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Abstract—A uniform motion of a disk in horizontal direction along its axis of symmetry in a stratified
viscous f luid at rest is studied. The disk generates three-dimensional internal gravity waves occupying
the entire volume between the disk and the location of its start. The waves are observed using two-
color, beta-plus visualization of the vortex f low structure calculated within the framework of the sys-
tem of Navier–Stokes equations in the Boussinesq approximation. The results of the study complete
considerably the earlier-published mechanism of the formation of half-waves above the axis of sym-
metry of the disk, where emphasis was placed on the periodic process of generation of deformed vortex
rings above the location of the disk start. Their generation is due to gravitation and shear instabilities,
when the left semi-ring is transformed into a half-wave of depressions or crests, while the right one
vanishes with time. In this paper it is established that the left parts of the right odd semi-rings are trans-
formed into the axial parts of the crest half-waves.
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The understanding of the process of formation of complicated three-dimensional (3D) vortex struc-
tures in f luids initiated by the motion of a body of finite dimensions throughout the f luid has always
aroused a great interest. One of the ways of obtaining these complicated 3D structures was the visualiza-
tion of the velocity vector fields calculated using the mathematical modeling of this process. If the case of
a sphere, as the simplest 3D body of finite dimensions, in a homogeneous incompressible viscous f luid is
considered, then the topology of the 3D vortex structure is fairly complicated. In 1987 the onset of the for-
mation of a chain of vortex loops in the wake behind a sphere was visualized in [1] using several instanta-
neous 3D vorticity lines. This process is fairly laborious, since the initial point on any of this lines should
be reasonably preassigned. Due to the appearance of new approaches to the visualization of vortex struc-
tures in liquids and gases in the years 1988–1995, as described in [2], it became possible to obtain the cal-
culated 3D vortex structures in the wake behind a sphere [3, 4], whose topologies were in qualitative agree-
ment with the experiment [5]. In 2006 the vortex formation mechanism (VFM) was first considered in
detail in the wake of a sphere in uniform motion in a homogeneous incompressible f luid; it leads to the
formation of a chain of vortex loops in the form of hairpins [6]. In this case, the VFM works in the recir-
culation region R of the wake located behind the sphere (Figs. 1g, 1h).

In the case of an incompressible viscous f luid linearly stratified with respect to the density the field of
fluid velocity vectors is symmetric about the horizontal plane passing through the geometric center О of
a convex symmetric body. For this reason, for the sake of definiteness the dynamics of the variation of the
stratified f luid f low structure is described only in the upper half-space, above point О. Let point F be
above point О at the intersection of the body surface and the vertical upward X axis passing through
point О. For example, for the sphere the point F is its upper pole. In [7] the sphere lies at rest on the neutral
buoyancy level in a stratified viscous f luid at rest. In spite of the fact that the diffusion forces push the f luid
to all directions and due to the fact that many parts of the spherical surface lie at an angle to the horizon,
diffusion-initiated f luid f lows directed to point F are initiated at X > 0 near these parts. This f low is very
slow and axisymmetric about the X axis. In [7] it was shown that in the vicinity of the line X a new axisym-
metric vortex ring is peridically generated above the uppermost ring due to gravity and shear instabilities.
This ring reduces the vertical dimensions of the earlier-generated rings. Any pair of rings represents one
interal gravity wave. The group velocities of these waves are perpendicular to their phase velocity and are
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Fig. 1. Flow over a disk at T = 1.5, Fr = 0.3, Re = 50, and Tb = 2π s; (a, b, i) are the isosurfaces ω+ = |curl v|+ = ±0.01,
β+ = ±0.01, β = 0.2; (c, d, j) are the isolines ωϕ = (curl v)ϕ with the step 0.02 (c) and β+ with the step 2 × 10–3 (d) in the
vertical x–z plane and β+ with the step 0.04 in the y–z plane (j); (e–h) are the instantaneous streamlines in
CS3 (0, –0.01, 0) at 0 ≤ x ≤ d/2 and in the CS3 (0.973, 0.005, 0) at x > d/2, respectively (e), in CS2 (f) and in CS1
in the x–z (g) and y–z (h) planes. 
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directed along the radii-vectors from point F [7]. Further on only two vortex rings strongly f lattened in the
verical direction remain near point F; they could be observable in the experiment [7]. Thus, the brief for-
mulation of the VFM in [7] is as follows: “rings fall on point F .”

If a sphere is replaced by a disk with the horizontal axis of symmetry Z, then diffusion induces a f luid
flow only near the lateral surface of the disk [8]. For this reason, in [7] the singular point F is a node,
whereas in [8] it is a saddle. In [8] it is deformed vortex rectangles rather than rings that fall at first
on point F. Then the vortex structure of the f low becomes increasingly chaotic.

In this study, we consider the uniform right-to-left motion of a disk along the Z axis taken from
paper [8]. Let Q be the location, where the center of the backward side of the disk starts its motion.
In Figs. 1c–1f the point Q is at the intersection of the black vertical line and the Z axis coinciding with the
lower boundary of the figures. It is known from the linear theory and experiments that the body start is
accompanied by radiation of a bundle of time-dependent internal gravity waves propagating from point Q
along the radii-vectors [9, 10]. The mathematical modeling makes it possible to investigate in detail this
process of wave bundle radiation by studying in detail the dynamics of the 3D vortex structure of the f luid
flow. The detailed description of this process was given in [11]. First, two vortex filaments f1 are formed
between the disk and point Q; then they are transformed into the legs of the vortex loop –1, whose head
end –1 is located to the right of Q (Fig. 2f). Then the deformed vortex rings k are periodically generated
above Q; here, k = 2, 3, 4 …. Thus, the brief formulation of the VFM in [11] is as follows: “Deformed rings
fall on point Q.” Thus, the brief formulations of the VFM in papers [7] and [11] are essentially the same.
FLUID DYNAMICS  Vol. 58  No. 4  2023
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Fig. 2. Flow over a disk at Re = 50 and Tb = 2π s; (a, b) are the isosurfaces (β–) = 2 × 10–3 and (λ2–) = –3 × 10–6

