (where a denotes the acceleration), which responds to the
physical meaning of the jerk factor.

Combining the conservation equations, we obtain the new macroscopic continuous traffic f low model:
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2. LINEAR STABILITY ANALYSIS
First, a linear stability analysis is used to study the stability conditions of the shock wave. To facilitate

the analysis, we express Eq. (1.10) in the vector form:

(2.1)

where

(2.2)

(2.3)

The eigenvalues of A can be easily obtained by finding the roots of the following equation:

(2.4)

where  represents the unit matrix. Then the characteristic velocity is obtained as follows:

(2.5)

It is easy to conclude that the characteristic velocity  is lower than the macroscopic traffic
flow velocity . The speed of traffic f low in a high-density roadway will be lower than that in a low-density
roadway. Since the equilibrium velocity  is a monotonically decreasing function for the density, i.e.,

, this indicates that the model has the anisotropic property of the traffic f low.
Then the qualitative properties of the model are analyzed using the linear stability analysis. Consider-

ing that the traffic f low steady state is homogeneous, small perturbations are applied to the homogeneous
flow [51, 52]:

(2.6)

Substituting equation (2.6) into equation (1.10) and neglecting the nonlinear term for small perturba-
tions, we obtain:

(2.7)

(2.8)

The following equation can be obtained after some algebra:
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If there exists a non-zero solution to Eq. (2.9), then the determinant of its coefficient matrix must be
equal to zero:

(2.10)

so, we can obtain that  must satisfy the following quadratic equation:
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To ensure that Eq. (2.12) above holds, the first-order term ik and the second-order term  of the
power series must be equal to zero:

(2.13)

(2.14)

According to Eqs. (2.13) and (2.14) above, the coefficients of ik and  can be obtained as follows:

(2.15)

(2.16)

When , the traffic f low is stable, and the neutral stability condition is as follows:

(2.17)

(2.18)
From Eq. (2.18), it can be deduced that the propagation speed of the disturbance is equal to

(2.19)
this is consistent with the kinematic wave velocities mentioned in the literature [53].

3. NONLINEAR ANALYSIS
3.1. Korteweg–de Vries–Burgers Equation

In this section, the Korteweg–de Vries–Burgers equation is derived, and isolated wave solutions are
found. Based on the characteristics of the new model, we will perform the following derivation.

To study the properties of the model under the neutral stability conditions, a new coordinate system
is introduced [54]:
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Substituting Eq. (3.1) into the new model (1.10), we can obtain:
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The second-order Taylor expansion for the traffic f low q can be expressed as follows:
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Since neither ρz nor ρzz is zero, the coefficients of ρz and ρzz in Eq. (3.6) must be equal to zero, so that
the parameters  and  can be obtained as follows:

(3.7)

Taking  near the neutral stability condition, and performing the second-order Taylor
expansion in terms of , we obtain

(3.8)

then, combining Eqs. (3.8) and (3.3) and transforming  into , we finally obtain

(3.9)

To convert Eq. (3.9) into the standard Korteweg–de Vries–Burgers equation, the following transfor-
mations need to be introduced:

(3.10)

Next, substituting Eq. (3.10) in Eq. (3.9), we obtain the standard Korteweg–de Vries–Burgers equa-
tion shown below:

(3.11)

An analytical solution of the above Korteweg–de Vries–Burgers equation is as follows:

(3.12)

where  is an arbitrary constant.

3.2. Types of Equilibrium Points and Their Stability
Essentially, instability is a physical prerequisite for bifurcation to occur. Therefore, before the bifurca-

tion analysis, we can study and analyze the equilibrium solution of the improved continuous medium
model. In this section, the equilibrium point is investigated through the substitution of traveling wave in
the system, and the phase plane near the equilibrium point is plotted. The equilibrium points are com-
pared to be able to better reflect the changes in the stability near different equilibrium points.

Assume that the model has solutions  and  in the form of a traveling wave, where 
and the traveling wave velocity c < 0. Substituting them in Eq. (1.10), we can derive the following equa-
tions:
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The following expressions can be obtained from Eq. (3.13):
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Substituting  and  in the above Eq. (3.14), we have

(3.17)

Integrating Eq. (3.13) in respect to z, we obtain

(3.18)

To facilitate the calculation, we carry out the conversion of the equation.

