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Abstract—A review of fundamental theoretical studies concerning the theory and application of the
nonsteady-state analogy to an incompressible f luid f lowing around slender bodies is presented. Prob-
lems related to the application of nonsteady-state analogy to wings, to the wake behind an elliptically
loaded wing, as well as methods for numerical calculation of the evolution of vortex sheets and for
determining the positions of lines of low separation from solid surfaces are considered taking into
account viscous-inviscid interactions. The issues of nonuniqueness and asymmetry of solutions for the
problems of a separated f low moving around slender bodies are discussed.
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INTRODUCTION

The main purpose of a wing consists in the creation of lift force. The lift force of a wing and the induc-
tive part of the wing drag are associated with a vortex system formed near the wing, which in turn depends
on the attached vortex-circulation distributed over the wing. The vortex system actively interacts with the
gas f lowing around the wing, casting it mainly downwards in the case of a positive lift force. Herewith the
wing gains upward momentum.

If one limits oneself to studying the characteristics of a vortex f low near a wing in an inviscid f luid, then
the solution to the problem is not unique. In order to select a specific solution from the whole range, it is
necessary to set the lines of vortex-sheet vanishing from the wing surface. Such a choice cannot be deter-
mined based on the solution of the Euler equations, it should be set based on some other conditions, for
example, empirical ones. One of these often used conditions is represented by the Chaplygin–Zhukovskii
condition, i.e., the condition of the fact that vortex surfaces smoothly vanish into the f low from sharp wing
edges. The Chaplygin–Zhukovskii condition is equivalent to the velocity-finiteness condition at sharp
edges, since when it is satisfied, the f low does not have to go around corners greater than the unfolded
corner.

In wing theory, there are two remarkable examples that demonstrate the mechanisms of transition
from three-dimensional problems to f lat ones. These are problems of f lowing around high-aspect-ratio
wings and low-aspect-ratio at low angles of attack. The f low near a high-aspect-ratio wing has been stud-
ied quite well. This paper is devoted to a steady-state f low around longitudinally elongated bodies. These
can be represented by narrow 3D bodies without wings, by low-aspect-ratio wings, as well as by a combi-
nation of narrow 3D bodies with low-aspect-ratio wings. The foundations of the theory of f lowing around
such bodies were established by Munk [1] and Jones [2], and then substantially developed by Adams and
Sears [3]. It turns out that in this case one can reduce a three-dimensional steady-state problem to a plane
nonsteady-state one. Such a simplification of the problem is called a nonsteady-state analogy.

Numerical methods are presented which make it possible to calculate the vortex f low near elongated
bodies using a nonsteady-state analogy. Of particular interest is description of the asymmetry of the solu-
tion to the problem of separated f low around elongated bodies, when in the course of a symmetrical f low
oncoming to a symmetrical elongated body, an asymmetric vortex structure is generated, whereas a rather
large lateral force affects the elongated body itself. Such asymmetry can be well realized both under the
conditions of a wind tunnel and under f light conditions.
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One of the main problems that arise when calculating a separated f low moving around elongated
smooth bodies by a f luid f low at large Reynolds numbers consists in the problem of determining the posi-
tions of separation lines. This problem can be solved either by using empirical data or, as is done in this
paper, via jointly solving equations describing the inviscid global separated f low (Euler equations) and
boundary-layer equations.

1. FOUNDATIONS OF NONSTEADY-STATE ANALOGIES
Let us consider the steady-state f lowing around a body with unit length along the x axis (linear sizes

being nondimensionalized with respect to the length of the body) and the maximum size  along the
y and z axes by an unbounded f low of an ideal f luid. Let us call such bodies elongated. The oncoming-
flow velocity vector lies in the xy plane and is directed at an angle of α to the x axis. Let us also take the
velocity modulo in the oncoming f low to be unity by nondimensionalizing the velocity with respect to the
oncoming-flow velocity. Let us superpose the origin of the coordinate system with the apex of the body.
Let , and . Then assume that vortex sheets can vanish into the f low from the lateral and rear
sharp edges of the body, as well as from some lines on its smooth surface. The slope of these lines to the
x axis does not exceed an order of magnitude of angle α. At  the transverse size of the body
together with separation formations should be comparable in terms of order of magnitude with the trans-
verse size of the body, i.e., should have a size on the order of O(δ).

The velocity potential ϕ in the domain beyond the vortex sheet should satisfy the Laplace equation

(1.1)

It should also satisfy such necessary boundary conditions as impermeability on the body surface, the
continuity of pressure and the normal velocity component upon crossing the discontinuity surface, the
damping of perturbations at infinity, and the conditions on the separation lines.

The form of the asymptotic expansion for the velocity potential will depend on the scale in the domain
in which the f low is under study. Let us introduce the following two asymptotic domains: an inner
domain, Ω1, with characteristic dimensions comparable to the body size , and an
outer one, Ω2 having a size of  [4].

In domain Ω2, the streamlined body can be represented by a single segment of axis x, . In the
leading approximation, the velocity potential corresponds to the velocity potential of the oncoming f low:

or for small α

(1.2)

Solution (1.2) does not satisfy the boundary conditions on a wing. Therefore, let us study the asymp-
totic behavior of f low characteristics in domain Ω1. Instead of independent variables x, y, and z let us intro-
duce new independent variables x,  and , which have a size on the order of unity in the
domain under consideration. According to the condition of f luid impermeability through body surfaces
and the vortex sheet, the velocity vector on the surfaces themselves is directed tangentially with respect to
the surfaces. Hence, the order of magnitude of the transverse velocity components amounts to .
The velocities  and w are directed along the y and z axes, respectively. Since the size of the asymptotic
domain under consideration is comparable with the body size, then the transverse velocity components
should be an order of magnitude amounting to δ throughout the entire domain Ω1.

(1.3)

Relationship (1.3) defines the asymptotic expansion of the velocity potential, as follows

(1.4)

where ϕ1 and ϕ2 are on the order of unity in domain Ω1.
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The order of magnitude for the first two terms is determined. Only the longitudinal velocity compo-
nent depends on term . The order of function μ(δ) has not yet been determined, since only the
order of the transverse velocities is known, but the following orders for the longitudinal velocity are
unknown. Which of the terms (the second or the third one) is more important in the asymptotic represen-
tation of the longitudinal velocity depends on the order of μ(δ).

According to (1.1) and (1.4) in the leading approximation

(1.5)

i.e., potential  satisfies the two-dimensional Laplace equation.
Let us explore how the boundary conditions are transformed in the new variables. Two-dimensional

Eqs. (1.5) should be solved in each section x = const. When moving along the x axis, the geometry of the
body and vortex sheets exhibits a change. It is necessary to satisfy the condition of impermeability on these
surfaces. Let us write this condition for the surface set by equation :

By substituting into the latter relationship the expression for potential (1.4), in the leading approxima-
tion one can obtain

(1.6)

Differential operator  corresponds to the three-dimensional operator , whereas
 represents a two-dimensional operator, . Condition (1.6) means that in the case of mov-

ing along x the velocity of the f luid normal to the surface and the velocity of the surface itself (either the
surface of the body or the surface of the vortex sheet) coincide.

The boundary condition of pressure continuity when crossing the discontinuity surface can be easily
written in terms of the velocity potential using the Bernoulli integral:

or in the new variables:

(1.7)

It should be noted that, since ϕ2 depends only on x, then .
The conditions at the separation point determine the intensity of vortex-sheet vanishing into the f low.

Let us determine the order of magnitude for this intensity. Since the characteristic size of the vortex sheet
and the characteristic transverse velocity in any section with x = const are on the order of δ, then the total
circulation of the vortex sheet should be on the order of δ2.

Particular attention should be paid to the boundary conditions set at infinity. The velocity vector of the
oncoming f low lies in the plane xy and has a unit length which is equivalent to the following conditions:

(1.8)

or

The  ratio is called the relative angle of attack. As far as the perturbed solution ϕ2 is concerned,
one should not demand that it decay at infinity. There is no such requirement because going to infinity in
the variables of domain Ω1 and in physical variables is not equivalent. Instead of the requirement that
perturbations decay at infinity, it is necessary to set a condition for splicing the solution in domains Ω1
and Ω2.
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Fig. 1. Low-aspect-ratio wing (top view) and some vortex lines simulating the vortex surface of the wing.