at x < 0, Fr = 0.8, and T = 1.51; (c–e) is the schematic representation of the β isosurfaces at x > 0, Fr ≤ 4, and 0.28 ≤
T ≤ 1.4: side view at the top and bottom view at the bottom;  (f) is the isosurface β = 0.003 at Fr = 4 and T = 0.28; (g) is
the time dependence of the drag coefficient Cd of the disk at Fr = 0.3; the numbers k are associated with the time

intervals [0.5Tb(k – 1), 0.5Tbk].
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Here, an important difference that exists between the VFMs for homogeneous and stratified f luids
should be emphasized. While in a homogeneous f luid vortex f low structures are formed directly behind
a body [6], in a stratified f luid they appear above the location of the body start [11].

In [11] much attention was given to the explanation of the mechanism of vortex ring formation above
point Q, which is due to gravity and shear instabilities. As shown in [11], the left semi-ring k transforms
into a half-wave of depressions and crests, while the right semiring –k vanishes with time. The point is
that the f luid whirlpool initiated by the disk start makes the left semi-rings to rotate more intensely than
the right ones. As a result, the dimensions of the left semi-rings grow and the vorticity in these rings
becomes an order greater than that in the right semi-rings (Figs. 1a, 1c). Thus, the internal half-waves (the
former left semi-rings) occupy the entire volume between the disk and point Q.

The initial and subsequent VFM stages are considerably different in the above brief description.
The wish to obtain a more universal VFM in a wide range of Froude numbers Fr and additional compre-
hensive studies of the dynamics of the 3D vortex structure of viscous stratified f luid f lows led to the forth-
coming of this paper. Here, the VFM is considerably advanced as compared with [11] and renamed as the
internal wave formation mechanism (IWFM). This IWFM will be formulated after the formulation of this
problem and the description of the methods of the numerical solution and visualization of 3D vortex f luid
flow structures.

1. FORMULATION OF THE PROBLEM

A disk, d in diameter and h = 0.76d in thickness, is introduced into an incompressible viscous f luid
at rest, linearly stratified in density, and starts immediately the uniform right-to-left motion along the
horizontal axis of symmetry Z of the disk at a velocity U. Let the start point Q of the center of the back side
FLUID DYNAMICS  Vol. 58  No. 4  2023
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of the disk be the origin of the Cartesian coordinate system at rest CS2 (z, x, y), where the x axis is vertical
and the z axis coincides with the Z axis. Let the origin of the Cartesian coordinate system CS1 (Z, X, Y) in
motion, where X is the vertical axis, be associated with the geometric center О of the disk. To solve the
problem thus formulated we will formulate an auxiliary problem of uniform fluid f low past a disk at the
velocity U in СS1. The f luid f low direction coincides with the positive direction of the Z axis.

Let Tb be the f luid buoyancy period and T be the time that has passed from the moment, when the disk

was introduced into the f luid, non-dimensionalized by Tb. The f luid density ρ(Z, X, Y) = 1 – 0.5X/A +

S(Z, X, Y) is non-dimensionalized by the density ρ0 on the level of the disk center, while the coordi-

nates Z, X, and Y are divided by d/2, where A = Λ/d is the scale ratio, Nb = 2π/Tb and Λ = g/  are the

fluid buoyancy frequency and scale, g is the gravity acceleration, and S(Z, X, Y) is the salinity disturbance
non-dimensionlized by ρ0, it is zero at T = 0.

To mathematically model the auxiliary problem of f low past the disk in CS1 we will solve the following
dimensionless system of Navier–Stokes equations in the Boussinesq approximation [12]

(1.1)

(1.2)

(1.3)

It is written in the cylindrical coordinate system (Z, R, ϕ): Z = Z, X = Rcosϕ, , where

 is the velocity vector normalized by U; p is the pressure disturbance non-dimensionalized

by ρ0U
2; t is time non-dimensionalized by ; Re = U d/ν is the Reynolds number,

Fr = U × Tb/(2πd) is the internal Froude number, Sc = ν/κ = 709.22 is the Schmidt number, ν = 0.01

cm2/s is the kinematic viscosity coefficient of water, κ = 4.1 × 10–5 cm2/s is the salt diffusion coefficient,
and ∇ and Δ are the Hamilton and Laplace operators.

In solving this problem we will use the numerical MERANZh method of splitting with respect to phys-
ical factors [13], which had been successfully used in modeling incompressible viscous f lows past spheres,
cylinders, and disks [4, 6–8, 11, 14–16] and for f lows with free surfaces [13]. The details of the numerical
method, the cylindrical computation grid, and the boundary conditions, together with the results of test-
ing the program complex for mathematically modeling and visualizing the 3D flows of a viscous stratified
fluid past a disk, were published in [11, 14]. The classification of viscous stratified f lows past a disk, h =
0.76d in thickness, at 0.05 < Fr < 100 and 50 < Re < 500 presented in [14] is in good agreement with the
three-dimensional calculations [15, 16] and the experimental data [17, 18].