(3.19)

Substituting Eq. (3.19) in Eq. (3.17), the following expression can be obtained:

(3.20)

The second-order ordinary differential equation for  can be obtained after some algebra

(3.21)
where

(3.22)

(3.23)

Setting , Eq. (3.21) can be transformed into a nonlinear dynamical system in the form of a sys-

tem of first-order ordinary differential equations as shown below:

(3.24)

Letting the right end term of the system of equations (3.24) be equal to zero, we can obtain that 
and , from which we can determine its equilibrium point ( ). Performing the Taylor expansion of
the system of equations (3.24) at the equilibrium point ( ), we can obtain the following linear system:

(3.25)

At the equilibrium point ( ), the Jacobian matrix of the system (3.24) can be obtained as follows:

(3.26)

therefore, the corresponding Jacobian characteristic equation takes the form:

(3.27)
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Introducing the notation  and , from Eqs. (3.22) and (3.23) we can
obtain the following results:

(3.28)

(3.29)

Since F = 0 at the equilibrium point, it follows that , so  can be written as:

(3.30)

The type of the equilibrium point of the system can be determined based on the qualitative theory of
differential equations: (a) when , the equilibrium point is the saddle point; (b) when 
and , the equilibrium point is the node; (c) when  and , the equilibrium point
is the focal point; (d) when  and , the equilibrium point is the core center. As , the
linear systems are unstable at the saddle point; when  (or ), the stability at the node or focal
point is steady, as  (or ).

From the Hartman–Grobman linearization theorem [55] it follows that the nonlinear system (3.24)
has the same equilibrium points as the linear system (3.25). For the equilibrium point which is not the
center, the stability situation at the equilibrium point is the same as that for the nonlinear system (3.24)
and the linear system (3.25). The equilibrium point  of the linear system (3.24) can be solved
when given any set of values of the traveling wave velocity c and the traveling wave parameter  The equi-
librium velocity function proposed in the literature is taken as follows [56]:

(3.31)

where Vf is the free-stream flow velocity and  is the maximum or the congestion density.
The values of each parameter in the model are given below:

Through the derivation of the model, equations (3.22) and (3.23) are obtained that can be used to solve
and determine the type and stability of the equilibrium point of the system. As shown in Table 1, the equi-
librium point is represented by the following equation, and we choose two sets of parameters from the
table to model the stability of the nonlinear system (3.24) at the equilibrium point .

Figure 1a corresponds to the first case in Table 1. There are three equilibrium points, where ( ) and
( ) are the saddle points, and, as , the trajectory in its vicinity is far from the point, at which
time the system is unstable. In this case, ( ) is the spiral point, and several spiral trajectories near the
saddle point converge to ( ) as , indicating that the system is stable at this point as ;
as , these trajectories move away from the spiral point and eventually converge, indicating that the
system is unstable at that point again and can be seen as a saddle-point-spiral-point-saddle-point solution
of the system. The trajectory in the phase plane shows the distribution of saddle plane curves near the sad-
dle point. The area between the two points is determined by the interaction of the spiral and saddle points,
and the trajectory shows a combination of the spiral and saddle curve distributions.

Figure 1b corresponds to the second case in Table 1. As can be seen from this figure, there is only
a single equilibrium point. The spiral trajectory from (0.049, 0) tends to ( ), as , indicating that
the system is stable; as , the trajectory is far from ( ), and the system is unstable. Further study
shows that the spiral trajectory starting from (0.045, 0) converges very closely to the periphery of the spiral,
as shown in Fig. 1b, and the trajectory trend is consistent as . The results show that there exists
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Table 1. Types of equilibrium points and their stability for a given model parameter, , i = 1, 2, 3

0.0065

, saddle point, unstable 
for 

0.0938
  spiral point, 

stable for  unstable 
for 

0.1447
, saddle point, unsta-
ble for 

0.0594
, spiral point, sta-

ble for , unstable for 

= +2Δ 4 'i ii G F

ρ1 ρ2 ρ3

( ) ( )= −0, 1.371,0.2*c q
> 0'iF

→ ±∞z

<Δ 0,i < 0,iG
→ +∞,z

→ −∞z

> 0'iF
→ ±∞z

( ) ( )= −0, 1.38,0.64*c q
< <Δ 0, 0i iG

→ +∞z
→ −∞z
a limit ring at the junction of this spiral with the periphery and the orbit tending to ( ) can be regarded
as the limit-ring spiral point solution.