X

Z

Let us consider now the two-dimensional nonsteady-state problem of separated f low around a body of
variable geometry with given separation points. Let its geometry at the moment of time t correspond to the
geometry of the cross section of a three-dimensional narrow body cut by plane x = t, and the location of
the separation points on the two-dimensional body correspond to the separation lines on the three-
dimensional body in this cross section. The oncoming f low has a velocity of . In this case, to determine
the characteristics of f low around a two-dimensional body, it is necessary to solve Eq. (1.5) with boundary
conditions (1.6)–(1.7), wherein the role of time is played by coordinate x.

Indeed, condition (1.6), if the x coordinate is replaced by time t, means that the condition of imper-
meability through a body of variable geometry  is satisfied, whereas condition (1.7) means
that potential  satisfies the Cauchy–Lagrange integral. Thus, the three-dimensional steady-
state problem of f low around a narrow body at a small angle of attack has been reduced to a two-dimen-
sional nonsteady-state problem of f low around a f lat body of variable geometry, corresponding to the
geometry of the body’s cross section, with the use of conditions (1.8) at infinity. This correspondence is
called a nonsteady-state analogy. In physical variables, the role of time in the nonsteady-state analogy is
played by the ratio of .

The velocity field corresponding to potential  can be represented as the sum of velocities
induced by the hydrodynamic singularities distributed on the body surface or inside the body and on the
surface of the vortex sheet. Let us consider first the problem of finding this potential in the simplest case,
when a f low around a body of zero volume is studied. Such bodies are called bearing surfaces. The velocity
field around the body is simulated by a vortex surface attached to the body and free at a tangential velocity
discontinuity.

Let us divide the vortex surface into elementary vortex filaments of variable intensity dΓ. The vortex
filaments cannot end up on the body or in the f low. Hence, each vortex filament passes through the body
and then leaves with its two free ends to infinity. Schematically, such vortex filaments are shown in Fig. 1.
They simulate a velocity discontinuity on the upper and lower body surfaces and on the vortex sheet. The
inclination angle of the vortex filaments is comparable in the order of magnitude with δ. Let us consider
an elementary vortex filament having the circulation . The radius vector of a point on a vortex filament is

(1.9)

The orths  are directed along axes ; index  takes a value amounting to 1 for the left half of
the vortex filament, and 2 for the right half of the filament; and functions g are comparable within an order
of unity. By substituting relationship (1.9) into the Biot–Savart formula (1.12) for the velocity fields
around the vortex filament with the intensity  one can obtain:

where s is the distance vector. One obtains that in the leading approximation the velocity along the x axis
induced by the elementary vortex filament at the a point with coordinates  is (prime means the
derivative with respect to x) as follows:

(1.10)
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As it has been already mentioned above, the total circulation for all the vortex filaments is . From
this estimate and relationship (1.10) it follows that the longitudinal velocity induced by the entire vortex
surface of the wing should be on the order of δ2.

The velocity potential  can be determined resulting from solving the plane problem concern-
ing a nonsteady-state f low around a body corresponding to a plane section of the load-carrying surface.
Let us consider an arbitrary cross section x. In this cross section, the f low can be simulated by rectilinear
vortex filaments extending parallel to the x axis from  to . The pre-image of a curvilinear vortex fila-
ment in the three-dimensional problem should represent two rectilinear vortex filaments in the two-
dimensional problem: the left one having an intensity of  and the right one having an intensity
of . In cross section x, their coordinates are  and  The potential of two vortex
filaments in cross section x is

(1.11)

The velocity along the x axis is . By differentiating potential (1.11) one obtains relationship (1.10)
again. This means that potentials potentials  and  in the leading approximation coin-
cide for the bearing surface, whereas quantity  is zero.

The expansions for the velocity potential (1.4) become invalid in the vicinity of the fore part of the
wing. The solution in this domain, which has dimensions , as well as approximations of
a higher order than those presented in (1.4), were obtained in [4].

In order to determine the forces affecting a thin low-aspect-ratio wing, let us represent pressure in the
following form:

The latter relationship follows from (1.4) and the Bernoulli integral. Let us determine the dimension-
less pressure force coefficients  and cz [5]:

Integration is performed over the surface of the wing;  is the area of the wing in plan view;
and  and C3 are the constants depending on the shape of the wing surface.

Let us now consider the f low around a narrow body having a nonzero thickness. The f low around such
a body can be simulated by a vortex surface similar to that considered above. In addition to the vortex sur-
face, along some line inside the bulk part of the body (or parts, if there are several), sources are placed.
Let us determine the intensity of the sources q(x). Let the area of the body cross section changes according
to the law of , . If the body has a zero thickness, then . From the geometric conditions
it follows that  and the order of magnitude for quantity  is comparable with unity.

In addition, let us require for condition  to be satisfied. The increase in the cross-sec-
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S104 GAIFULLIN
tional area of a body in the two-dimensional nonsteady-state problem occurs due to an influx of f luid from
a source, whereas a decrease in the area occurs due to outflow to a sink:

The potential of a two-dimensional source is

(1.12)

where r is the distance from point , wherein the source is located

When solving a 3D problem on the line corresponding to , ,it is necessary to
arrange 3D sources with the intensity of

The velocity potential originating from such a source is

Only now, as the r distance, it is necessary to take the distance in three-dimensional space from point
:

The contribution from the sources to the velocity potential  is

Since , then  and  should also be quantities on the order of δ2, whereas
their difference defines function . In the leading approximation

(1.13)

From (1.12) and (1.13) it follows that at  the longitudinal velocity perturbations

do not decay at infinity [5]. The same feature at infinity should be exhibited by pressure. The fact that per-
turbations do not decay has already been discussed above. Decaying perturbation at infinity should be
required for considering the solution in domain Ω2.

2. APPLICATION OF THE NONSTEADY-STATE ANALOGY TO POWER-LAW WINGS
Let us consider the f low of an ideal f luid near a small-aspect-ratio wing formed by straight line seg-

ments parallel to axis z. The length of these segments changes according to the power law ,

whereas the wing itself is curved according to a law corresponding to , where ,
a and b are some positive dimensional constants, ε is the dimensionless constant  and .
The wing is symmetrical with respect to the plane z = 0 (Fig. 2) and has a zero thickness. The oncoming
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Fig. 2. Wing formed by straight segments parallel to the z axis. The wing is curved according to a power law and has
a power-law shape in plan view.

y

x

y(x)

,(x)

z

u�
f low with velocity  at infinity is directed along the x axis. Vortex sheets vanish into the f low from the
sharp wing edges. The case of n = 1 corresponds to a delta-shaped wing.

At , when n < 1, and at , when n = 1, the wing becomes elongated, and therefore the
nonsteady-state analogy is valid. Replacing coordinate x by time t is the former: . By applying it,
one can obtain that the three-dimensional problem in the leading approximation is equivalent to a f low
near a f lat plate, the length of which varies over time according to the law , . Here-

with, the plate moves along the y axis with the velocity of . The parameters
of this f low should obey self-similar laws [6]. The circulation of vortex structures increases in proportion
to .

Paper [7] is devoted to the numerical calculation of an inviscid f luid f low around power-law wings
using the nonsteady-state analogy. The method of discrete vortices was used. In this work it was shown
that at  the turns of the vortex sheet get free from the circulation that is concentrated in the core
of the vortex structure.

If one returns to a three-dimensional steady-state f low again, then the circulation of vortex sheets in
the leading approximation exhibits an increase in proportion to .

Let us now turn at n < 1 to the fore part of the wing, where x ~ y ~ z. This scale corresponds to
. Here a sufficiently three-dimensional f low is realized. Thus, the f low does not become self-

similar immediately, but only after the f luid passes through the fore part of the wing, which is a domain
with a sufficiently three-dimensional f low. An interesting scenario consists in the potentialities of the fact
that the f low attains a self-similar mode. It is especially interesting at n = 1/2, when the entire vorticity
vanishing into the f low occurs from a very small domain of a three-dimensional f low  and then the
evolution of the vortex structure occurs without feeding the vorticity from the sharp wing edges.