The outer right boundary of the computation domain is at a distance of 25d from the center of the disk.
At Fr ≥ 10 the internal wave length λ = 2πFrd ≥ 20πd ≈ 62.83d, that is, less than 40% of the first wave
length can fit in the chosen computation grid. Moreover, the amplitude of this wave is small. For this rea-
son, the nature of the f low past the disk will be equivalent to that of a homogeneous viscous f luid f low [6].
When Fr = 4 – λ = 8πd ≈ 25.13d, that is, only one wave is accessible for observations [11]. For this reason,
in the case of the computation domain considered, exactly at Fr ≤ 4 it is possible to investigation the gen-
eration of the internal waves occupying the entire space of the computation grid to the left of point Q [11]
(Fig. 1a). The calculations were carried out using the computation resources of the Joint Supercomputer
Center of the Russian Academy of Sciences.

In CS2 the values of the dimensionless horizontal velocity components vZ of the velocity vectors cal-

culated in CS1 are reduced by unity (vz = vZ – 1), while the values of the variables vx, vy, S, and p in CS2

remain the same as in CS1. Thus, in CS2 the velocity of the f low incident on the disk is zero, while the
dimensionless disk velocity is –1, that is, the disk travels uniformly, from right to left in the f luid at rest.

For the time  the center of the disk is displaced in CS2 at

rest at the distance  to the left from point Q (Fig. 1f).

2. VISUALIZATION OF THE VORTEX STRUCTURE OF THE FLOW

Due to f luid stratification, the slow velocity of the disk (Re = 50), and the disk symmetry about the
x–z plane, the calculated 3D fields of the velocity vectors are at any time moment characterized by the
horizontal y–z and vertical x–z planes of symmetry. Therefore, the pictures of the instantaneous stream-
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FORMATION OF THREE-DIMENSIONAL INTERNAL WAVES 625
lines in the x–z (Figs. 1f and 1g) and y–z (Fig. 1h) planes are meaningful. In Fig. 1f vortex cells 1, 2,
and 3 in CS2 are visualized; they correspond to the internal half-waves 1, 2, and 3 generated at T = 1.5 for
Fr = 0.3. In Figs. 1g and 1h the recirculation zone R formed as a result of the separation of the f low inci-
dent on the disk from its rear side is shown for CS1.

It is known that the construction of instantaneous 3D streamlines for the purpose of visualizing the 3D
vortex structure of the f low is a difficult and thankless occupation. Many vortices can easily be lost. For
this reason, in visualizing this 3D structures it would be natural to use the isosurfaces of the absolute value
of vorticity ω = |ω| = |curl v| (Fig. 1a). We will first consider the isoline pictures of the ϕ-component of the
vorticity ωϕ in the vertical plane x–z (Fig. 1c). From the definition of ωϕ it follows that in cells 1, 3,

and –2 in Fig. 1c, where ωϕ > 0, the f luid rotates counterclockwise, which is confirmed by Fig. 1f. In cells

0, 2, –3, and –1 in Fig. 1c, where ωϕ < 0, the f luid rotates clockwise (see Fig. 1f). The isosurface ω = 0.01

in Fig. 1a visualizes the internal half-waves 1–3 (flow region with considerable rotation of the continuous
medium) but it is not capable to illustrate the structures of weaker vortices occurring near the z axis [4].
In [2] it was proposed to use the isosurface λ2 < 0 (Fig. 2b) to visualize the entire vortex structure of the

3D flow of an incompressible f luid. Here, λ2 is the second eigenvalue of the symmetric tensor ,

where  is the tensor of the velocity gradient with the elements ,

, and . In [2] the visualization of 3D flows using the isosurfaces

of the imaginary parts β of two complex-conjugate eigenvalues of tensor G is also mentioned (Figs. 1b
and 1i). It is interesting to note that in [2] this imaginary part is in no way designated. Because of this,
it is denoted using different symbols in different papers, namely, Im(σ1,2) [6, 15], β [8, 11, 14, 16], λci [19],

λcx [20], etc. First the λ2-visualization was used in [4] and then it was the β-visualization [6, 8, 11, 14–16]

having the following clear physical meaning. We will take in CS1 an arbitrary point М, where the f luid
velocity is vM. We will pass to the reference system CS3(vM), which moves at the velocity vM relative to CS1.

Then at point M in CS3(vM) the velocity becomes zero, while the velocities in a small vicinity of this point

will obey the ordinary differential equation (ODE) v = dx/dt ≈ Gx. It is known that the occurrence of two

complex-conjugate eigenvalues σ = α + iβ and  = α – iβ of tensor G at point М leads to the following

solution of this ODE [21]

Here, the quantities С and С3 are complex and real constants, respectively, σ3 is the third (real) eigen-

value of tensor G, h3 is the third (real) eigenvector,  and  are two complex-conjugate eigen-

vectors of tensor G, and h1 and h2 are two linearly-independent real vectors, which form the basis in the P

plane. Let the complex number ζ = ξ1 + iξ2 = Сexp(σt); then xI = ξ1 ∙ h1 + ξ2 ∙ h2. We will map affinnely

the P plane onto an auxiliary plane P* of the complex variable ζ, so that vector h1 passes to unity and

vector h2 passes to i. Then the vector xI = ξ1 ∙ h1 + ξ2 ∙ h2 will be associated with the complex number ζ =

ξ1 + iξ2. By virtue of this mapping, the trajectory in the P plane passes into a trajectory in the P* plane;

it is described by the equation ζ = Сexp(σt). In the polar coordinates (r, θ) we have ζ = rexp(iθ), that is,
ξ1 = rcosθ and ξ2 = rsinθ. Let С = Сrealexp(iD), then r = Сrealexp(αt) and θ = βt + D. Thus, if β ≠ 0, then

we can speak of the vortex nature of the f luid motion in a small vicinity of point М in CS3 (vM): the f luid

molecules move along ovals (at α = 0) or oval spirals (at α ≠ 0), while β is the time-average angular velocity
of the f luid molecule rotation about point М in CS3(vM) [21]. For the sake of convenience, in plotting the

monochromatic isosurface β = β0 > 0 (Fig. 1i) illustrating the vortex structure of the f luid f low, the func-

tion β is redefined in the cells of the computation grid, where β = 0: β = –0.01 [6, 8, 11, 14–16].