3.3. Stationary Solution for Traffic Flow

When the traffic system reaches a balanced and stable state, the vehicle density and speed on the entire
road section do not vary with time. Especially when the traffic system reaches some special equilibrium
point, the density and speed values on the whole road section will not vary with change in time and road
section, and then two static solutions will appear.

The first is the low density and high-speed traffic f low. In this state, there are a few vehicles, and the
traffic is smooth. The acceleration and deceleration of a single vehicle does not affect the running of other
vehicles or the overall road condition. The second type is the high-density and low-speed traffic f low.
In this state, the car speed is slow, the traffic f low density is large, the workshop distance is small, and the
speed of a single vehicle will be consistent with the front car as far as possible during the journey. The over-
all traffic f low keeps a low speed to form a stable traffic f low. To discuss the stability of these two static
solutions, the equation for the equilibrium point of the system is analyzed in this subsection.

First, we carry out the traveling wave substitution for model (1.10). Suppose the model has a traveling
wave solution ρ(z) and , where  and traveling wave velocity c < 0. System (1.10) is replaced
by traveling wave to obtain the following formula:

(3.32)
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Fig. 1. Trajectories in the  phase plane with the parameters: (a)  and  = 0.2; (b) c = –1.38 and
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When the system reaches equilibrium and does not change over time, the expression is as follows:

(3.33)

The system of equations (3.33) can be converted to

(3.34)

Because , we have   and  . Substituting (1.10) gives the following formula,

(3.35)

hence we have .
From this we can conclude that when the traffic f low reaches a balanced state, the density and the

speed on the entire road section do not change with time or with the change in the road section, the vehicle
speed at this time has the density corresponding to the equilibrium speed. Under actual traffic conditions,
if the initial density on the road section is a uniform density and the vehicle speed is less than the equilib-
rium speed, the speed will gradually increase to the equilibrium speed and then remain unchanged. On the
contrary, if the initial speed is greater than the equilibrium speed, the vehicle speed will gradually decrease
to the equilibrium speed and then remain unchanged. The densities along road segments also do not vary
over time.

3.4. Bifurcation Analysis—Proof of the Existence of Hopf Bifurcation Conditions

Lemma 1 [57]: Consider a system of the form , where  is a variable parameter.
If  satisfies the balance condition , let , and the eigenvalues of the
system be  further, if the system satisfies the following conditions: , , and

, then the system has a Hopf bifurcation at .

For the nonlinear dynamical system (3.24), let  be a variable parameter that has equilibrium points
 for all . At the equilibrium point, the derivative operator matrix L is also the Jacobian matrix of

the system at the equilibrium point, as follows:

(3.36)

Let its eigenvalue be , , then its characteristic equation is:

(3.37)

Let the pair of complex eigenvalues of this equation be . By solving the characteristic
equation, we have:
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(3.39)

(3.40)

Let ,

(3.41)

Thus, we can obtain,

(3.42)

at the same time,

(3.43)

From Eq. (3.42), we have:

(3.44)

Since , then we have , when . At this point, the system has
a Hopf bifurcation at .

3.5. Bifurcation Analysis—Proof of the Existence of Saddle-Node Bifurcation Conditions

Lemma 2 [58]: Consider the system , where λ is a variable parameter. If (x0, λ)
satisfies the balance condition , set . Let α and β be the left and right
unit eigenvectors of L, respectively, then  and . Then  is a saddle-node type bifurcation of
the system when the following conditions are satisfied:
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For any small , the approximate expression for its solution curve near  is as follows:

(3.47)

For the system (3.24), let  be a variable parameter and the derivative submatrix at the equilibrium
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(3.48)

Substituting the variables  and  in Eqs. (3.45) and (3.46), we obtain:

(3.49)

When , the system (3.24) has a saddle-node type bifurcation at .