In contrast to a nonsteady-state plane f low, a three-dimensional f low can be readily reproduced in
experimental studies. Such testing, in addition to the fact that they are themselves interesting, make it pos-
sible to find out how a vortex f low is formed in the vicinity of the wing apex.

The flow around a wing with a power-law shape in plan view  and curved according to the
power law , ,was experimentally studied in [8]. The linear dimensions are given in
centimeters. Testing is carried out in a vertical wind tunnel with a working part of the square cross section
measuring 150 × 150 mm in the range of Reynolds numbers Re = 2 × 103–2 × 104. The Reynolds number
was calculated based on the wing length and on the oncoming-flow velocity. In order to visualize the f low,
ink was supplied to the f low through a drainage hole in the fore part of the wing.

The experiment showed that the separated f low around the wing is steady state. In the fore part, “hang-
ing” separated formations were found: two closed vortex recirculation zones neighboring the wing apex
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Fig. 3. Visualization of recirculation zones with the use of dye: (a) plan view, (b) side view.

(a) (b)

Fig. 4. Same as in Fig. 3. Flow pattern.

(a) (b)

Recirculation
zone

Vortex

Wing
only. Vortex bundles separate from the recirculation zones, which in the theory of self-similar f low are ide-
alized as vortex filaments. Ink, after supplying it to the fore part of the wing being stopped, remained
therein for a time (about 10 min), much longer than the time it took for a f luid particle to travel the entire
length of the wing (which is about 10 s). The closure of the circulation regions and further transition to
a cylindrical f low occurred with no significant velocity f luctuations.

The laminar nature of the f low can be, it seems, caused by a favorable pressure gradient near the apex
and by a small value of Reynolds number Re. Figure 3 shows the experimentally obtained flow patterns at
an oncoming-flow velocity of  cm/s, whereas Fig. 3a shows a plan view of these zones, and Fig. 3b
presents a side view 1 min after dye-supply stopped. Figure 4 shows the f low pattern. Thus, experimental
studies performed using a wind tunnel have qualitatively confirmed the feasibility of a self-similar f low
at n = 1/2.

3. KADEN’S PROBLEM
Kaden [9] considered a steady-state problem of vortex-wake evolution behind an elliptically loaded

wing under the assumption that the vortex sheet vanishes only from the trailing edge. In this case, the dis-
tribution diagram for circulation Γ along the wing span at  can be determined according to the
following relationship:

In the case of an elliptically loaded wing, everywhere, except for the free ends, the downwash angle is
the same [10]. Therefore, the cross section of the main part of the sheet at small x should represent
a straight line segment. The free ends of the vortex sheet curl into spirals with an infinite number of turns.

If one assumes that curling the vortex sheet into a spiral occurs very slowly, as, for example, in the case
of a high-aspect-ratio wing at a low angle of attack, then the vicinity of the curled part of the vortex sheet
should represent an elongated formation (Fig. 5), for which the nonsteady-state analogy with the standard
replacement of coordinate x by time  is valid. Then, at short times, the transverse size of the curled
part of the vortex sheet should be much smaller than the transverse size of the wake.
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Fig. 5. Vortex wake curling behind an elliptically loaded wing.

u�

Fig. 6. Evolution of the vortex wake behind an elliptically loaded wing; (a) plane section, (b) the vicinity of the right vor-
tex, on its scale the left vortex is located at infinite distance from the right vortex.

(a) (b)

B A
On the scale of the curled part of the vortex sheet, the size of the rectilinear part of the vortex sheet
is infinite, the curled vortex at the second end of the sheet also goes to infinity, and its inf luence can be
neglected (Fig. 6a). The problem of the evolution of the end part of a vortex sheet with an elliptical cir-
culation-distribution law is equivalent to the problem of the evolution of a semiinfinite

 vortex sheet (Fig. 6b), whose circulation density at the initial moment of time
t = 0 changes according to the following law:

(3.1)

Since there is no characteristic linear size at the initial moment of time t = 0, then it should be expected
that the vortex-sheet evolution would be subject to a self-similar law. Let us mark on the vortex surface at
t = 0 two points A and B, one of which is located at a k-fold longer distance from the free end than from
the other, and let us consider the following two domains: from z1 = 0 to the A point and from z1 = 0 to the
B point. At the similarly located points in these two domains, the initial velocities are proportional to each
other. Hence, the motion of these points should also be similar. Only the duration of the corresponding
process in a larger domain is longer.

The path traveled by a point in a larger domain should be k-fold longer, whereas the velocity should be
-fold lower than the path and velocity of the corresponding point in the smaller domain. The time

for achieving such a change is proportional to the traveled distance and inversely proportional to the
motion velocity, i.e., this time should be different in the two areas by a factor of k3/2. If r1 and r2 represent
the scales of similar patterns at different points of time, then

Thus, the problem of semi-infinite vortex-sheet evolution (3.1) is self-similar with a self-similarity
index of n = 2/3.

In [11], the evolution of plain semi-infinite  and infinite  vortex sheets is con-
sidered, the equation of which at the initial moment of time in the complex plane is determined according
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to relationship , whereas the initial circulation distribution depends on coordinate x in a power-
law manner:

(3.2)

The solution to the problem depends on one dimensional constant a and on one dimensionless con-
stant p ranging within . For a semi-infinite vortex sheet δ = 0, whereas for an infinite one δ = 1.
The circulation density has the following power-law form:

which at p = 1/2 coincides with relationship (3.1). The semi-infinite vortex sheet should be curled into
a spiral in the vicinity of the free end. The infinite sheet should also be spiraled around point x = 0 due to
the nonanalytic behavior of the circulation density at the initial moment of time.

Let the geometry of the vortex sheet obey a law corresponding  at . If δ = 1, then the
right part of the vortex sheet is symmetrical with respect to the left part relative to the point x = 0, and
therefore its geometry obeys a law corresponding to . The evolution equation of the vortex
sheet can be expressed in the following form:

(3.3)

By direct verification, one can make sure that the evolution problem is self-similar with the following
self-similarity index 

(3.4)

where

(3.5)

Thus, problem [11] generalizes Kaden’s problem to the self-similarity parameters ranging from n = 1/2
at p = 0 to n = 1 at p = 1.

By substituting relationship (3.4) and (3.5) into integro-differential equation (3.3) one can obtain:

(3.6)

Equation (3.6) and dependence (3.2) determine the behavior of function  at :

The second term of the latter relationship is responsible for the downward motion of the vortex sheet.
For a semi-infinite sheet, the downward motion velocity tends to infinity at . Therefore, at δ = 0, to
avoid the specific feature, let us study the vortex-sheet evolution in plane  =
ξ' + iη'. The geometry of vortex sheets can be determined based on the numerical solution of Eq. (3.6).
Both for single-spiral and for double-spiral formations, such a geometry was obtained in [11]; it is given
in Figs. 7 and 8. The result obtained for single-spiral structures is shown in the plane of 
(see Fig. 7).

For infinite vortex sheets, there is no singularity in the expansion of function σ(G), the solution of
Eq. (3.6) is shown in Fig. 8. It should be noted that the solution in the vicinity of the vortex-sheet center
in [11] is obtained using an asymptotic solution for an infinite algebraic spiral. Figures 7 and 8 do not show
the infinite spiral, only the center around which the spiral is curled is indicated.
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Fig. 7. Geometry of single-spiral vortex sheets in the vicinity of the free end in the plane : (a) p = 0.05,
(b) p = 1.
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Fig. 8. Geometry of double-spiral vortex sheets in the vicinity of the center in the plane , p = 0.05.
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4. COMPUTATIONAL STUDIES ON FLOWS AROUND BODIES OF SMALL ELONGATION

The calculation of elongated bodies using the nonsteady-state analogy can significantly simplify the
problem. In general, a method is used that consists in replacing the vortex sheet with a set of discrete vor-
tices (discrete-vortex method). As far as a solid surface is concerned, one can use methods, in the case of
which attached vortices are located on the solid surface, and methods based on conformal mapping, in the
case of which a streamlined contour is usually mapped onto a cylinder or a half-plane, followed by replac-
ing the solid boundary with a system of mapped vortices. Let us present some results of calculations for
elongated bodies. Let us especially dwell on two almost important cases such as f lowing around a delta
wing and flowing around a circular cone.

