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Abstract—The problems of oscillatory f low of a viscoelastic incompressible f luid in a plane channel are
solved for a given harmonic oscillation of the f luid f low rate. The transfer function (amplitude–phase
frequency response) is determined. Using this function, the effect of the acceleration oscillation fre-
quency and the relaxation properties of f luid on the ratio of the tangential shear stress on channel
wall to the velocity averaged over the channel cross-section (cross-sectional velocity) is determined.
It is shown that the viscoelastic properties of f luid, as well as its acceleration, are the limiting factors
for using the quasi-stationary approach. The found formulas for determining the transfer function for
viscoelastic f luid f low in the case of non-stationary stream make it possible to determine the dissipa-
tions of mechanical energy in a non-stationary f low of the medium which are of importance for cal-
culation of the control of hydraulic and pneumatic systems.
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The study of oscillatory f low of viscous and viscoelastic f luids in a plane and rectangular channel under
the action of harmonic oscillation of the f luid f low rate can be carried out in biological mechanics, in par-
ticular, for the operation of a microchip system [1]. These systems are designed to diagnose the work of
various human organs, as well as targeted delivery of drugs to them. In addition, pneumatic micro-pumps
with periodic displacement of f luid from the free volumes are often used to ensure constant f luid f low rate
in biomedical installations [2]. In such systems, an apparatus with the pulsating f low rate may be econom-
ically advantageous. When transporting highly viscous and heavy oil and petroleum products over long
distances and circulating drilling mud in the well, one of the important tasks is to develop an effective
method for reducing the hydraulic resistance of f lows [3–5]. The f luids used in all the above-mentioned
industries, both medicinal products and petroleum products or drilling muds treated with high molecular
weight polymers can be classified as viscoelastic f luids [3–5]. As the authors know, at present there are
practically no studies on the effect of f low rate pulsations on f luctuations in the hydraulic resistance and
friction resistance coefficients. However, these studies are of much importance for calculating the pres-
sure gradient and other hydrodynamic characteristics that occupy a special place in carrying out certain
biomedical and other technological investigations [1, 2]. Thus, it is necessary to note an important role of
studies of the tangential shear stress on the wall, together with other f low parameters, in the vibrational
flow of viscous and viscoelastic f luid.

The most simplified approach to the theoretical study of vibrational f low of a viscous f luid is based on
the assumption that the viscous f luid is uncompressible and its f low in infinitely long cylindrical pipe of
circular cross-section is laminar under the action of the pressure gradient which varies harmonically with
time. The pulsating currents of viscous incompressible f luids in rigid and elastic pipes were studied in
works by Gromeka [6, 7]. In these studies Gromeka determined the velocity of propagation of pulse pres-
sure waves and their attenuation. Then, the problems of vibrational f low of viscous f luid in a pipe were
investigated in Crandall’s study [8]. Crandall, solving the problems of vibrating f low of viscous f luid in
a circular infinite pipe, derived formulas for the velocity profile, the f luid f low rate and the impedance
during the propagation of a sinusoidal pressure wave. A few years later, Lambossy [9] has published his
conclusions on the same velocity profile and, in addition, has calculated the viscous drag. Womersley [10]
re-derived Lambossy’s solution. His distinctive qualitative results consisted in the fact that, firstly, there
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exists a phase shift between the pressure and cross-sectional-average velocity f luctuations, and, secondly,
the formation of a non-monotonic distribution of the velocity profiles was revealed.