4. NUMERICAL SIMULATION

4.1. Simulation Considering the Effect of the Initial Density on Traffic Flow

To verify that the newly proposed model can reproduce the stop-and-go phenomenon of real traffic
flow at various initial densities, we select traffic f lows at various initial densities for simulation experi-
ments. A small local perturbation is added to the homogeneous traffic f low, and then the small perturba-
tion is scaled up so that the stop-and-go phenomenon can be clearly expressed. Considering the case of
adding a small local perturbation to the initial uniform traffic f low, the expression for the initial density
is given as follows [10]:

(4.1)

(4.2)

where  is the initial density,  is the disturbance density, L = 32.2 km is the section
length, and the dynamic critical condition is given as follows:
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Fig. 2. Spatial and temporal evolution of density waves at various initial densities ρ0: (a) , (b) , (c) , and
(d) .
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To facilitate the simulation, the spatial spacing is taken as equidistant 100 m and the time interval
is taken to be equal to 1 s. The other parameters in the model are taken as follows:

(4.3)

When the parameters are taken as above, the critical densities of the model are equal to  and
, i.e., the traffic f low is linearly unstable when the initial density is in the range of

.

In Fig. 2 we have reproduced the numerical results at various initial densities. The density f luctuations
occur at  (Fig. 2a) but they are relatively stable. As the initial density increases, the
amplitude of the traffic wave also gradually increases. When  (Fig. 2b), a stop-and-go
phenomenon takes place. Moreover, when the density reaches  (Fig. 2c), the traffic
density is similar to the solution described by the Korteweg–de Vries–Burgers equation. Finally, Fig. 2d
shows that the steady state will be reached again when the density is greater than .
From Figs. 2a–2c it follows that the density wave f luctuates substantially with increase in the traffic den-
sity. After reaching 0.080 veh/m, the traffic density reaches the upper boundary. If the density is slightly
greater than 0.080 veh/m, the density wave will not amplify and the density wave will eventually disappear.
This indicates that the road is more congested under the higher traffic volumes and a small increase in ini-
tial density cannot produce density f luctuations in the overall traffic f low. According to the numerical
simulation results, the traffic f low is unstable in the region of  veh/m.

= = = = =10 s, 30 m/s, ρ 0.2 veh/m, τ 4 s, and  λ 0.4.f mT V

0.045 
0.070 veh/m

< <00.045  ρ 0.070  veh/m

=0ρ 0.038 veh/m
=0ρ 0.052  veh/m 

=0ρ 0.070  veh/m

=0ρ 0.080  veh/m

< <00.038 ρ 0.080
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Fig. 3. Evolution of a small perturbation with consideration of various anticipation time τ. (a) τ = 0, (b) 2, (c) 4.3, and
(d) 6 s, when λ = 0.3 at .
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4.2. Impact of Various Expected Times on Traffic Flow
To investigate the effect of anticipation time on traffic f low, the following will illustrate the effect of

anticipation time on the stability of traffic f low by comparing and analyzing various anticipation times
while keeping the values of other parameters constant.

Figure 3 shows the evolution of small perturbations when considering various expected times  to find
the effect on the stability of the system when the expected time is at a fixed value of λ. In the real-world
driving environment, the drivers regulate their travel speed by observing the traffic conditions. From the
density-time diagram, the density wave is gradually dissipating as the anticipation time τ increases, which
indicates that the anticipation effect plays a positive role in the traffic f low stability. The time available to
observe traffic conditions becomes longer, and the drivers have plenty of time to adjust their speed.

As shown in Figs. 3a and 3b, the density f luctuation region indicates that the vehicle is in a local block-
age state, and the density stabilization region indicates that the vehicle is running freely. In the case of
short anticipation time, the drivers are unable to effectively observe the traffic conditions, resulting in fre-
quent stop-and-go motion of vehicles to produce f luctuations, resulting in a local congestion in the lane,
indicating that the smaller the anticipation time, the more obvious its effect on the traffic “bottleneck.”
In Figs. 3c and 3d, the anticipation time is assumed to be relatively long, and the driver can adjust the
speed comfortably. As the anticipation time increases, the range of density f luctuation becomes weaker

τ
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Fig. 4. Evolution of a small perturbation with consideration of various λ: (a) λ = 0.2, (b) 0.6, (c) 1.2, and (d)  2, when
τ = 4 s at .
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and the traffic f low tends to be stable, which indicates that the anticipation effect plays a positive role in
the traffic f low stability. Therefore, it can be concluded that the expected effect can effectively reduce traf-
fic congestion.