Delta-Shaped Wing. The f low around a delta wing of small elongation at relative angles of attack on the
order of unity is accompanied by the vortex-sheet vanishing from the side and trailing edges. Intense vor-
FLUID DYNAMICS  Vol. 58  Suppl. 1  2023
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Fig. 9. Flow topology. Right half of the upper surface of the delta wing. χ = 15° and α = 7.5°.
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tex sheets radically change the f low topology near the wing. As compared to an unseparated f low, both
pressure, and forces affecting the wing exhibit changes.

At the same time, alongside the main separated formations of vortex sheets depending on the angle of
attack, secondary and tertiary vortex structures can also be observed, which already vanish from the
smooth surface of the wing, rather than from the edges. All these vortex structures have a spiral shape, with
a secondary vortex curled in the opposite direction with respect to the main vortex, whereas the tertiary
vortex is curled in the opposite direction with respect to the secondary vortex. The authors of [12] exper-
imentally studied the f low around a delta wing with the half-angle χ = 15° at the apex.

The wing edges are sharp. Figure 9 plotted on the basis of data taken from the above-mentioned paper
shows the f low topology at angle of attack of α = 7.5°. Only the upper surface of the right half of the wing
is shown. The f low velocity amounted to 40 m/s, the chord had a length of 1.45 m, which corresponded
to the Reynolds number Rec = 4 × 106 calculated according to this chord. The designations in the figures
are as follows: S1, S2 are the separation lines from a sharp edge and from a secondary vortex, respectively;
and A1, A2 are the lines of f low attachment, the meaning of which is illustrated in Fig. 10.

Figure 10 shows an illustrative view of the main and secondary vortex sheet in the cross-section of the
right half of the wing, as well as the projections of the streamlines (only the f low topology is shown with
no quantitative data corresponding to a real f low). From Fig. 9 one can see that the lines A1, A2, and S2 are
conical for most of the length of the wing, with two conical lines observed, one being the fore part of the
wing, the other starting at some distance from the fore part of the wing and continuing all the way to the
trailing edge. These two conical lines are joined by a smooth curve. Such a curvature of the lines is asso-
ciated with the state of the boundary layer near the wing surface. The fact is that only the main separation
occurring at the sharp edges is fixed on the delta wing, whereas the position of f low separation from a
smooth surface significantly depends on the characteristics of the boundary layer near the separation line.
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Fig. 10. Cross section of the right half of the wing.

A1 A2S2 S1
In the initial part of the wing, the boundary layer is laminar, and the first conical line is observed, then
a laminar—turbulent transition occurs, in the course of which the line is sufficiently curved, and then the
transition of the boundary layer to a turbulent state occurs, and the second conical line is observed.
In reality, the separation lines and attachment are only approximately conical, since as a figurative point
moves along the wing, the transverse size of the wing linearly increases, whereas the boundary-layer thick-
ness exhibits a nonlinear increase. However, this deviation from conicity is slight and insignificant in the
case of a small wing. With increasing angles of attack, tertiary separated formations, as well as an attach-
ment line caused by this separation appear on the wing surface.

As was already noted in Section 2, the separated f low around a small-aspect-ratio delta wing set at
a low angle of attack can be studied in the framework of the nonsteady-state analogy. However, since stud-
ies concerning such a f low in the scope of the nonsteady-state analogy are carried out using inviscid equa-
tions, then all the separated formations are usually neglected in the consideration, except for the main one
that vanishes from sharp wing edges. This simplification is connected, firstly, with the impossibility of
determining the position of formations separated from a smooth surface using inviscid equations, and,
secondly, with an insignificant effect of secondary vortex structures on the aerodynamic forces affecting
the wing.

For the case of a zero-thickness wing, the three-dimensional steady-state problem turns out to be
equivalent to a two-dimensional nonsteady-state problem of separated f low past a plate linearly expanding
over time. Quite a lot of works are devoted to the calculation of such a f low, among which one could single
out publications [13–16]. It is quite natural that this nonsteady-state problem is self-similar. In self-sim-
ilar variables, when the linear sizes are nondimensionalized with respect to a local half-span of the wing,
the geometry of spiral vortex sheets given in [16] for a small-aspect-ratio delta wing, λ = 0.698 at an angle
of attack of α = 10° and at a zero slip angle, is shown in Fig. 11.

It should be noted that to obtain the solution shown in Fig. 11, two numerical techniques have been
developed. The first one is related to the fact that the vortex-sheet evolution is unstable. On account of the
instability of the tangential discontinuity, the solution obtained using the discrete-vortex method will
depend on how the continuous tangential discontinuity is approximated by discrete vortices and on the
rule used for rounding numbers in the numerical calculations. Thus, the current problem is incorrect.
In order to obtain a stable solution, it is necessary to regularize the equations of vortex-sheet evolution.
The second technique is related to the fact that the vortex-sheet core represents a spiral with an infinite
number of turns. The approximation of such a vortex formation by discrete vortices is impossible. There-
fore, a model for the core of a spiral vortex sheet is needed.

Molchanov’s Regularizer. The velocity field induced by the vortex sheet can be described according to
the following equation

In the case when a vortex sheet is not the only source that determines the motion of the f luid (for exam-
ple, the oncoming f low, solid bodies in the f low, etc.), in studies on the local evolution of points on a vor-
tex sheet, a potential part of the velocity should be added to the right side of the latter equation. In the case
of numerical simulation, a f lat vortex sheet is replaced by discrete vortices with a certain level of discreti-
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Fig. 11. Vortex system inherent in a delta wing. Calculation according to the nonsteady-state analogy, 
and .
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zation in space. Following the work published by Molchanov [15], let us write out a finite difference
scheme of the first order of accuracy for the numerical calculation based on the vortex-sheet evolution
equation:

(4.1)

Here , , and Γn are the coordinates  and circulation of the nth vortex at the
moment of time  and U, V are the potential velocities.

Let us explore the stability of scheme (4.1) by an example whose exact solution is trivial. This is a dis-
continuity of constant intensity, coinciding with the x axis at . For the case where the disconti-
nuity is represented by discrete vortices, the trivial solution should have the following form:

where the number n takes both positive and negative values, h is the partition step, and γ is the circulation
density. Let us check the stability of this scheme for the case of a set of solutions close to the trivial one:

Assuming the perturbations to be small, let us linearize scheme (4.1)

(4.2)

where .
System (4.2) has a solution that depends on parameter 

It is obvious that some values of λ are greater than unity, hence, the perturbations should increase, i.e.,
scheme (4.1) is unstable.

Thus, despite the fact that there exists an exact solution for a rectilinear discontinuity of constant inten-
sity, it is impossible to obtain it numerically with the use of scheme (4.1).
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For the correct solution of the vortex-sheet evolution equation, it was proposed in [15] to use a regu-
larization method that makes it possible to smooth short-wavelength perturbations (on the order of h)
without reducing the accuracy of the numerical scheme. In order to do this, instead of scheme (4.1), the
author of [15] proposed the following calculation scheme:

(4.3)

At  and  the numerical solution of system (4.3) should tend toward solution of the initial
problem, only if scheme (4.3) is stable.

After the linearization of (4.3) one has

(4.4)

System (4.4) also has a solution that depends on parameter 

If one chooses such a θ, that  and , it can be always done at  and , where c
is some constant, then

In the case of the right choice of μ , the value of  |λ| does not exceed unity, which means that
scheme (4.3) becomes stable.