The two-color β+-visualization introduced in [22] colors the half-waves of hollows 1, 3 and crests 2
in Fig. 1b to different colors according to the sign of ωϕ; this is very convenient in investigating the vortex

structures of the internal waves (Figs. 3–5, IV). The function β+ is defined at β > 0: β+ = sgn(ωϕ)β, where

the function sgn(ωϕ) = 1 at ωϕ ≥ 0 and sgn(ωϕ) = –1 at ωϕ < 0. We can introduce in the same fashion the

two-color ω+-visualization: ω+ = sign(ωϕ)ω (Fig. 1a).

Then it was noticed that throughout the most of Fig. 1c we have ωϕ < 0. For this reason, if the vortex

structures, for which ωϕ ≥ 0, will be removed from Fig. 1c, then the f low structure becomes twice simpler,

though the removed structures can be easily reconstructed mentally. For this reason, the one-color (β–)-
visualization of the f luid f low was introduced in [22]. The function (β–) is defined at β > 0 and ωϕ < 0:

(β–) = β (Fig. 2a). In the 3D case, in comparing the β+ isosurfaces in Fig. 1b and the β– isosurfaces in
Fig. 2a it can be seen that in Fig. 2a all hollow half-waves, with exception of the first one, disappear with-
out a trace. In Fig. 1b an approximate boundary between the regions (0 + S) and 1 is shown as a black line;

+2 2F B
+ =F B G = ∂ ∂,v vi j i jx

( )= +, , ,0.5 v vi j i j j iF ( )= −, , ,0.5 v vi j i j j iB

σ

= σ + σ + σ = +3 3 3 1 3exp( ) exp( ) exp( ) ,C t C t C tx h h h x x

= −1 2ih h h h
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Fig. 3. Flow over a disk at Fr = 0.3, Re = 50, and Tb = 2π s; (a–c) are the instantaneous streamlines in CS2 (I) and the

isolines 103 × β+ with the steps 500, 0.1, 1 (II) in the vertical x–z plane, the β+ isolines with the steps 0.5, 0.1, 0.1 in the

plane ϕ = π/4 (III), and the isosurfaces 103 × β = 0.5, 5 and 103 × β+ = ±0.5 (IV) at T = 0.1, 0.2, and 0.24.

(a) (b) (c)

III

IV

X

Z
Y

II

I

here S is the head part of the lateral vortex loop (Fig. 2f) [11]. The removal of the region (S + 1) leaves

a scratchy trace on the wake shell 0 (compare Figs. 4c, IV and 5a, IV).

Figures 1d and 1e illustrate the physical meaning of β for two points М1 and М2 with the velocities in

CS1 (vZ, vR, vϕ) = (0.973, 0.005, 0) (at x > d/2) and (0, –0.01, 0), respectively; they are marked with black

crosses. Figure 1e is bisected into the upper and lower parts by the black line x = d/2. The streamline pat-

terns in the upper and lower parts of Fig. 1e are shown in CS3(0.973, 0.005, 0) and СS3(0, –0.01, 0),

respectively, and illustrate f luid rotation in the vicinities of points М1 and М2. The streamline patterns in

the upper and lower halves of Fig. 1e are similar with those in CS2 (Fig. 1f) and CS1 (Fig. 1g), respectively.

Thus, the zone R is visible in Figs. 1e and 1g at 0 ≤ x ≤ d/2, while the half-waves of hollows and crests can

be seen in Figs. 1e and 1f at x > d/2. For this reason, to approximately describe the variation in the kine-

matics of the internal waves and separation f lows near the z axis in the vertical plane we can use the instan-

taneous streamlines in CS2 and CS1, respectively. Thus, in Figs. 1 and 3–6 in describing any isoline pat-

tern β+ in the x–z plane we present the corresponding patterns of the instantaneous streamlines in CS2.

By analogy with β+ and (β–)-visualizations we can define λ2+ and (λ2–)- visualizations (Fig. 2b).

The function λ2+ is defined at λ2 < 0: λ2+ = sign(ωϕ)|λ2|, while the function (λ2–) is defined at λ2 < 0 and

ωϕ < 0: (λ2–) = λ2. The comparison of Figs. 2a and 2b for T = 1.5 and Fr = 0.8 shows that the topologies

of the vortex structures obtained using the (β–) and (λ2–) visualizations are almost the same but the (β–)

visualization presents the vortex structure of the f luid f low more harmonically. Thus, in Fig. 2a the
FLUID DYNAMICS  Vol. 58  No. 4  2023
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Fig. 4. Flow over a disk at Fr = 0.3, Re = 50, and Tb = 2π s; (a–c) are the instantaneous streamlines in CS2 (I) and the

isolines 102 × β+ with the steps 0.2, 5, 5 (II) in the x–z plane, the isolines β+ with the steps 0.1, 0.08, 0.04 in the ϕ = π/4

plane (III), and the isosurfaces β+ = ±0.0052, β = 0.15, β+ = ±0.05 (IV) at T = 0.28, 0.45, 0.68.
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III

IV

II

I

(b) (c)

Y Y

X X

Z
Z

filaments  f1 are connected with the ring R, whereas in Fig. 2b they are disconnected. In Fig. 2a the vortex

ring –1 is continuous, while in Fig. 2b it is broken into three parts.