For the first time, the influence of superimposed oscillations of the cross-sectional-average velocity in
laminar pipe f low was studied in experimental work [11]. At relatively high oscillation frequencies, the so-
called “annular” Richardson effect was obtained, namely, there is a maximum that appears on the profile
of the oscillating component of the longitudinal velocity in a narrow near-wall layer, whose thickness
decreases with increase in the oscillation frequency. In the rest of the pipe, the f luid oscillates as a whole
in accordance with the f luctuation of the cross-sectional-average velocity. Experiments were also carried
out on pipes with the inner diameter of 40 mm, in which the piston initiates harmonic variations in the
fluid f low rate about zero [12]. The points obtained from oscillograms on which the local velocities were
recorded at various positions in the pipe cross-section by means of an electrothermal anemometer were
plotted on the graph. From the graphs it can be seen that the maximum local velocities are observed near
the wall. These experimental results are in good agreement with the results of the above study. Theoreti-
cally, the problem of pulsating laminar f low in a pipe was solved in [12]. In [13], this problem was solved
similarly to [12], but under the condition that not the harmonic oscillations of the cross-sectional velocity,
but the oscillations of the pressure gradient were specified. From the analytical solution of the equation of
motion for pulsating f low it follows that in the case of relatively high frequencies and oscillation ampli-
tudes, at certain Reynolds numbers of the time-average f low there is a zone of reverse (reversible) f lows
in the neighborhood of the wall, when the local velocity is directed counterstreaming to the mean f low.
In [14] the occurrence of these zones was confirmed experimentally with very good agreement between
the theory and the experiment. In [15], a similar solution of the problem of pulsating f low in a plane chan-
nel and in a cylindrical pipe was carried out. It was noted that the patterns of f luctuations of hydrodynamic
quantities qualitatively coincide for the f lows in the plane channel and in the circular cylindrical pipe.

In [16] unsteady pulsating f lows of a viscous f luid in a circular cylindrical pipe of infinite length under
the action of a harmonic variable pressure gradient were studied. By solving the problem, calculation for-
mulas for the velocity and f luid f low rate distributions were obtained. Numerical calculations showed that
the velocity, the f luid f low rate, and other hydrodynamic parameters are established slowly in the pulsat-
ing f low at the lower dimensionless oscillation frequencies starting from zero initial state and relatively
rapidly at the higher oscillation frequencies, being close to the parameters of a non-pulsating f low. These
parameters are established almost instantly in oscillating f lows at high oscillation frequencies.

Pulsating f lows of a viscous incompressible f luid in a rectangular channel were studied in [17, 18].
The problem was solved using the finite-difference method. The optimal parameters of the difference
scheme were determined, and the data on the oscillation amplitude and phase of the longitudinal velocity,
the hydraulic drag coefficient, and other f low parameters were obtained. At the low vibration frequencies,
it was shown that all hydrodynamic parameters oscillate in accordance with the laws of the cross-sec-
tional-average velocity. For rectangular channels with various cross-sectional shapes (plane, rectangular,
and circular cylindrical) the dependences of the hydrodynamic quantities on the dimensionless oscillation
frequency are of the same nature in the case of high-frequency oscillations. The influence of the rectan-
gular channel aspect ratio on pulsating f low hydrodynamics was also analyzed. In [19] oscillatory f low in
a rectangular channel in which two opposite walls were permeable was considered. As was noted, the solu-
tion of this problem can be useful in describing the blood flow in fiber membranes used for artificial kid-
neys. The authors also obtained an analytical solution for developed oscillating f low in triangular [20] and
toroidal [21] channels. In [22], the evolution of the pattern of perturbations superimposed on plane-par-
allel time-periodic Newtonian viscous f luid f low in a layer, one of whose boundaries performs longitudi-
nal harmonic oscillations along itself and slippage of the material with zero friction is possible on the other
boundary, was studied. On the basis of the integral relation method based on the variational inequalities
for quadratic functionals and developed for unsteady f lows, sufficient integral estimates for the exponen-
tial damping of initial perturbations were derived.

Of practical interest is the study of pulsating f low of a viscoelastic f luid in a plane channel and in
a cylindrical pipe under the influence of harmonic oscillations of the pressure gradient or when harmonic
oscillations of the f luid f low rate are superimposed on the f low. The motion of a viscoelastic f luid along a
long pipe under the action of an oscillatory pressure gradient was studied in [23]. The distinctive features
of this motion in comparison with the corresponding motion of the Newtonian fluid were shown. Inertia-
free oscillatory f low of a viscoelastic f luid in a circular infinite pipe under the action of an oscillatory pres-
sure gradient was studied in [24]. It was shown that in the oscillating f low the longitudinal velocity profiles
are symmetric and there is a significant phase shift between the pressure gradient and the velocity. In pul-
sating f lows, the phase shift was absent in fact, and the axial velocity varied asymmetrically with respect
to its average value over the oscillation period. Laminar oscillatory f lows of the Maxwell and Oldroyd-B
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viscoelastic f luids were studied in [25], where many interesting features, which absent in Newtonian fluid
flows, were demonstrated. The results obtained in [25] showed that in the inertialess regime, , the
properties of the f low depend on three characteristic lengths, in particular, on the wavelength  and the