Figure 12 shows the results obtained for the vortex f low near the delta wing, calculated using the non-
steady-state analogy method. The quantitative data were taken from [15]. The angle of attack of the delta
wing amounts to a half-angle at the apex, the linear sizes were nondimensionalized with respect to the
local half-span, and the origin of coordinates are on the line of symmetry. Figures 12a and 12b show the
results of calculations with the use of Molchanov’s regularizer at μ = 1/4 and θ = 0. Figure 12a corre-
sponds to the moment of time t = 3.5; Fig. 12b corresponds to the moment of time t = 17. The vortices are
drawn using round markers, the central vortex is drawn using a square marker. In the following calcula-
tion, the data presented in Fig. 12a are taken as the initial ones, but the calculation was carried out with
no regularizer. The result obtained at t = 17.5 is shown in Fig. 12c. The calculation with no regularizer leads
to a “blurring” of the vortex sheet.

Model of the Vortex-Sheet Core. The replacement of the vortex sheet by discrete vortices with a certain
discretization in space is correct beyond the vortex-sheet core. The core represents a spiral with an infinite
number of turns and, if the step in space is regulated, i.e., no rediscretization of points on the vortex sheet
is performed, then the distance between the vortices can become comparable to the distance between
adjacent turns of the spiral, which is unacceptable for a correct numerical calculation scheme. Therefore,
the vortex sheet core should be simulated differently than it is done for the rest of the sheet.

Let us limit ourselves to an algebraic vortex sheet most often used in aerodynamic problems. Despite
the fact that one deals with a spiral with an infinite number of turns, the circulation of the vortex-sheet
core is finite. Therefore, due to the fact that the geometry of the turns of the algebraic spiral is close to
circular, the entire core can be replaced by one discrete vortex (Fig. 13a). However, over time, the size of
the core should increase, since more and more vortices should fall into it (Fig. 13b), and we again arrive
at the need to solve the problem mentioned above.

A core model free of this shortcoming was proposed in [13]. It is assumed therein that the circulation
of the vortex-sheet core can be time dependent . This dependence is determined by the fact that
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Fig. 12. Calculation of a f low around a delta wing at an angle of attack amounting to the half-angle at the wing apex with
the use of the nonsteady-state analogy. (a) , (b) , and (c) ; (a, b) calculation with the use of a regularizer [15]
and (c) without a regularizer.
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Fig. 13. Replacing the vortex system in the vicinity of the center (core) of the spiral with a discrete vortex: (a) at the
moment of time , (b) at the moment of time , where .

(a)

Vortex sheet

Hard surface

Discrete vortex
simulating the core
of the spiral

(b)

= 1t t = 2t t >2 1t t
at some moments of time the vortices approximating the vortex sheet, which are closest to the core, can
be cast onto it (Fig. 14). Herewith the vortices cast from the sheet disappear from the f low, and the circu-
lation of the core is increased by the circulation of these vortices. Such a model is called a vortex–cut sys-
tem. The feeding cut connects the central vortex with the last vortex in the vortex sheet.
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Fig. 14. Vortex–cut model.

�e
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Let us find the velocity with which the central vortex moves. Let its coordinate be , the coordinate
of the last vortex on the sheet be , its circulation be Γe, and the velocity of the f low at the central-
vortex location point be . If at some moment of time there is no change in the circulation of the cen-
tral vortex, i.e., , then

If, however, vortex Γe is cast onto the central vortex, then the center of gravity of such a system as the
central vortex plus vortex Γe is located at point can be expressed as

The total displacement of the central vortex over time , during which the vortex Γe is cast onto the
central vortex amounts to its displacement with velocity  and the displacement of its center of gravity by
a value of . Thus,

Let the time step tend to zero. Then one can replace the step  by a differential dt. Let us introduce
the following designation:

Taking into account that , finally one has

(4.5)

Based on other prerequisites, namely, on the condition of the absence of a force affecting the vortex–
cut system, relationship (4.5) was obtained in [16].

Delta Wing with Blunted Edges. The authors of [17] studied a separated f low near a small-aspect-ratio
delta wing with blunted leading edges. The cross section of the wing represented an ellipse with a small
relative thickness (Fig. 15). The surface of the wing is smooth and vortex sheets can vanish from some lines
of the surface. Since setting the position of the separation lines is possible in a rather wide range, then the
solution to this problem is also not unique. Such nonuniqueness is usually inherent in the case when the
separated f low around smooth bodies is studied in the scope of the Euler equations. The choice of
a unique solution from the whole variety of solutions is possible only based on the equations of viscous
fluid motion. Herewith the position of the separation lines should be dependent on the Reynolds number.
Thus, different separation lines on the wing surface, and, correspondingly, different geometry and inten-
sity of vortex sheets vanishing from these lines should correspond to different Reynolds-number values.

For a delta wing with zero thickness, separation occurs from sharp edges, therefore, for a delta wing
with a small relative thickness, the separation lines should lie in the vicinity of the wing edges. Since the
wing geometry is conical, then it can be assumed that the geometry of the vortex sheets should be conical,
too, and, hence, the separation line should represent a segment of a straight line going out of the wing
apex, i.e., forming a cone. Let us also assume that the separated f low around the wing is symmetrical.
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Fig. 15. Separated flow around a delta wing having a small relative thickness.
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In this case, one can construct a one-parameter family of solutions differing from each other in the posi-
tion of the separation line.

From the standpoint of the nonsteady-state analogy, the three-dimensional steady-state problem is
equivalent to a two-dimensional nonsteady-state problem of f lowing around an expanding ellipse.
The next two figures, Figs. 16 and 17 are based on data taken from [17]. Figure 16 shows the geometry of
the vortex sheets at two different separation angles. It can be seen that a slight displacement of the separa-
tion point leads to a significant change in the vortex structure of the wing. The cases shown in Fig. 16 cor-
respond to a f low moving over the wing at a relative angle of attack of , where χ is the half-
angle at the wing apex. The ratio between the sizes of the minor b and the major a axes of the ellipse is

. The linear dimensions are nondimensionalized with respect to the local half-span.
Let us denote by z1 the distance from the wing edge (the end of the semimajor axis of the ellipse) to the

point of separation in the section corresponding to x = const, nondimensionalized with respect to the
local half-span. Let us consider this quantity positive when moving along the windward side, and negative
when moving along the downwind side. The f low separation from the windward side can occur not from
any position. In local variables n and τ in the vicinity of the separation point, the geometry of the vortex
sheet in the leading approximation has the form of  [6], whereas the radius of curvature of
the vortex sheet is zero.

With increasing z1 along the windward side, α exhibits a decrease, and finally, at some point , quan-
tity α vanishes. At this point, the radius of curvature of the vortex sheet amounts to the radius of curvature
of the solid boundary, from which the separation occurs. This is the limiting separation point. In this case,
the separated f low satisfies the Brillouin–Villat condition. At  no f low separation is possible.

Figure 17 shows a ratio of the coefficient of normal force cN affecting a delta wing to zero-thickness
delta wing coefficient  at  for different ε. The curves reach points where the separated f low sat-
isfies the Brillouin–Villat condition. It can be seen that at a decrease, the maximum value of the normal
force approaches .

Circular Cone. The f low pattern around a circular cone depends on the angle of attack α, on the half-
angle of the cone opening χ, on the Reynolds number, and on the laminar or turbulent state of the bound-
ary layer. Just as it is in the case of f luid f lowing around a delta wing, secondary separated formations
flowing from the surface of the cone are quite possible. At the same time, even the lines of the main vortex
structures cannot be fixed on the surface of the cone (in contrast to the delta wing). In terms of force
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FLUID DYNAMICS  Vol. 58  Suppl. 1  2023



ON THE SLENDER-BODY THEORY S117

Fig. 16. Vortex-sheet geometry at two different separation angles.

0.8

0.6

0.4

0.2

0 0.5 1.0 z

y

�0.2

Fig. 17. Coefficient of normal force affecting a delta-shaped wing, depending on ε and z1.
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action, the main separated formations play the main role; therefore, in the calculation of a separated f low
around a circular cone in the framework of the ideal-fluid model, secondary vortex structures are usually
neglected, whereas the position of the separation line of the main vortices is set based on a certain reason-
able range of positions.