3. INTERNAL WAVE FORMATION MECHANISM AT Fr ≤ 4

At T = 0 the disk is introduced in a viscous stratified f luid at rest and starts immediately a uniform
right-left motion along the horizontal axis of symmetry z of the disk. The buoyancy force (the last term of
Eq. (1.2)) starts to act on the disturbed f luid deviated from its initial position. On the other hand, as a
result of f luid molecule adherence to the disk surface, the forces directed from right to left start to arise
ahead of the disk and on either side of it. These forces lead to the generation of a vortex torus with the axis
of symmetry z, which fills the entire space (Fig. 3a, I for T = 0.1), while the buoyancy forces generate inter-
nal gravity half-waves above Q (Fig. 3c, I at T = 0.24). Figures 3–5, IV present the dynamics of the 3D
vortex f low structure at 0 < T < 1 determined by the gravity and shear instabilities. In turn, the gravity
instability is due to the buoyancy forces in the f luid. Any 3D structure in Figs. 3–5 is supplemented with
the β+ isolines in its sections at ϕ = 0 and ϕ = π/4 and with the instantaneous streamlines in CS2 in the

vertical x–z plane (for ϕ = 0). In Fig. 3a, IV one quarter of the isosurface β = 5 × 10–4 is cut out in order
to show the disk surface.

At T ≤ 0.1 and Fr ≤ 4 two small vortex structures appear at x > 0 outside the axisymmetric vortex
shell 0 of the disk, near the backward sharp edge of the disk (Fig. 3a, III–IV and Figs. 2a–2d, 2f, and
6a–6b from [11]); these are the embryos of two vortex filaments  f1 (Figs. 3b and 3c, III–IV). The pattern

of the isolines β+ in the section ϕ = π/4 illustrates the growth dynamics of the  f1 filaments and the recir-

culation zone R. At 0.2 ≤ T ≤ 0.24 the gravity and shear instabilities lead to the situation in which the shape
of instantaneous streamlines above point Q in CS2 at ϕ = 0 becomes wavy from rectilinear (Fig. 3c, I).
The detailed description of the reason for which it passes was given in [11]. As a result, two vortex cascades
FLUID DYNAMICS  Vol. 58  No. 4  2023
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Fig. 5. Flow over a disk at Fr = 0.3, Re = 50, and Tb = 2π s; (a–c) are the instantaneous streamlines in CS2 (I) and the

β+ isolines with the step 10–2 (II) in the x–z plane, the β+ isolines with the step 0.08 in the plane ϕ = π/4 (III), and the

isosurfaces (β–) = 5 × 10–3, β+ = ±10–2, ±10–2 (IV) at T = 0.8, 0.86, and 1.
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are formed above Q: 1 (to the left) and –1 (to the right) (Fig. 3c, II). At T = 0.28 and Fr = 0.3 the hearts
of cascades 1 and –1 form ring 1 (Fig. 4a, IV).

At Fr ≤ 1 and Fr ≥ 2 the details of the vortex formation process are somewhat different. While at 0.1 <
T ≤ 0.28, Fr ≥ 2, and x > 0 the wake shell 0 does not almost change with time, and the two first filaments
f1 and the two second (lateral) filaments fS are formed outside the shell 0 (Fig. 2f) [11], at 0.1 < T ≤ 0.28,

Fr ≤ 1, and x > 0 the filaments f1 and fS are placed in the shell 0 itself. For this reason, at Fr ≤ 1 it makes

sense to subdivide the shell 0 to the inner 01 and outer 02 parts using the β0 isosurfaces. The absolute value

of β0 is presented in Figs. 3–5, III. The shell 01 varies with time only weakly, consisting of two rings

rI and rII, which are generated by two sharp edges of the disk (Fig. 3a, IV). In Fig. 3b, III the cross-hatched

filaments f1 and the zone R near the backward disk side and other parts of 02 above the lateral side of the

disk can be separated out in the shell section 02 at ϕ = π/4. At x > 0 and 0.2 ≤ T ≤ 1 two vortex fila-

ments f1 (the legs of the vortex loop –1) are the parts of cascade –1, while the loop –1 is the heart of cas-

cade –1. The generation of two symmetric loops –1 at x > 0 and x < 0 is accompanied by the generation
of the lateral loops S as the side parts of two symmetric cascades 1. At x > 0 and 0.24 ≤ T ≤ 0.32 four lateral
filaments fS are observable (Figs. 3c, 4a, IV) for Fr = 0.3 and two filaments fS are observable for Fr = 4

(Fig. 2f). The apparition of the filaments S is due to the presence of the disk and is not mentioned in the
internal wave formation mechanism (IWFM) discussed here, since this IWFM is devoted directly to the
generation of internal waves.

Thus, at 0.1 ≤ T ≤ 0.32 two vortex loops are formed, namely, –1 with the legs f1 and the side loops S.

At T = 0.28 for Fr = 0.3 the hearts of cascades 1 and –1 form the ring 1 (Fig. 4a, IV) and for Fr = 4 the
semi-ring 1, similar with an arc (as in Fig. 3b in paper [11]), whose radius is about five times as large as the
radius of the semi-ring –1. For this reason, in formulating the IWFM the generation of two vortex cas-
cades 1 and –1, whose hearts are the semi-rings 1 and –1, should be spoken of, rather than the formation
of a single vortex ring 1.

