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Abstract—The algorithm for the numerical solution of the quasistatic thermoelasticity problem in the
domains of simple spatial forms is briefly described. The initial validation and verification of the devel-
oped numerical technique was performed. Some results of the solution of the quasistatic thermoelas-
ticity problem in the simplest structural elements of aircraft.
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1. INTRODUCTION
One of the most difficult problems of aerothermodynamics is the problem of modeling conjugate heat

exchange on the surface of a high-speed aircraft (AC), as well as calculating the resulting thermal stresses
in its structure. In this case of AC motion, the boundary layer can be considered as a narrow spatial region
adjacent to the surface of the streamlined body, in which an intense heat release occurs due to energy dis-
sipation processes. The latter are accompanied by a strong change in thermophysical (density, pressure,
temperature, viscosity, heat conductivity, etc.), dynamic properties of gas, heat f luxes directed towards the
surface of the aircraft, construction of the material, and operating characteristics. However, carrying out
real physical experiments in the considered area of motion of the AC is characterized by high cost and is
associated with many technological and technical difficulties. Therefore, mathematical modeling of ther-
mal stresses and thermophysical processes in an aircraft as well as near its surface is of great importance
for optimizing operating characteristics and design of the AC.

The aim of this study is to develop an approximate method for estimating thermal stresses in an AC (or
in the key elements: the edges of the hull and wings, the nose cone) of a simple spatial form, for example,
a sphere conjugated with a cylinder. The mathematical model of estimates designed for calculation of ther-
mal stresses in individual structural elements of an AC is based on the solution of the quasi-static problem
of thermoelasticity [1–5]. It includes the equations of mechanical equilibrium of a linearly elastic
medium, taking into account thermal stresses (however, this mathematical model does not allow a com-
plete description of thermomechanical processes, since it lacks the main physical mechanisms that
account for the plastic deformation of structural materials) and heat equation of a special type. As a rule,
the physical domain (in which the solution is sought) has curvilinear boundaries, and their shape changes
during the modeling process under the influence of thermal and mechanical loads. To solve a problem
with such spatial boundaries, the computational domain is transformed into a domain in which it is pos-
sible to introduce a regular Cartesian (structured) grid.

The following simplifying assumptions are introduced when estimating thermal stresses:
• The structural material is an isotropic continuous medium.
• The geometry and heat-stressed state of a structural element of the AC is described in two-dimen-

sional (2D) formulation.
• Initial external mechanical (forces, pressure fields) and thermal impacts (convective and radiational

heat f luxes) are set.
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• The velocity of acoustic waves in the structural elements of ACs is significantly greater than that of
propagation of thermal waves in them.

2. MATHEMATICAL FORMULATION OF THE PROBLEM OF ESTIMATING THERMAL 
STRESSES IN STRUCTURAL ELEMENTS OF AIRCRAFT

Mathematical formulation of the problem under consideration is reduced to numerical solution of a set
of two-dimensional equations of quasi-static thermoelasticity, which allow determining fields of tempera-
tures T and displacements  and components of stress  and strain  tensors in structural elements of
AC [2‒8]

(2.1)

where  are the time and Cartesian coordinates;  is the vector describing displacement of a point of
the body; T is the temperature of the body;  is the initial temperature of the body;  is excessive
temperature;  is the density in the body;  is the heat capacity at zero strain;  are Lame coefficients;
and  is the thermal expansion coefficient.

Boundary conditions for temperature are formulated by setting the heat f lux on the surface of a struc-
tural element of the AC

where ,  are given constants; and symbol Г indicates the surface of the AC. Mechanical boundary con-
ditions in the form of stresses are set similarly to [3]. Initial conditions (for moment of time t = 0) are
determined as initially set spatial distribution of temperature T and displacements .

Boundary conditions required for solving the quasi-static problem of thermoelasticity using the finite
difference method are easily implemented, when the boundaries of computational domain  coincide
with coordinate lines in some generalized coordinate system . At the same time, computational
domain  goes into parametric domain  (for example, into a rectangle).

Let us introduce a coordinate transformation in form

At known coordinates of grid nodes  in physical space, metric coefficients in general can be found
by numerical differentiation using formulas

where  is the Jacobian of transition from cylindrical coordinate system r, z to curvilin-
ear coordinate system .

The use of Euler coordinates in equations of linear elasticity theory and heat conductivity makes it pos-
sible to build economical (at the expense of simplification of spatial derivatives), which allow an end-to-
end calculation of f lows with strong spatial deformations.