The calculation of a separated f low around a cone using the nonsteady-state analogy was performed
in [18]. Below the results of calculations taken from this work are presented. This example is remarkable
in the fact that in this case there is no need to use conformal mappings, since the three-dimensional
steady-state problem of separated f low around a circular cone is equivalent to the two-dimensional non-
steady-state problem of f lowing around an expanding circle. The velocity field near the circle can be rep-
resented as the superposition of an oncoming f low, a source and a dipole corresponding to an unseparated
circulation-free f low around an expanding circle, two vortex sheets vanishing from given separation
points, as well as two vortex sheets conjugated with them with respect to the circle. Just as in the previous
paragraph, separation is possible only starting from a certain angle at which a separated formation satisfies
the Brillouin–Villat condition, and at the same time this angle depends on the relative angle of attack .α = α χ
FLUID DYNAMICS  Vol. 58  Suppl. 1  2023
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Fig. 18. Separated flow around a cone at  and η0 = 100°.
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α = 3
Let us consider a symmetric incompressible inviscid-fluid f low with the velocity  around a circular
cone with the apex half-angle  at an angle of attack amounting to . Thus, the conditions for
the applicability of the theory of elongated bodies are satisfied. As has been already shown above, accord-
ing to this theory, the three-dimensional steady-state problem of separated f low around an elongated body
can be reduced to a two-dimensional nonsteady-state problem concerning a separated f low around a f lat
contour expanding according to some law, having the shape of the body cross section via replacing the lon-
gitudinal coordinate x by time according to the relationship . In the case of a circular cone, this
is the problem of a separated f low around a circle expanding with constant velocity.

Let us limit ourselves to a simplified mathematical model of separated f low around a cone with two
symmetrical vortex sheets vanishing from the lines of a single primary separation. Thus, secondary sepa-
rated formations are ignored. Let us assume that in the case of a separated f low around a circular cone the
disturbed flow is conical, i.e., the separation line is assumed to be straight. Such a simplification is possi-
ble due to the fact that the location of the primary separation line slightly depends on the Reynolds num-
ber and the separation angle can be considered, in the first approximation, to be a constant that depends
on the Reynolds number as a parameter.

In the case of the external inviscid plane problem, the radius of a streamlined circle varies according to
the law of . For the case of the plane problem, the oncoming-flow velocity amounts to a trans-
verse velocity component at infinity . The problem of a separated inviscid f low around a circular
cone is self-similar. Let us introduce self-similar variables: linear variables  and velocity vari-
ables . In the self-similar variables, the circle has the radius , whereas the velocity of the
transverse oncoming f low is determined by the relationship . Hence, in a symmetric system, in
the external inviscid plane problem there is only one defining parameter represented by the relative angle
of attack .

The structure of f low around a slender cone depends on this quantity [19]. At small  the f low
around the cone is unseparated. For each value of the relative angle of attack , a one-parameter
family of inviscid solutions exists depending on the angular separation-line coordinate η0 measured from
the lower (windward) generatrix of the cone. The value of η0 can vary in the range from the angular coor-
dinate of the separation line, on which the Brillouin–Villat condition  is satisfied, to the angular
coordinate of the upper generatrix of the cone .

Figure 18 shows the typical calculation result: the configuration of vortex sheets at  and η0 = 100°.
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5. CALCULATION OF SEPARATED FLOW TAKING INTO ACCOUNT
STRONG VISCOUS-INVISCID INTERACTION

According to the method described in the previous section, one can obtain a one-parameter family of
inviscid solutions for a symmetric separated f low around a thin circular cone. In this section, the problem
of extracting a unique solution from this family for a given Reynolds number is solved, i.e., the problem
of obtaining a calculated position of the separation lines on the cone depending on the Reynolds number
Re [20].

Boundary-Layer Equations. In order to determine the characteristics of the boundary layer, let us
choose a coordinate system on the surface of the cone in the following manner where: ξ is the distance
along the generatrix of the cone, ζ is the distance along the normal to the surface, η is the angle measured
from the lower generatrix of the cone, and  is the current radius of the cone. The velocity components
in coordinate system  are denoted by . The boundary-layer equations can be written as follows:

(5.1)

The boundary conditions here represent no-slip conditions and the condition of switching to solving
an external inviscid problem

(5.2)

(5.3)

The solution of Eq. (5.1) is sought in the following form [21]:

where .
Quantities E, G, and V can be determined based on (5.1)

(5.4)

where  and .
In the new variables, boundary conditions (5.2) and (5.3) are transformed, too:

(5.5)

(5.6)

Since one considers a cone with a small angle θ, i.e., the study is carried out under the assumption of
the theory of elongated bodies, quantities , and B can be represented in the form of asymptotic
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expansion in χ: , etc. In the first approximation, Eq. (5.4) can be written in the follow-
ing form

(5.7)

To simplify the expression, subscript 1 has been omitted.  and .
In the symmetry plane, the parameter A vanishes. This makes it possible to obtain the following boundary
condition at η = 0:

(5.8)

In the case of a fixed line of vortex-sheet vanishing, the calculation of the boundary-layer equations
leads to an earlier location of the boundary-layer separation. A numerical experiment was carried out.
At a given angle of vortex-sheet vanishing η0, without taking into account the viscous-inviscid interaction,
the point of boundary-layer separation  was calculated. The dependence of these quantities is shown
in Fig. 19. The calculation was performed at . The angle was . The dashed line in Fig. 19
corresponds to line . As expected, the angular difference  (solid line) decreases as the van-
ishing angle tends to the angle at which the Brillouin–Villat condition is satisfied. If the vortex sheet van-
ishes at large angles, then the angular difference  is significant. This difference should decrease due
to the strong viscous-inviscid interaction.

Strong Viscous-Inviscid Interaction in Flows with Global Separation. Let us determine the Reynolds
number . At a given angle of vortex-sheet vanishing, one can splice the solution of the external
problem with the solution of the internal one only at a specific value of the Reynolds number Re0.
At greater Reynolds numbers, the boundary layer should be thinner than it is at Re0 and it is not able to
correct a large pressure gradient in the external inviscid f low. At smaller Reynolds numbers, the boundary
layer should be, on the contrary, thicker than it is at Re0, and such a boundary layer is able to overcome
a pressure gradient greater than the set one.

The viscous-inviscid interaction is taken into account via setting appropriate boundary conditions
at . Let us represent  in the following form

(5.9)

Dependence  is a result obtained in solving the problem of an inviscid separated f low around an
expanding circle, whereas  is the correction for taking into account the displacing effect of the
boundary layer exerted on the external f low. It should be noted that the coordinate of inviscid separation
at a set Reynolds number Re is not a priori known, and therefore, in contrast to the case of taking into
account the strong viscous-inviscid interaction for local separation, quantity  should change in the
course of solving the problem.

The displacement effect of the boundary layer from angle  to the coordinate of boundary-layer
separation, taking into account strong viscous-inviscid interaction, , can be simulated by sources
distributed over the surface of the cone cross section. Owing to viscosity affecting at , the velocity
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Fig. 19. Boundary-layer separation angle depending on the angle of vortex-sheet vanishing. Calculation performed with-
out taking into account the viscous-inviscid interaction.
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normal to the cone changes by a quantity of . The source density is , or in the above-men-
tioned notation and in self-similar variables is

(5.10)

Let us consider now a domain that represents a small vicinity of the separation point. Let us superpose
the origin of the local coordinate system  with the vortex-sheet vanishing point , which, gen-
erally speaking, does not coincide with point . The vortex-sheet equation in this domain according
to [6] is

With an increase in the vanishing angle of the vortex sheet, coefficient c in the latter relationship exhib-
its an increase, and, naturally, the pressure gradient in the vicinity of the vanishing point increases, too.