At 0.28 < T ≤ 0.45 and Fr = 0.3 the diameter D(1) of the semi-ring 1 section by the x–z plane decreases
by a factor of three and then vanishes. The fact that D(1) = 0 indicates that at x > 0 the semi-ring 1 has
been split into two halves symmetric about the x–z plane. At x > 0 and 0.28 ≤ T ≤ 0.8 the disk is displaced
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Fig. 6. Flow over a disk at Fr = 0.3, Re = 50, and Tb = 2π s; (a–e) are the instantaneous streamlines in CS2 (I) and the
isolines 103 × β+ with the step 2 (II) in the x–z plane, and the β+ = ±10–3 isosurfaces (III) at T = 1.25, 1.3, 1.4, 1.73, and 1.9.
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to the left, while the cascade –1 remains near point Q; for this reason, the legs f1 of loop –1 are extended
in the horizontal direction (Figs. 4b, 4c, and 5а, IV); the semi-ring –1 is f lattened in the vertical direction
and transforms into the semicircle –1. In Figs. 4b and 4c, IV only the halves of the β isosurfaces are pre-
sented in order to show the disk. At 0.5 ≤ T ≤ 0.8 the vortex cascades 2 and –2 are generated above Q owing
to the gravity and shear instabilities. The vortex cascade 2 becomes the half-wave of crests 2. The vortex
filaments  f2 encircled with black in Fig. 5a, IV for Fr = 0.3 or presented in the form of a semi-circular con-
nection between filaments f1 in Fig. 3a in [11] for Fr = 4 are the lower portions of the vortex cascade 2.
Thus, at Fr = 4 the crest half-waves are formed from the even filaments near Q rather than from semi-rings
above Q, as it is the case for Fr = 0.3.

Let βmax(k) be the value of the local maximum of the function β in the section of the semi-ring k by the
x–z plane. At T = 0.8 and Fr = 0.3 the heart of cascade 2 approaches the z axis, βmax(2) = 0.025 and
βmax(–1) = 0.142, that is, the semicircle –1 possesses the greatest βmax value in section ϕ = 0 outside the
disk shell (Fig. 5a, II). At x > 0 and T = 0.86 cascade 2 sits on the left edge of the semicircle –1, βmax(2)
increases to 0.088, and the values of β are redistributed between the left and right edges of the semicircle
–1: βmax(–1, left) = 0.12 and βmax(–1, right) = 0.068 (Fig. 5b, II). Now in CS2 the f luid that arrived from
both the semicircle –1 and the cascade 2 is pumped through the filaments f1, which at T = 1 leads to the
transformation of the semicircle –1 to the ring –1 (Fig. 5c, II, βmax(2) = 0.22, βmax(–1) = 0.038).
In Figs. 5b and 5c, IV the β isosurfaces are presented at –π/2 ≤ ϕ ≤ π/10 in order to show the disk. Thus,
as a result of the coalescence of the heart of cascade 2 and the left part of semicircle –1 at 0.86 ≤ T ≤ 1
cascade 2 now possesses the greatest βmax in the section ϕ = 0 outside the disk shell.
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Thus, at T ≤ 1 the vortex cascades k and –k, where k = 1 and 2, are periodically formed above Q during
any time interval ∆T = 0.5. The hearts of cascades –1 and 1 consist of the vortex loop –1 (with the legs f1

and the semi-ring –1) and the semi-ring 1 with the lateral loops S, respectively. Primarily, the cascade 2
consisted of the filaments f2 (near Q) and the semi-ring 2, which sits later on the left side of the semi-ring

–1. As a result, there are formed a half-wave of depressions 1 (above the filaments f1) and the half-wave

of crests 2. At T = 1 the vortex structure of the first wave is based on the horizontal ring –1 formed from
the half-ring –1.

The vortex formation process at T<1 described above is schematically presented in Figs. 2c and 2d.
It can be generalized to include any other time interval (n – 1) < T ≤ n, where n = 2, 3, 4, …. In fact,
at T > 0 the left (k) and right (–k) vortex cascades are periodically formed above Q during any time inter-
val 0.5(k – 1) < T ≤ 0.5k. They consist of the filaments  fk near Q and deformed semi-rings k and –k, where

k = 1, 2, 3, … . For any odd k the vortex loop –k is formed near the z axis. It consists of the filaments  fk
and the lower semi-ring –k, onto which the even (k + 1) cascade sits in what follows. Then the lower semi-
ring –k becomes a deformed ring. Thus, during any time interval (n – 1) < T ≤ n an internal wave n is
formed; it consists of the half-waves of depressions k = (2n – 1) and crests (k + 1) = 2n. The left side of
the ring –k becomes the axial part of the crest (k + 1). As a result, the axial parts of the crests turn out to be
connected with each other by the odd filaments thus forming a chain. The IWFM for Fr ≤ 4 and ∆T = 1
can be formulated more briefly. It is formed by the odd cascades k and –k, the filaments fk together with

the lower vortex –k, the even cascades (k + 1) and –(k + 1), and the filaments (k + 1); the cascade (k + 1)
sits on the lower vortex –k (Figs. 2c to 2e).

In Fig. 2g we have plotted the dependence of the disk drag coefficient Cd on time t at Fr = 0.3. The wavy

form of the plot for T ≤ 1 is due to the fact that at T ≤ 1 point Q, above which the IWFM operates, is near
the disk. The IWFM realization leads to disturbance of the velocity vector and pressure fields near the disk
surface which determine Cd.