Functions  and  can be searched using the equation set obtained in [9]. These equations
guarantee that found functions  are smooth functions of coordinates . However,
in some cases, the computational grid created in this way can be considered unsuccessful for one reason
or another. In this situation (together with differential methods) it is expedient to use analytical algebraic
transformations [10].
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The equation set of thermoelasticity (1) in vector semi-divergent form in arbitrary curvilinear coordi-
nate system  is denoted as

(2.2)

Vectors involved in this equation set are denoted as follows:

where ,  are projections of displacement vector  on the r- and z-axis;
,  are contravariant components of vector , which describes displacement

of a point of the body in curvilinear coordinate system ; and  corresponds to f lat and  to
axisymmetric cases of deformation.

Now, using transition to curvilinear coordinate system , let us transform the equation associated
with transferring the internal energy by the process of heat conductivity

(2.3)
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3. SEPARATE MATHEMATICAL DETAILS OF THE NUMERCAL CALCULATION METHOD

In numerical implementation of Eqs. (2) and (3), regular grid , 
is introduced in parametric domain Ωp. Here, , , ,

, , and .
Numerical solution of Eqs. (2) and (3) is implemented in two steps. At the first stage, the heat conduc-

tivity equation of special form (3) is implicitly solved. Then, at the second stage, solution of thermoelas-
ticity equation (2) is found.

When solving the “thermal” part of two-dimensional equations of quasi-static thermoelasticity, which
describe transfer of internal energy by the process of heat conductivity, the following two-step difference
scheme is applied (using [11]):

where n is the upper index related to the moment of “time” ,  is the time step; ;
; and . This difference scheme (along spatial direction ) is easily

solved by scalar sweep.

Equations of thermoelasticity  are solved using the method of establishment [12]. At the same
time, time step  can be found using an iteration method of variation type. For this, we determine vector
of residuals 

Let us introduce the scalar product as follows [11]:

We will minimize the value of residual  using the modified option of the iteration
method of variation type, the least residual method [13]. In this case, the iterations should be carried out
according to formulas

In numerical implementation of the method of least residual for approximating derivatives of vectors
 and variables , we set the following finite difference representation of the derivatives on

the grid  introduced above [14]:
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Fig. 1. Scheme of the test problem on bending of a uniformly heated fixed beam under the action of temperature stresses.
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Note that for correct operation of the described algorithm it is necessary:
• To rebuild the computational grid (for example, using the method in [9]) after each computation step

(since there was a deformation of the boundaries of the computational domain.
• Then to perform interpolation (taking into account conservation law and the required degree of

smoothness of the solution, see [15]) of magnitudes  and  known on the computational
grid at moment of time tn to the grid obtained after its rebuilding.

4. SOME CALCULATION RESULTS
To test the performance of the formulated numerical technique, a group of test problems was solved.

In all series of calculations, the system of equations of the linear theory of elasticity and the heat equation
in Euler coordinates were used.

The first test (validation) problem is to find the equilibrium thermally deformed state of a steel beam,
which is fixed on both sides with fixed hinges (Fig. 1) and is in a uniform temperature field

 (where  is the initial value of temperature,  is the value of uniform temperature
heating). Only the problem of mechanics in the given uniformly distributed temperature field

 is solved. The exact solution of the two-dimensional problem of the elasticity theory
for a rectangular band is denoted as follows [3]:

where h is the height of the beam; l is the length of the beam; and E is the elasticity modulus of the first
kind. Support reaction force P is calculated from equation

where α is the temperature expansion coefficient.
Figure 2 presents the results (at h = 2.5 mm, l = 100 mm, E = 2 × 1011 Pa, α = 1.2 × 10‒5 C‒1,

ΔT = 36°C) of numerical computation of the first test problem on determination of deflection of uni-
formly heated fixed beam under the action of temperature stresses (the maximal value of relative error
constituted 2%).

It is known from systematic calculations [16, 17], that convective heat f lux qw near the front critical
point can be determined using formulas (  is the blunt radius)
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Fig. 2. The results of numeric calculation of the test problem on determination of deflection of a uniformly heated fixed
beam under the action of temperature stresses.
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Fig. 3. Distribution of temperature Т [K] in a wedge-shaped shell (Inconel 617 alloy) blunted along the cylinder. The blunt
radius of the cylinder R = 3.18 mm, Mach number in oncoming flow М = 5.25.
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where [J/kg], [K] is the enthalpy and temperature on the surface of the streamlined body;
[J/kg], [K] is the enthalpy and temperature taken on the external boundary of the boundary layer;
[kg/m3], [m/s] is the density and velocity of unperturbed f low oncoming on the body; R [m] is the

radius of the body at the front critical point; and qw [W/m2] is the heat f lux at the front critical point.