The velocity  induced by a part of the vortex sheet corresponding to  at point τ0 is deter-
mined with the use of a mapping method. Since the curvature of a streamlined circle is much less than the
curvature of the tangential discontinuity surface, then it is in the first approximation:

The vortex-sheet intensity γ amounts to the f low velocity  at point . By expanding into a series
at small τ one can obtain:
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From the latter relationship, it follows that the vortex sheet has a displacing effect with respect to the
body surface, and in the leading approximation, the inductive effect of a part of the sheet corresponding
to  can be expressed through sources with a density of

distributed over the surface from τ = 0 to  and through an intensity sink of

located at point . In self-similar variables

(5.11)

As is known, at distances much larger than the size of the interaction domain, the geometry of the vor-
tex sheet and its contribution to the inductive velocities obey inviscid equations. In the vicinity of the sep-
aration point, on the contrary, viscosity plays a primary role. Therefore, it makes sense to divide the vortex
surface behind the boundary-layer separation point into the following three parts:

1. For a domain extending from the boundary-layer separation point η1 to a certain point  cho-
sen a priori and sufficiently distant from the separation point, it is assumed that the f low characteristics
can be determined by viscous equations. In the domain, where , the calculation is made based on
Eqs. (5.7) with the use of boundary conditions (5.5), (5.6), (5.8), and (5.9). In the domain of reverse f lows

 to solve the boundary-layer equations, it is necessary to set the boundary conditions at .
Determining these conditions represents a difficult problem. However, it is known that in the domain of
reverse f lows, the transverse velocities are small, . Limiting oneself in Eqs. (5.7) only to terms of the
same order of smallness in G, one can obtain equations that do not require setting any boundary condi-
tions at  for their solution

For the boundary between domains  and G < 0 determined in the course of solving, it is assumed
that the quantities E and V do not suffer discontinuity. In domain  there are sources with a den-
sity, whose value is determined according to relationship (5.10).

2. For the case of the domain extending from point  to point , it is assumed that the f low
characteristics can be determined by inviscid equations. Here, the sources are located, too, but their den-
sity is determined according to relationships (5.11). The role of this zone consists in the fact that the effect
of sources on the boundary conditions in domain  can be expressed through the principal value of
the Cauchy-type integral. For correct calculation of the latter, it is necessary to set singularities equidistant
both before the point wherein the inductive velocity is calculated, and after this point.

3. for the case of the domain extending from point  and further, it is assumed that the f low char-
acteristics and the shape of the zero streamline can be determined based on inviscid equations. The surface
of the vortex sheet is divided into discrete vortices, based on which inductive velocities on the surface of
the streamlined circle can be calculated.

At the center of the circle, there is a point sink with an intensity amounting to half the sum of the inten-
sities of the sources distributed over the surface of the circle. This sink is necessary in order to satisfy the
condition of equality between the source density and a twofold velocity normal to the surface, which
occurs due to an increase in the thickness of the displaced boundary layer on the surface of the cone.

Thus, quantity  represents the field of velocities that originate from sources located on a stream-
lined circle in domains  and . The intensity of these sources can be determined
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Fig. 20. Distribution of sources along the surface of a cone. Curve 1 corresponds to an inviscid distribution of the sources;
curve 2 corresponds to a viscous distribution of the sources.
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according to relationship (5.10). Quantity  represents a superposition of the velocity of unseparated
flow around an expanding circle, the velocity originating from the sources located on the circle in domain

, whose intensity is determined according to relationships (5.11), and the velocity originating
from a part of the vortex sheet located in domain .

When the Prandtl equations are solved in domain , the unknown variables are represented
by the source density q(η) and the boundary condition . Only the interrelations between quantities
q(η) and  are known, the procedure for whose identification is described above. Joint solution of the
Euler and Prandtl equations is performed by means of the iteration method. According to a set value of
the Reynolds number Re, dependence  and the vortex-sheet vanishing point η0 exhibit a change in the
course of each iteration. The problem is considered solved if the source distribution calculated up to
point η2 according to relationship (5.10) can be smoothly spliced with the source distribution calculated
according to relationship (5.11) up to this point, i.e., the source distribution given by the Prandtl equations
smoothly converges to the inviscid-source distribution. Such numerical splicing is shown in Fig. 20.
The case of  and  was calculated. Figure 21 shows the dependence of the angle of
the boundary-layer separation on  at .

For comparison, the results of experimental studies and calculations based on asymptotic theory, taken
from [22], are presented. The mathematical model of the separated f low around two symmetrical vortices
in the calculations according to asymptotic theory correspond to the mathematical model in the calcula-
tions taking into account strong viscous-inviscid interaction. The existing discrepancies in the calculations
taking into account strong viscous-inviscid interaction can be explained by the inadequacy of the chosen
mathematical model with respect to a physical f low pattern, namely, with respect to calculations without
taking into account secondary separated formations. Figure 22 shows the angle of the boundary-layer sep-
aration depending on the relative angle of attack  for two values of : 104 and 105.

6. NONUNIQUENESS AND ASYMMETRY OF SOLUTIONS TO THE PROBLEM
OF A SEPARATED FLOW AROUND EXTENDED BODIES

Nonuniqueness. In the framework of the ideal-fluid model, the solution to the problem concerning sep-
arated f lows around elongated bodies, even at fixed separation lines, could be nonunique. An example of
such nonuniqueness can be found in [23, 24], where, using the nonsteady-state analogy, a f low around an
elongated conical body consisting of a tapered fuselage with an axis coinciding with the x axis, and a delta-
shaped wing lying in plane y = 0 and having a half-angle χ at the apex was considered. Such a system is in
a f low with velocity  oncoming at an angle of attack α at infinity. It is assumed that f low separation
occurs only from the sharp wing edges (Fig. 23). As before, let us denote the relative angle of attack
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Fig. 21. Boundary-layer separation angle depending on  at . The solid line coresponds to the calculation taking
into account the viscous-inviscid interaction, the dashed line corresponds the calculation according to asymptotic theory,
the dotted line corresponds to , and the markers indicate experimental data taken from [22].
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Fig. 22. Boundary-layer separation angle depending on the relative angle of attack  for two values of : 104 and 105.
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by  and the ratio of the fuselage diameter to the wing span for any cross section  is
denoted by m .

In order to solve the problem, a velocity potential is introduced that satisfies the Laplace equation both
beyond the body surfaces and beyond the vortex sheet. The boundary conditions are standard consisting
in impermeability through the body and the sheet surfaces and the absence of a pressure jump on different
sides of the vortex sheet. The separation from sharp edges provides the Chaplygin–Zhukovskii condition
on the edges. From the standpoint of the nonsteady-state analogy corresponding to , the problem
can be reduced to studying the separated f low around a uniformly expanding body corresponding to the
cross section of the wing–fuselage combination. The solution of such a problem is self-similar in time.
An important factor consists in the fact that a symmetrical solution is sought, i.e., it is assumed that the
circulation and geometry of the right and left vortex sheets are the same. As is seen from the next subsec-
tion, this is very important, since at high relative angles of attack, the separated f low could become asym-
metric.

Let us introduce new dimensionless variables , . In these variables, the
cross section of the wing has a span amounting to 2 and the fuselage diameter is 2m. In the space of param-
eters  and m there are domains wherein the solution to the problem is not unique. The next two figures,

α = α χ const=x
( )< 1m

∞=t x u

= χcot*y y x = χcot*z z x

α
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Fig. 23. Separated flow around a conical body.
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Figc. 24 and 25 show the curves plotted according to data presented in [24]. Figure 24 shows two solutions:
weak solution I and strong solution II. The calculation is carried out for the case of  , m = 0.9. The
circulation of vortex formations Γ, i.e., the circulation around the contour located in plane x = const and
completely enclosing one vanishing vortex sheet, is different in the case of a weak and a strong sheet. In
the case of a strong vortex sheet, the circulation is much greater. Figure 25 shows a change in the dimen-
sionless circulation

with changing relative angle of attack for the solutions with weak and strong vortex sheets at different m.
Figure 25 also shows the existence range for two solutions at m = 0.9.

The question of choosing a solution should be postponed until the next section, wherein the symmetry
condition is abandoned in the solution obtaining procedure.

Asymmetry. At large relative angles of attack, even in the case of a symmetrical oncoming f low, the sep-
arated f low around symmetrical elongated bodies has an asymmetric structure. As was shown in the pre-
vious subsection, the solution to the problem of a separated f low in the case of a symmetric solution could
be nonunique. The presence of asymmetric solutions exacerbates the nonuniqueness of the problem solu-
tion. In practice, only those solutions that are stable with respect to external perturbations can be realized.
Just in the same way, as is seen below, the selection of solutions that can be implemented in practice takes
place.