4.3. Influence of Various Jerk Parameters on Traffic Flow
Figure 4 shows the evolution of the small perturbations, and the subsection considers various jerk

parameters to find the influence of the jerk factors on the system stability. In this part,  is a fixed value
and is taken as . Figure 4 shows that the density wave becomes very smooth, and the f luctuations
are smaller as the jerk parameter  increases sequentially. So, the jerk plays a positive role in the stability
of traffic f low. We can argue that, as compared to the Bando model, considering the jerk effect is effective
in mitigating the drastic density f luctuations to a certain extent. The conclusion is shown that traffic jams
can be suppressed considering the influence of .

4.4. Bifurcation Analysis
When various parameter values are chosen, system (3.24) has different equilibrium points, and the

Hopf bifurcation and the saddle-node bifurcation will also differ depending on the equilibrium point.
In this section, taking the equilibrium solution of the new model as an example, we can use the software
package MATCONT to obtain various system bifurcations by taking different parameters as the continu-
ous variable parameters of the system. The MATCONT is based on the visualization function of
MATLAB, which computationally depicts the equilibrium point curves, the limit loops, the doubly peri-

λ  τ
= τ   4 s

λ

λ
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Fig. 5. Bifurcation diagram of  under appropriate parameter intervals.
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odic bifurcations, the periodic orbits, the homogeneous orbits and detects various bifurcation points of the
system for a system of ordinary differential equations with parameters, such as the Hopf bifurcation, the
limit point bifurcation, the limit point bifurcation of cycles, the bifurcation point, the period doubling
bifurcation, the cups bifurcation, the Bogdanov–Takens bifurcation, the generalized Hopf bifurcation, etc.

Here, an equilibrium point  from Subsection 3.2 is used as an example, and the
parameter  is taken as a variable parameter with an initial value equal to 0.2. We can obtain four special
points including two Hopf bifurcations and two limit point bifurcations. This is shown in Fig. 5.

Firstly, the Hopf bifurcation point is selected as the starting point of the bifurcation calculation. When
 is equal to 0.469940, and the state variable of Hopf bifurcation is (0.067754). It indicates that the vehi-

cle density is equal to , two characteristic values are equal to –1.3452e – 05 + 0.40864i
and , respectively. Here, the real part of this pair of conjugate eigenvalues is
equal to zero, which is an important condition to determine it as a Hopf bifurcation. Similarly, when  is
equal to 0.197550, the state variable of Hopf bifurcation obtained is (0.094455), indicating that the vehicle
density is , two characteristic values are equal to –7.7074e + 0.50039i and –7.7074e –
0.50039i, respectively.

Then the limit point is taken as the starting point of the bifurcation calculation. When the value of is
taken as 0.891695, the limit point state variable is (0.040665), indicating that the vehicle density

 veh/m at this time, and two eigenvalues are equal to 6.1428e–05 and –0.098992, respec-
tively. Here, the latter eigenvalue is equal to zero, which is the marker to determine it as a limit point bifur-
cation. Another eigenvalue with a negative real part indicates a stable limit point (the saddle junction
bifurcation point). Similarly, when the value of  is taken to be equal to 0.172588, the limit point state
variable is (0.112377), indicating that the density of the vehicle  veh/m at this time, and two
eigenvalues are equal to 2.1231e–05 and –0.018227, respectively. Another eigenvalue with a negative real
part indicates a stable limit point (the saddle junction bifurcation point). Substituting the value of  in
the equation for , we get . The equation  satisfies the
derivation of the saddle-node bifurcation condition of the model, which illustrates the consistency of the
theoretical analysis with the numerical results.