While at T ≤ 4 and Fr = 0.3 the IWFM realizations are somewhat different for different time intervals
∆T = 1, at T > 3 and Fr = 0.3 they are similar in appearance. Below we describe in detail the IWFM real-
ization at 1 < T ≤ 3, Fr = 0.3, Tb = 2π s, and Re = 50 basing upon the data in Figs. 1, 6, and 7. The dis-

tinctive features of the IWFM at T > 3 are described without the help of figures.

4. DETALIZATION OF THE WAVE GENERATION PROCESS AT Fr = 0.3 AND T > 1

We will now consider the IWFM for 1 < T ≤ 2 (Fig. 6, 2e, 1) in more detail. Since at T = 1 and Fr = 4
point Q has got at the external boundary of the computation grid, the further investigation of the IWFM
at Fr = 4 becomes impossible. At 1 < T ≤ 1.3 and Fr = 0.3 the vortex cascades 3 and –3 are generated above
point Q (Figs. 6a and 6b). At 1 < T ≤ 1.3 βmax(2) increases to 0.33. At T > 1.3 βmax(2) no longer changes,

which indicates that at T = 1.3 the crest 2 and the vortex structure to the left of it have been already more
or less formed. In Figs. 6, III and 7, II the β isosurfaces are presented at π/2 ≤ ϕ ≤ π in order to show the
disk and to understand better the 3D vortex structure of the f luid f low. At T = 1.25 in Fig. 6a, III a wide
“amphitheater” of half-wave 2 stands ahead of the minor “stage” of the semi-ring –2, whose side parts
are shown with the black circle. These side regions induce the appearance of filaments f3 above point Q at

T = 1.3. The filaments f3 highlighted with the black rectangle in Figs. 6b and 6c, III, are the parts of cas-

cade –3 in the stage of formation. At T = 1.4 the semi-ring –2 separates from the half-wave 2, βmax(3) =

0.021, βmax(–3) = 0.013, and the dimensions of the filaments f3 increase (Fig. 6c, III). The filaments f3 are

located above the filaments f1. The f low pattern at T = 1.5 presented in Figs. 1a–1h and 2a–2b has been

already described in detail in Section 2 of this paper. Here, it remains only to add to this description the
stable internal structure (“skeleton”) of the first wave in Fig. 1i, where the side filaments fS are connected

with the ring rI, while the filaments f1 are connected with the ring rII. Here it can also be seen that at T =

1.5 the heart of two symmetrical half-waves 2 is the deformed ring 2 in a vertical plane parallel to the x-y
plane (Fig. 1j). In Fig. 6d, III at T = 1.73 the filaments f3 are connected with the ring 2. Thus, in a stratified

fluid any vortex ring is connected with four filaments, whereas in a homogeneous f luid the vortex ring is
connected with only two filaments [6].

At 1.5 < T ≤ 1.73 vortex cascades 4 and –4 are formed above point Q (Fig. 6d). At 1.3 < T ≤ 1.73 βmax(–2)

decreases to 0.003. At 1.4 < T ≤ 1.73 βmax(3) and βmax(–3) increase to 0.027 and 0.052, respectively

(Fig. 6d, II), the semi-ring –3 is transformed into the semicircle –3, the vortex loop –3 is formed from
the filaments f3 and the semicircle –3 (Fig. 6d, III); and D(3) decreases by a factor of about 1.5 (similarly

to a decrease of D(1) at 0.28 < T ≤ 0.45) but the volume of the depression half-wave 3 considerably
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Fig. 7. Flow over a disk at Fr = 0.3, Re = 50, and Tb = 2π s; (a–d) are the isolines 103 × β+ with the step 2 (I) in the

x–z plane and the isosurfaces (β–) = 10–3 (II) at T = 2.05, 2.6, 2.8, and 2.95.
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increases. At 1.73 < T ≤ 1.9 βmax(3) decrease to 0.023, while βmax(–3) increases to 0.057 (Fig. 6e, II).

At T = 1.9 βmax(4) = 0.0124 and βmax(–4) = 0.0056.

At 1.9 < T ≤ 2.05 two half-waves 4 and –4 are developing. The vertical half-wave 4 sits on the left side
of the extended horizontal semicircle –3 which transforms then to the deformed ring –3, shown in
Fig. 7a, II by two black circles with a black broken line between them; βmax(–3) = 0.0046, βmax(4) and

βmax(–4) increase to 0.08 and 0.0092, respectively. Thus, at 1 < T ≤ 2 the half-wave of depressions 3 is

formed above the filaments  f3, together with the half-wave of crests 4. At T = 2 the foundation of the vor-

tex structure of the second wave is the horizontal ring –3. At 2.05 < T ≤ 2.95 the diameters of the deformed
rings –1 and –3 increase gradually (Fig. 7, II).

At 2.05 < T ≤ 2.5 the vortex cascades 5 and –5 are generated above point Q. While at the moments of
their generation, T = 0.28 and 1.3, respectively, the cascades –1 and –3 had the same clearly expressed
heart, at 2.6 ≤ T ≤ 2.95 as many as three hearts of cascade –5 can be observable in Figs. 7b–7d in the shape
of half-rings. At 2.1 ≤ T ≤ 2.5 the side parts of the semi-ring –4 form the filaments  f5 (similarly to the for-

mation of the filaments f3), which link up with the lower semi-ring of cascade –5, which at T = 2.6 adjoins

the upper part of the left inner portion –3* of the right part of ring –3 (Fig. 7b). Due to the fact that the
portion –3* is located nearer to the z axis, βmax(–3) = 0.011 > 0.005 = βmax(–5). For this reason, at 2.6 <