length of damped viscoelastic shear waves , where  is the kinematic viscosity,  is the oscil-

lation frequency, as well as on the characteristic transverse dimension of the system a. In this connection,
they were divided in accordance with their length into three scales and three independent dimensionless

groups, namely,  (viscosity up to relaxation time), De (relaxation time up to oscillation period) and X

(viscosity coefficient). At the same time, the oscillatory f low regions were divided into two systems corre-

sponding to the “wide”  and “narrow”  systems. In the wide systems, the oscillations are

restricted to near-wall f lows, being inviscid in the central core. In the narrow systems, transverse waves
also cross the entire system and cross its center. This ultimately leads to constructive resonances which
result in sharp increase in the amplitude of the velocity profile. Unsteady f lows of a viscoelastic f luid are
analyzed using the Oldroyd-B model in a circular infinite cylindrical pipe under the action of a time-
dependent pressure gradient in the following cases: a) the pressure gradient changes with time in accor-
dance with exponential laws; b) the pressure gradient changes according to the harmonic laws; c) the pres-
sure gradient is constant [26]. In all the cases, formulas for the distributions of the velocity, the f luid f low
rate, and other hydrodynamic quantities in pulsating f low were obtained.

In [27] the problem of unsteady oscillatory f low of a viscoelastic f luid in a circular cylindrical pipe was
considered based on the Maxwell model. Formulas for determining the dynamic and frequency charac-
teristics were obtained. With the help of numerical experiments, the influence of the oscillation frequency
and the relaxation properties of the f luid on the tangential shear stress on the wall was studied. It was
shown that the viscoelastic properties of the f luid, as well as its acceleration, are the limiting factors for
using the quasi-stationary approach.

In recent decades, the problem of electrokinetic phenomena, including electroosmosis, f low potential,
electrophoresis, and sedimentation potential, has attracted much attention and provided many applica-
tions to micro- and nanochannels. In this connection, in [28] electrokinetic f low of viscoelastic f luids in
a plane channel under the action of an oscillatory pressure gradient was studied. It was assumed that the
fluid f low is laminar and unidirectional; in this regard, the motion of f luid occurs in the linear regime.
The surface potentials are considered to be small; therefore, the Poisson–Boltzmann equation can be lin-
earized. A resonant behavior in which the elastic property of the Maxwell f luid prevails develops in the
flow. The resonant phenomenon enhances the electrokinetic effect and, at the same time, the efficiency
of electrokinetic energy conversion increases.

In the above works, the f luid velocity field is mainly studied at various regimes of variation in the pres-
sure gradient. Variation in the tangential and normal stress that develops in the oscillatory f low has been
studied relatively little. In the most cases, in the hydrodynamic models of unsteady f lows, f luids were
replaced by a sequence of f lows with a quasi-stationary distribution of hydrodynamic quantities. However,
the structures of unsteady f lows differ from the structures of stationary f lows, and in such cases such a sub-
stitution must be justified in each particular case. At present, the question of the legitimacy of investigation
of the quasi-stationary characteristics for determining the shear stress field in non-stationary f lows of vis-
cous and viscoelastic f luids has not been practically resolved. Naturally, under such conditions, it becomes
necessary to use hydrodynamic models of non-stationary processes that take into account the variation in
the hydrodynamic characteristics of the f low as a function of time.

It should be noted that in the generic case the hydrodynamic characteristic in pipeline transport cannot
be determined from the characteristics that correspond to the stationary f low conditions.