Next, the stability of the traffic system is analyzed when the parameters are taken as some of the bifur-
cation thresholds calculated above. The effect of the Hopf bifurcation on the traffic f low is illustrated by
observing the change in the stability of the phase plane diagram of the system as the parameter  passes
through the values 0.469940 and 0.197550.

We will first examine the change in bifurcation at 0.469940. Here, the parameter  for param-
eters less than 0.469940 and  for parameters greater than0.469940 are taken.

( ) ( )=1ρ ,0 0.0065,0

*q

*q
ρ =0 0.067754 veh/m

− − −1.3452e 05 0.40864i

*q

ρ =0 0.094455 veh/m

*q

=0ρ 0.040665

*q
=0ρ 0.112377

0ρ
( )− 2

0 0ρ ' ρV e ( )− =2
0 0ρ ' ρ 0.172588V e ( )= − 2

0 0 0ρ ' ρ*q V e

*q

= 0.45*q
= 0.47*q
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Fig. 6. Phase plane diagram when the parameter  passes through the Hopf bifurcation: (a)  and (b) .
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Fig. 7. Space-time plot of the density with the Hopf bifurcation as the initial value.
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Figure 6a shows that there is an equilibrium point (0.067751, 0) when the parameter .
The curve on the left tends to the point (0.067751, 0) and is attracted to it, forming a spiral source. Thus,
the system is stable close to (0.067751, 0) and unstable far from (0.067751, 0). Figure 6b shows that a spiral
track from (0.056, 0) converges to the focal point (0.068842, 0) as  and eventually evolves into an
equal amplitude oscillation as  when the parameter . However, the other spiral
orbital curve is very close to the outside of the above equal amplitude oscillation region as  and
tends to infinity as . Therefore, there is a periodic solution between the two tracks. Thus, no new
equilibrium point emerges at the Hopf bifurcation point, but a periodic solution is generated. These the-
oretical analyses are also consistent with the numerical results obtained above.

When , a limit point bifurcation of cycles appears with the first Lyapunov exponent of
7.750918e + 02. This exponent is greater than zero, so this Hopf bifurcation is in the sub-critical state and
the limit circle is unstable. We can also see the effect of the Hopf bifurcation in the spatial and temporal
evolution of the density of traffic f low, as shown in Fig. 7.

The complex phenomenon in congested traffic f low can be easily explained by the evolution of the
density time and space diagram over time. The effect of the Hopf bifurcation on traffic f low can be clearly
reflected by choosing the state variable (  veh/m) of the Hopf bifurcation point as the initial
density of the density time and space diagram. According to the property of theb Hopf bifurcation, the
system generates a periodic solution from the equilibrium point when the parameter passes through the
bifurcation point. Since the initial density values at this point are in the unstable range of the model, small
perturbations on the initial uniform density are amplified, as shown in Fig. 7, and subsequently evolve into
dense oscillations, which are consistent with the characteristics of the solution of the limit loop.

> 0.469940*q

→ +∞z
→ −∞z > 0.469940*q

→ −∞z
→ +∞z

= 0.469940*q

=0ρ 0.067754
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Fig. 8. Phase plane diagram when the parameter  passes through the Hopf bifurcation: (a)  and (b) .
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This shows that in the case of initially uniform traffic f low, the small disturbance changes to go-stop waves
when the parameter is taken as the Hopf bifurcation point state variable and shows that the obtained con-
clusion is consistent with the actual phenomenon as well as the numerical calculation results, which also
verifies the correctness of the theoretical analysis.

Then we analyze the change in bifurcation after 0.197550; here, we take the parameter  for
less than 0.197550 and  for more than 0.197550.

Figure 8a shows that there is an equilibrium point (0.094915, 0) when the parameter .
The curve on the right side tends to the point (0.094915, 0) and is attracted by it, forming a spiral source.
Thus, the system is stable near the point (0.094915, 0) and unstable far from the point (0.094915, 0).
Figure 8b shows that a spiral track from the point (0.082, 0)converges to the focus (0.094325, 0) as

 and eventually evolves to equal amplitude oscillation as  when the parameter
. However, the other spiral orbital curve is close to the outside of the above equal amplitude

oscillation region as  and tends to infinity as . Therefore, there is a periodic solution
between the two tracks. Thus, no new equilibrium point emerges at the Hopf bifurcation point, and a peri-
odic solution is generated.