T ≤ 2.8 the piece –3* engulfs the semi-ring –5, that is, –3* := (–3*) + (–5). As a result, the filaments  f5

become connected with the piece –3* (Fig. 7c). At 2.5 < T ≤ 2.95 the vortex cascades 6 and –6 are gen-
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erated above point Q. At 2.8 < T ≤ 2.95 the piece –3* is separated from the right part of ring –3 and trans-
forms into a strongly deformed ring –3* ≡ –5, whose side part is shown with a black rectangle in Fig. 7d, II.
Then the vertical cascade 6 sits on the left half of ring –5, while the half-wave 1, that consisted earlier of
two halves becomes again a full-featured half-ring, βmax(1) = 0.008 (Fig. 7d, I). Thus, the half-wave of

depressions 5 are formed above the filaments f5 and the half-wave of crests 6 at 2 < T ≤ 3. The foundation

of the vortex structure of the third wave is the ring –5. At T ≥ 2.8 βmax(4) = 0.14 < 0.33 = βmax(2), that is,

at T = 2.8 the crest 4 and the vortex structure to the left of it have been already approximately formed.
For this reason, the widths of the half-waves 2 to 4 in Figs. 7c and 7d measured along the line perpendic-
ular to them are approximately πFrd ≈ 0.94d. This is in good agreement with the linear theory of internal
waves.

At T = 2.95 the vortex rings –1 and –3, together with the semi-rings –5 and –6 produce a vortex
“nest” (Fig. 7d). Later, the vortex cascades 7 and –7 consisting of several cores, are generated in this nest;
then the vortex loop –7 appears near the z axis, the vortex cascades 8 and –8 are formed, and the
cascade 8 sits on the head part of loop –7. At T = 4 and π/2 ≤ ϕ ≤ π the lateral side of ring –5 becomes an
additional filament connecting the axial parts of the crests –5 and –7, together with the filament  f7.

At the Froude number Fr = 0.3 all the IWFMs for T > 4 are similar with the IWFMs at 3 < T ≤ 4. As a
result, the axial parts of the crests turn out to be chained with each other by the odd filaments of the vortex
flow structure, similarly to the vertebrae of a skeleton (Fig. 7d, II). Two half-waves, those of hollows and
crests, are fastened to any such “vertebra.” As Fr decreases, the horizontal distances between the centers
of the “vertebrae,” which were equal to 2πFrd, are reduced.

SUMMARY

A uniform horizontal motion of a disk, d in diameter and h = 0.76d in thickness, along its axis of sym-
metry Z in a linearly density-stratified incompressible viscous f luid at rest is mathematically modeled at
Re = 50 and Tb = 2π s in a wide range of the Froude number Fr. The disk generates three-dimensional

(3D) internal gravity waves occupying the entire volume between the disk and the location Q of its start.
The vortex formation mechanism (VFM) described in [11] that operates in forming internal gravity waves,
revealed on the basis of an analysis of the dynamics of the 3D vortex f low structure visualized using iso-
surfaces of the imaginary parts β > 0 of the complex-conjugate eigenvalues of the velocity gradient tensor
is considerably supplemented. For obtaining β the system of Navier–Stokes equations in the Boussinesq
approximation written in the cylindrical coordinate system is solved for each cell of the computation grid
using the numerical MERANZh method [13]. To make the image clearer the half-waves of crests and
depressions are made varicolored depending on the sign of the angular vorticity component ωϕ. This visu-

alization received the name of the β+ visualization [22].

In [11] emphasis was placed on the periodic process of the generation of deformed vortex rings above
point Q which takes place due to the gravity and shear instabilities. In this case, the left semi-ring trans-
forms into a half-wave of depressions or crests, while the right semi-ring vanishes with time. In this study,
the important role played by the odd right semi-rings in the VFM is emphasized and the following univer-
sal IWFM behind a disk is formulated for Re = 50, Tb = 2π s, and Fr ≤ 4 in the upper half-space above the

z axis. At T > 0 the left k and right –k vortex cascades are periodically formed above point Q during any
time interval ∆T = 0.5; they consist of the filaments fk near point Q and deformed semi-rings k and –k,

where k = 1, 2, 3, … (cf. Figs. 3b to 4a, and 5a, 5b for k = 1 and 2, respectively). For any odd k a vortex
loop –k is formed near the z axis; it consists of the fk filaments and the lower semi-ring –k, onto which

the even (k + 1) cascade sits. Then the head part of the loop –k becomes a deformed ring. Thus, during
any ∆T = 1 interval a new internal wave consisting of the depression k and the crest (k + 1) is formed.
The left half of the ring –k becomes the axial part of the (k + 1) crest. As a result, the axial parts of the
crests turn out to be tied together into a chain by odd filaments. In order to catch a sight of this vortex chain
it is necessary to visualize only that portion of the β = β0 isosurface, on which ωϕ < 0. This visualization

was named the (β–) visualization [22]. The IWFM has its own peculiar features for different time intervals
∆T = 1; in this study, they are described in detail. The IWFM depends slightly on Fr. For example, at
0.8 < Fr ≤ 4 the crest half-waves are formed of even filaments near Q, rather than of semi-rings above Q,
as it is the case for Fr ≤ 0.5. At Fr = 0.8 and T ≥ 1 all the IWFMs for different time intervals ∆T = 1 are
similar with the IWFM at Fr = 0.3 and T ≥ 3.

Thus, this study presents the detailed description and the results of a numerical and theoretical analysis
of the dynamics of the formation of three-dimensional vortex structures in a linearly stratified viscous
continuum created by a disk-shaped object moving in a horizontal direction.
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