In the present study, the oscillatory f low of a viscoelastic f luid is investigated using the Maxwell model
in a plane channel when harmonic oscillations of the f luid f low rate are superimposed on the f low. The
transfer function of the amplitude–phase frequency characteristics (APhFC) is determined. This function
is used to study the dependence of the non-stationary tangential shear stress on the wall on the dimension-
less oscillation frequency, the acceleration, and the relaxation properties of f luid.
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1. FORMULATION OF THE PROBLEM AND METHOD OF SOLVING
We will consider the problems of slow oscillatory f low of a viscoelastic incompressible f luid between

two fixed parallel planes extending in both directions to infinity. We will denote the distance between the
walls by . The 0x axis passes horizontally in the middle of the channel along the f low. The 0y axis is
directed perpendicular to the 0x axis. Viscoelastic f luid f low occurs symmetrically along the channel axis.
The differential equation of motion of a viscoelastic incompressible f luid written in stress has the following
form [29, 31–33]:

(1.1)

where  is the longitudinal velocity, p is the pressure,  is the density,  is dynamic viscosity,  is the tan-
gential stress, and  is time.

The rheological equation of state of f luid is taken in the form of the Maxwell equation [30]:

(1.2)

Here,  is the relaxation time. For  in (1.2) we obtain the Newton viscous friction law. Substitut-
ing (1.2) in the equation of motion (1.1) for the f luid velocity, we obtain

(1.3)

We consider that the oscillatory f low of a viscoelastic f luid takes place due to a given harmonic oscil-
lation of the f luid f low rate or the longitudinal velocity averaged over the channel cross-section

where  and  are the amplitudes of the f luid f low rate and the longitudinal velocity averaged over the
channel cross-section, respectively. In the case under consideration it is assumed that the no-slip condi-
tions are fulfilled on the channel walls, i.e., the longitudinal velocity is equal to zero on the channel walls.
Then the boundary conditions are as follows:

(1.4)

Due to linearity, the equation (1.1) for the longitudinal velocity, the pressure, and the shear stress on
the wall can be written as follows:

(1.5)

Substituting expressions (1.5) in Eq. (1.3), we obtain

(1.6)

Here, .
The fundamental solutions of Eq. (1.6) with zero right-hand side are the functions

and the solutions of the inhomogeneous equation have the constants

Thus, the general solution of Eq. (1.6) takes the form:
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To determine the constant coefficients C1 and C2 in (1.7), we use the boundary conditions (1.4)

(1.8)

From (1.8) we can readily find

As a result, for determination of the velocity we have

(1.9)

where  is the vibrational Womersly number (dimensionless oscillation frequency).

Using the equation

(1.10)

we can find the tangential shear stress on the wall

(1.11)

Now, integrating both sides of formula (1.9) with respect to the variable y over the limits from  to ,
we obtain the following formulas for the f luid f low:

(1.12)

Taking into account formula (1.12)  we find the longitudinal velocity averaged over the
channel cross-section
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Using formula (1.14), we determine the transfer function  for the shear stress on the wall
as follows

(1.15)

Taking into account (1.15), from Eq. (1.14) we obtain

(1.16)

The transfer function (1.16) is sometimes called the amplitude–phase frequency response (APFC).
This function makes it possible to determine the time dependence of the shear stress on the channel wall
for a given law of variation in the longitudinal velocity averaged over the channel cross-section. As known,
in most cases, when solving non-stationary problems, the shear stress on the wall obtained in the quasi-
stationary f luid f low regime is used. In real cases, such assumptions are valid when the local velocity dis-
tribution over the f low cross-section has a parabolic distribution law. In this case, the tangential shear
stress on the channel wall f luctuates in one phase with the f luctuation of the average longitudinal velocity
over the channel cross-section.