When , a limit point bifurcation of cycles appears with the first Lyapunov exponent of
2.535825e + 02. This exponent is greater than zero, so this Hopf bifurcation is in the sub-critical state, and
the limit ring is unstable. We can also see the effect of the Hopf bifurcation in the spatial and temporal
evolution of the density of traffic f low.

To study the stability mutation of the system after the saddle-node bifurcation, two saddle-node bifur-
cations of the model are analyzed separately.

Initially, we will study the bifurcation point . When , let , at this
point the system has a nodal sink (0.10592, 0) and a saddle point (0.11997, 0), as shown in Fig. 9a. At this
point, the trajectory inside the red line is close to the nodal sink, and the trajectory near the saddle point
is far from the nodal sink. Thus, the system on the left side of the red line is stable, while the system on the
right side of the red line is unstable.

As the value of  decreases, the nodal sink and the saddle point gradually move toward the middle.
When  takes the value of 0.172588, a strange phenomenon occurs, as can seen in Fig. 9b, namely, the
two equilibria seem to merge into a new higher-order equilibrium at the point (0.11238, 0), so the saddle-
node bifurcation occurs. Currently, the linear system has a zero eigenvalue. The trajectories within the red
line converge at this point, so the traffic system is stable at this location. When  decreases to 0.16, the
equilibrium point disappears, as shown in Fig. 9c, and all solutions move to the right. The results show
that the traffic system becomes unstable.

Then the effect of the limit-loop bifurcation on traffic f low is investigated when . When
, the system has two equilibrium points at this point, a saddle point (0.033662, 0) and

a focal point (0.047636, 0). As shown in Fig. 10a, the curve on the right side of the red line tends to the

= 0.196*q
= 0.198*q

< 0.197550*q

→ +∞z → −∞z
> 0.197550*q

→ −∞z → +∞z

= 0.197550*q

= 0.172588*q > 0.172588*q = 0.175*q

*q
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FLUID DYNAMICS  Vol. 58  No. 8  2023



1414 AI et al.

Fig. 9. When parameter q passes through the limit point bifurcation point, the phase plane diagrams of ,
, and  (a) , (b) , and (c) .

0.010

0.005

�0.005

�0.010

0

(a) (b)

(c)
0.09 0.10 0.120.11 0.140.13

�
0.10 0.11 0.12 0.140.13

�

0.10 0.11 0.12 0.140.13
�

d�
/d

z

0.010

0.005

�0.005

�0.010

0

d�
/d

z

0.010

0.004
0.002

0.006
0.008

�0.004
�0.006
�0.008

�0.002

�0.010

0

d�
/d

z

> 0.172588*q
= 0.172588*q < 0.172588 :*q =*  0.175q  0.172588 0.16
point (0.047636, 0). The traffic state on the right side of the red line is stable. On the contrary, the traffic
state on the left side of the red line is unstable.

With increase in , the distance between two equilibrium points keeps shrinking, and when  takes
the value of 0.891695, the two points synthesize a new equilibrium point at (0.040665, 0), so the saddle-
node bifurcation appears as shown in Fig. 10b. When the value of  continues to increase, the equilibrium
point disappears and all solutions move to the right, as in Fig. 10c, at which point the whole system
becomes unstable.

4.5. Actual Measurement

In this subsection, we will further verify the stability of the static solutions of two traffic f lows through
the measured data.

In this paper, the measurement method is as follows: a fixed camera above a certain road section is used
to capture the traffic f low for a long time, and video software is used to capture the captured video into a
single frame image arranged by frame. The traffic video is divided into consecutive single frame images,
each image is separated by one second. The traffic data such as the vehicle position, the headway and the
speed are extracted from each image. We used the method employed in [59] to extract the traffic data.