The occurrence of asymmetric vortex formations leads to the emergence of a lateral force affecting an
elongated body. Hence, the occurrence of asymmetry is possible only under f low around such bodies that
have a nonzero cross section in the direction of lateral force. So, for example, on an infinitely slender
delta-shaped wing in the case of a symmetrical oncoming f low, the occurrence of asymmetric vortex for-
mations is impossible, since there is no cross section that could take the lateral force.

The characteristics of an asymmetric f low depend on the shape of an elongated body, on the Mach and
Reynolds numbers, on the turbulence of the oncoming f low, as well as on the surface roughness. A review
of experimental studies on determining the characteristics of an asymmetric f low and the effect of differ-
ent parameters on them can be found in the collective monograph [25].

Let us consider the same problem that was explored in the previous paragraph, i.e., a f low around
a low-aspect-ratio tapered wing–fuselage combination with fixed separation forms vanishing from the
sharp wing edges. In the most simplified mathematical formulation, when the separation vortex sheet is
replaced by a discrete vortex and by cut feeding connecting the vortex with the wing edge (Fig. 26), various
solutions together with study of their the stability were obtained in [26, 27], the main results of which are
presented in this section.
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Fig. 24. Separated flow around the tapered fuselage–wing combination at  and m = 0.9. Separated formation geom-
etry: (I) weak separated formation and (II) strong separated formation.
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Fig. 25. Dimensionless circulation depending on the relative angle of attack at different m. The dotted line marks the
dependence at .
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Let us introduce the following notations: Γ1 and Γ2 are the circulation of the right and left vortices,
respectively, and W is the complex f low potential.

As already noted, in this case, the nonsteady-state analogy reduces the three-dimensional steady-state
problem to a plane problem self-similar in time. Let us nondimensionalize the linear quantities in section
x with respect to the half-span of the wing in this section
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ε ε
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y zy z
x x
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Fig. 26. Separated flow around a conical body. The vortex sheet is replaced by the vortex–cut model.

Fig. 27. Complex planes σ, μ, and . Plane σ shows two vortices connected through a cut to the sharp edges of the wing.
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where , whereas the circulation and complex potential are nondimensionalized as follows:

The complex conjugate velocity at infinity has the only vertical component

We denote the coordinates of the vortices by σ1 and σ2 in the complex plane  (Fig. 27a).

Let us conformally map the exterior of the figure shown in Fig. 27a, at first onto the exterior of segment
 in complex domain μ (Fig. 27b)

and then onto the exterior of a unit circle (Fig. 27c) located in complex plane ζ, according to the following
relationship:
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∞ ∞

Γ= =
πα ε α ε

, .*2
WG W

u x u x

∞+ →∞
− = − αv 2 2

* *
.* * y z

u i i u

σ = +* *z iy

− + +2 2[ (1 )/2, (1 )/2]m m

σ = μ + μ −2 2,m

 +μ = ζ + ζ 

21 1 .
4
m
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The complex potential of a separated f low around a circle represents a superposition of the potentials
of an expanding circle, right and left vortices and vortices reflected with respect to the circle

(6.2)

where ζ1 and ζ2 are the coordinates of the vortices in plane ζ, which are unknown. In addition to the
coordinates, the circulations of the vortices G1 and G2 are also unknown.They can be determined based on
the conditions of Chaplygin–Zhukovskii at sharp edges, as well as the condition of the absence of force
affecting the vortex–cut system.

The Chaplygin–Zhukovskii condition on velocity finiteness should be satisfied on the sharp wing
edges as follows

Since

and at points  (which corresponds to points )

then

(6.3)

The fact that the real part of relationship (6.3) is zero follows directly from (6.2). Hence, the Chaply-
gin–Zhukovskii condition can be finally written in the following form

The condition of the absence of force affecting the vortex–cut system predetermines the unknown
equations relating the coordinates and circulations of vortices to each other. Taking into account the self-
similarity of the solution, i.e., the fact that in self-similar variables (6.1) the coordinates of vortices should
be fixed, let us transform (4.5) into the following relationship:

(6.4)

The velocities involved in relationship (6.4) are the velocities of vortex motion. The calculation thereof
is carried out according to the following already familiar relationship:

(6.5)

Relationships (6.3) determine an analytical dependence of circulations on the coordinates of vortices.
By substituting this dependence into relationship (6.4) (taking into account (6.5)) and by extracting the
real and imaginary parts therein, at given  and m one can obtain four equations with four real unknown
quantities, i.e., the coordinates of the vortices:

(6.6)

Figure 28 shows the numerical solution of Eqs. (6.6) at m = 0.5 depending on a relative angle of attack
ranging from  to . The numerals I mark symmetrical branches of the solution, the

( ) ( )  ζ − ζ ζ − ζ+ζ = − ζ − + σ ζ − − ζ α ζ − ζ ζ − ζ 

2 2
1 2

1 2
1 2

1 1 ln ln ln ,* 2 1 1
m mW i iG iG

σ=±

< ∞
σ 1

* .
dW

d

ζ=
σ ζ σ

* *dW dW d
d d d

σ = ±1 ζ = ±1

σ =
ζ

0,d
d

ζ=±

=
ζ 1

* 0.
dW

d

ζ=±

=
ζ 1

*Im 0.
dW

d

( ) ( )
σ=σ σ=σ

= σ + = σ −
σ α σ α

1 2

1 2
1 1* *2 1 , 2 1 .

dW dW

d d

σ→σ
σ=σ

 ζ= + = σ ζ σ σ − σ 

* *lim , 1,2.
j

j

j

j

dW dW iGd j
d d d

α

( )ξ η ξ η α = =1 1 2 2, , , ; , 0, 1,2,3,4.iF m i
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Fig. 28. Position of vortices depending on . (I) Symmetric branch of the solution, (II) and (III) asymmetric branches.
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numerals II and III mark asymmetric ones. On branch II, the right vortex is located above the left one;
on branch III, it is vice versa. At  a bifurcation of solutions is observed.

Replacing the vortex sheet by a single vortex is, of course, a rough model. However, this model gives
a qualitatively correct bifurcation behavior of separated formations. In a more accurate model, wherein
the vortex sheet is simulated by a set of discrete vortices, whereas the vortex–cut model is used only in
the case of core simulation, the solution bifurcation is shifted by approximately 20–25% towards lower
values of . Figure 29 shows vortex structures at m = 0.5, corresponding to relative angles of attack of

, at which the solution is still symmetrical, and that of , at which the symmetrical solution has
already lost its stability.

The instability of the solutions obtained in [26] was studied again using the example of a model of
a discrete vortex connected with the wing edge by a cut as follows: nonsteady-state equations of motion
were written for discrete vortices; further, the equations were linearized in the vicinity of the solutions of
Eqs. (6.6). Then these equations were studied for stability. Depending on m and  Fig. 30 shows a diagram
wherein different domains correspond to different numbers of solutions. In domain 1, only one solution
of Eqs. (6.6) exists, and it is stable. In domain 2 there are three solutions of Eqs. (6.6): a symmetric unsta-
ble one and two asymmetric (mirror) stable ones.

There are seven solutions in domain 3: three symmetric solutions, one stable and two unstable; as
well as four asymmetric solutions, two stable and two unstable. In domain 4, there are five solutions:
one stable symmetric solution and four asymmetric solutions, two of which are stable and two are
unstable. Which of the stable solutions could be implemented in practice depends on many factors: on
the accuracy in manufacturing a symmetric body, on perturbing factors, and on the history of attaining
a preset f low mode. So, for example, when a symmetrical body is arranged at a slip angle with respect

α = α ≈ 5.18*

α
α = 3 α = 4

α
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Fig. 29. Separated flow around a tapered combination, m = 0.5; (a) symmetrical one at , (b) asymmetric one at .

�1

�1

1

0

(a)

(b)

1 2�2

�1

�1

1

2

0 1 2�2

α = 3 α = 4

Fig. 30. Bifurcation diagram of solutions.
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the oncoming f low, then with changing slip-angle hysteresis dependences of the aerodynamic character-
istics can occur [27, 28].
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