In this case, the quantity  can be calculated from the formula  and instead of the

quasi-stationary f low for the shear stress on the wall  we can take

(1.17)

Thus, relation (1.17) makes it possible to change the quantity  to , only under the condition that
the actual distribution of local velocities over the f low cross-section differs insignificantly from the quasi-
stationary one. However, in many cases, in a non-stationary f low, the law of local velocity distribution dif-
fers significantly from the quasi-stationary one. In the majority of studies [9–12, 17, 18, 24, 25] it was
shown that in the case of oscillatory laminar f low in a cylindrical pipe, the change in local velocities in the
near-wall layers is by some time ahead of the change in local velocities in the central layers. In the oscil-
latory f low, due to a change in the law of local velocity distribution over the channel cross-section, the
quantity  actually differs significantly from . In the linear model of unsteady f low, the most com-
plete idea of the dependence of  on  can be obtained using the transfer function (1.16).

2. RESULTS OF CALCULATIONS AND ANALYSIS
To determine the dependence of the shear stress on the channel wall on the longitudinal velocity aver-

aged over the channel cross-section in unsteady f low, we use the transfer function (1.16). In this regard,
we take into account the law of change in the longitudinal velocity averaged over the channel

(2.1)

where  is the amplitude of the longitudinal velocity averaged over the channel section. Using for-
mulas (2.1), it is possible to determine the dependence of the shear stress on the wall between the longi-
tudinal velocity averaged over the channel section. Due to the linearity of Eqs. (2.1), used to find the shear
stress on the channel wall, its value will also be harmonic, but, in the general case, shifted in phase with
respect to .

Thus, change in the shear stress on the wall is determined as follows:

(2.2)
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and taking into account that

we can reduce Eq. (2.2) to the form:

(2.3)

The quantities  and  correspond to the real and imaginary parts of the transfer

function (1.16); therefore, from (1.16) we obtain

(2.4)

Here,  is the elastic Deborah number that characterizes the elastic properties of f luid,

 and .

Then formula (2.3) takes the form:

(2.5)

Here,  is the parameter that characterizes the f luid accelerations;  and β are dimensionless

quantities, t is a dimensional quantity, so it should be converted to dimensionless form, using the trans-
formation

(2.6)

Taking into account (1.17), (2.4), and (2.6) from (2.5) we obtain the computational formulas

(2.7)

Here,  and .

Using formula (2.7), in Fig. 1 we have plotted the graphs which show variation in the relative tangential
stress on the wall in non-stationary f low as a function of the dimensionless oscillation frequency when the

Deborah number is equal to zero. The graphs plotted in Fig. 1 show that at  the ratio  is close

to unity, as long as α0 is less than unity. If α0 takes values greater than unity, then even at  the

ratio  becomes greater than unity and increases with the dimensionless oscillation frequency. This sug-

gests that the shear stresses on the channel wall can exceed their quasi-stationary values in the case of

unsteady f luid f low even at those times when the f luid acceleration is equal to zero. The ratio  grows

with increase in the parameter , which can be explained by variation in the shear stress on the wall,
which occurs with advance in phase as compared with the average cross-sectional velocity.

When a viscoelastic f luid f lows in a plain channel, there is a significant variation in the shear stress on
the wall at the low vibration frequencies depending on the elastic Deborah number. In [25] oscillatory
flows of a viscoelastic f luid in a plane channel and in a cylindrical pipe were studied; the f low area was
divided into two classes, one of which at  belongs to the “wide” class, and the other at  to the
“narrow” one. In the “wide” classes, the oscillatory f luid f low is restricted to the near-wall f low, and flow
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Fig. 1. Variation in the ratio of the non-stationary shear stress on the wall to the quasi-stationary shear stress depending
on the dimensionless oscillation frequency for various values of the f luid acceleration parameter .
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Fig. 2. Variation in the ratio of the non-stationary shear stress on the wall to the quasi-stationary shear stress depending
on the dimensionless oscillation frequency for various values of the f luid acceleration parameter  and the elastic Deb-
orah number . 
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is inviscid in the central part. In the “narrow” systems, shear waves cross the entire f low area, which ulti-
mately leads to sharp increase in the amplitude of the velocity profile and other hydrodynamic parame-
ters, such as the tangential shear stress on the wall and the f luid f low rate depending on the elastic Debo-
rah number. Based on formula (2.7), in Figs. 2, 3, and 4 we have constructed the graphs that show varia-
tion in the shear stress in oscillatory f low of viscoelastic f luid in a plane channel depending on the
oscillation frequency at the Deborah numbers , respectively.