First, select any frame picture, for each row of pixels in the picture, each row of pixels must be mapped
to the actual distance it represents according to the actual situation. Since the camera has a tilt angle, the
angle between each adjacent scan line is equal to α, the corresponding unequal distance in the actual
section, after the camera imaging, respectively corresponding to each row of pixels in the image, that
is, there is an equal image distance. This shoot is located at the western overpass of the Second Ring
South Road in Xi’an. This section traffic video taken by visible link https://pan.baidu.com/s/1zphCxA-
tO4PTuK5q0vTmiow?pwd=hg66. Figure 11 is used as an example to illustrate the above extraction
method. The calculation principle is shown in Fig. 12.

*q *q

*q
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Fig. 10. When parameter q passes through the limit point bifurcation point, the phase plane diagrams of ,
, and . (a) , (b) , and (c) .
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Fig. 11. Video screenshot of the overpass on the west side of Second Ring South Road in Xi’an City.
In Fig. 12, H is the height of the camera above the ground. In our case, H = 5.5 m. Point A is located
vertically below the camera. Our measurement cross-section starts at point B corresponding to the pixel
(294, 480) at the bottom of the right lane line in Fig. 11 and ends at point C corresponding to the pixel
(300, 226) at the top of the third right lane marking line in the figure. The distance between points A and
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Fig. 12. Actual corresponding camera installation position and imaging schematic diagram.
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B is equal to 13.5 m. We set it to lf and the distance between points B and C is equal to 28 m, which cor-
responds to 254 pixels. So, we have:

(4.4)

(4.5)

Each row of pixels corresponds to a viewing angle of

(4.6)

Setting the pixel value of each row as C, the actual distance corresponding to each row on the image is
equal to . Meanwhile, the traffic data such as the position, the headway and the speed can
be extracted from each frame image.

We selected a set of high-density, low-speed steady-state traffic for validation, and studied ten consec-
utive sets of vehicles, obtaining 265 sets of data. It is worth pointing out that these consecutive vehicles
with an average speed of 5.73 m/s were collected from the same lane for consecutive periods of time, so
they are suitable for assessing non-congested traffic conditions.

Figure 13 shows change in the position of the vehicle under test, with the front vehicle and the rear
vehicle represented by V1 with blue line and V2 with red line, respectively. The vehicle displacement is
proportional to time, so the velocity is constant, at which point it does not change with time. As can be

= =θ arctan 67.86806039,fl
H

( )( )= + =1θ arctan 28 13.5 /5.5 82.4923983621193.

−= =1θ θα 0.0575761337398544.
254

( )+tan θ αH C
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Fig. 14. Density-time scatter plot.
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seen from Fig. 14, with increase in time, the traffic density f loats between 70 and 142 veh/km, and the
traffic density does not vary with time. From the above two figures, it can be seen that the density of vehi-
cles is relatively high and the speed is relatively slow. Currently, the density and speed of traffic f low do
not change with time. This state conforms to the stable state of high-density and low-speed traffic f low.

SUMMARY

In this paper, the jerk term representing sharp changes in the acceleration and deceleration speeds in
real traffic is added to the conventional optimal velocity model, while the driver’s anticipation effect is also
considered. A new macroscopic continuous traffic f low model is developed by applying the relationship
between microscopic and macroscopic variables based on the improved microscopic car-following
model. Then, the linear and nonlinear stability of the model are analyzed, and the neutral stability con-
dition and the Korteweg–de Vries–Burgers equation which can be used to describe the evolution of traffic
flow density waves are obtained. Then the effect of driver’s anticipation and traffic jerk on the stability of
traffic f low in the new model is verified by simulation of the density time and space diagrams. In addition,
the type and stability of equilibrium solutions are discussed using the bifurcation analysis method.
The theoretical and numerical validations of each other are given. Using the Hopf bifurcation and the sad-
dle-node bifurcation as the starting point, the traffic phenomena such as sudden change in stability on
roads are better explained by plotting the density time and space diagram and phase plane diagram of the
system. The bifurcation analysis of the model reveals that the stability of the system changes abruptly when
the values of the parameters of the system vary and span the values of the Hopf bifurcation point and the
saddle-node bifurcation point. Therefore, the study of bifurcation behavior in traffic f low can well explain
various nonlinear phenomena in real traffic and provide an effective theoretical basis for guiding and
developing the planning and control management of the traffic systems, to achieve the purpose of funda-
mentally alleviating and preventing traffic congestion.
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