It should be noted that all graphs for the f low of viscoelastic f luid in the plane channel are oscillatory.
In Fig. 2 we have shown variation in the ratio of the non-stationary shear stress on the channel wall to the
quasi-stationary shear stress as a functions of the dimensionless oscillation frequency in the case

. It should be also noted that in this case, in contrast to the Newtonian flow, an increase in the
shear stress can be observed in the region of the near-zero oscillation frequency, depending on the f luid
acceleration. Then there is a gradual decrease for , and for  and 10 we can see an

=De 0.01; 0.05; 0.1

=De 0.01

= 20; 40; 50нK = 0нK
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Fig. 3. Variation in the ratio of the non-stationary shear stress on the wall to the quasi-stationary shear stress depending
on the dimensionless oscillation frequency for various values of the f luid acceleration parameter  and the elastic Deb-
orah number . 
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Fig. 4. Variation in the ratio of the non-stationary shear stress on the wall to the quasi-stationary shear stress depending
on the dimensionless oscillation frequency for various values of the f luid acceleration parameter  and the elastic Deb-
orah number . 
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increase to  at the higher oscillation frequencies. In Fig. 3 we have plotted the graphs of the ratio

of the non-stationary shear stress on the channel wall to the quasi-stationary shear stress as a function of
the dimensionless oscillation frequency in the case of . In the case of a near-zero oscillation fre-
quency, we can observe a decrease in the shear stress depending on the f luid acceleration, and then we can

see increase to a maximum in the interval  and then gradual asymptotic decrease to .

It should be noted that in the case , at the low oscillation frequencies, a sharp decrease in the
shear stress is observed, except for the case . This suggests that, at large values of the relaxation
time, reverse f luid f lows can develop at the low oscillation frequencies. Then, with increase in the oscil-
lation frequency, all curves showing variations in the ratio of the non-stationary shear stress on the chan-

nel wall asymptotically approach, with oscillations, the value  depending on the f luid acceleration

(Fig. 4).
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Thus, the considered features in variations in the shear stress on the wall at a given harmonic f luctua-
tion of the f luid f low rate are caused by the violation of the parabolic law of the local velocity distribution
over the channel cross-section. The calculations show that in the near-wall layer the velocities vary in
phase with the variation in the shear stress on the wall along the channel, while in the central part of f low
they remain in phase with the phase of the tangential shear stress on the wall. Therefore, the viscoelastic
properties of the f luid, as well as its acceleration, are limiting factors for using the quasi-stationary
approach. In addition, the found formulas for determination of the transfer function for the f low of a vis-
coelastic f luid in a non-stationary f low make it possible to find the dissipation of mechanical energy
in a non-stationary f low of the medium, which are important for control of the hydraulic and pneumatic
systems.

SUMMARY
The problems of oscillatory f low of a viscoelastic incompressible f luid in a plane channel are solved for

a given harmonic oscillation of the f luid f low rate. The transfer function (amplitude–phase frequency
response) is found. Using this function, the influence of the acceleration oscillation frequency and the
relaxation properties of f luid on the ratio of the tangential shear stress on the channel wall to the average
cross-sectional velocity is determined. The calculations show that the non-stationary shear stress on the
channel wall in the f low of a viscoelastic f luid increases nonmonotonically with the acceleration of f luid
particle at the low oscillation frequencies. Initially, it reaches a maximum, then decreases with increase in
the dimensionless oscillation frequency, and asymptotically approaches, with oscillations, the values
characteristic of f low without acceleration. It is shown that the viscoelastic properties of the f luid, as well
as its acceleration, are the limiting factors for using the quasi-stationary approach. The found formulas for
determining the transfer function during the f low of a viscoelastic f luid in a non-stationary f low make it
possible to determine the dissipation of mechanical energy in a non-stationary f low of the medium, which
are of great importance in the calculation of control of the hydraulic and pneumatic systems.
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