It follows from the formulas that heat transfer coefficient α at the front critical point can be estimated
using relation

Therefore, at high motion velocities (M > 6) and correspondingly higher stagnation temperatures, the
values of convective and radiational f luxes sharply increase (if we do not take into account the reciprocal
effect of growth of body temperature  on convective heat f lux qw) with decreasing the blunt radius. These
formulas also demonstrate a noticeable effect of body temperature  of the AC element on convective
heat f lux qw.

Calculations carried out in this study (Figs. 3‒10) allow estimating the effect of blunt radius R, geo-
metric shape, structural material, and distribution of the surface temperature  of the AC element on
convective heat f lux qw.

For validation and verification of the developed numerical technique, the data of [18, 19] were taken
as the second test problem. The geometry (Figs. 3–5) of the testing problem is a 2D wedge-shaped shell
(the shell material is Inconel 617 alloy, the wedge length is 7.62 mm, the shell thickness is constant
and equal to 11 mm, and the wedge opening angle is 6°), blunted along the cylinder (bluntness radius
R = 3.18 mm).
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Fig. 4. Distribution of displacements Ux [mm] in direction of the X-axis in a wedge-shaped shell (Inconel 617 alloy)
blunted along the cylinder. The blunt radius of the cylinder R = 3.18 mm, Mach number in oncoming f low М = 5.25.
Solid lines indicate outlines of the initial undeformed body.
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Fig. 5. Distribution of displacements Uy [mm] in direction of the Y-axis in a wedge-shaped shell (alloy Inconel 617)
blunted along the cylinder. The blunt radius of the cylinder R = 3.18 mm, Mach number in oncoming f low М = 5.25.
Solid lines indicate outlines of the initial undeformed body.
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The convective heat f lux entering the surface of the wedge-shaped shell, as well as the aerodynamic
loads distributed along its surface, are taken from [18, 19]. The parameters of the air f low flowing onto the
aircraft element (edges of the wings, nose cone) are determined by Mach number M = 5.25. It is assumed
that the stabilization of the internal energy in the AC element, which is rigidly embedded, is carried out
by thermal radiation.

The results of calculation of equilibrium thermally deformed state, corresponding to the test problem
(Figs. 3‒5):

• The maximal value of relative error either by temperature distribution or by the values of displace-
ments constitutes <3%.

• There is a noticeable change in distribution of temperature  along the surface of AC element Tw =
1100–3100 K.

• Displacements Ux of the front part of the AC element along the x-axis is equal to 2 mm in the direc-
tion of body elongation.

• Displacements Uy of the front part of the AC element along the y-axis: 0.25 mm – in the lower part
of the body, 0.5 mm – in the upper part of the body.

• Blunt radius R varies and reaches value R = 2.10 mm (leading to growth of convective heat f lux qw by
23%), which is 34% less than initial radius R = 3.18 mm.

The next problem was to find distributions of temperature  and displacements  in the structural AC
element, in a cylinder blunted on a sphere. When solving this problem, the following geometry of the AC
element was specified (spherical blunt with a radius of 1.27 cm, cylinder length 10 cm), as well as the con-
vective heat f lux (Fig. 6) incident on the surface of the element under consideration.

wT

T
��

U
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Fig. 7. Distribution of temperature Т [K] along the surface of a spherically blunted cylinder. Sphere blunt radius
R = 1.27 cm, velocity of oncoming flow V∞ = 4.17 km/s (Mach number М = 9.8, height h = 22 km).
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Fig. 8. Distribution of temperature Т [K] in a spherically blunted cylinder. Sphere blunt radius R = 1.27 cm, velocity of
oncoming flow V∞ = 4.17 km/s (Mach number М = 9.8, height h = 22 km).
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Fig. 6. Distribution of convective heat f low density along the surface of a spherically blunted cylinder [20]. Blunt radius
R = 1.27 cm.
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For gas-dynamic calculated data in the oncoming external f low, the data of [20] were used: pressure:
 Pa; density  g/cm3; velocity  cm/s; and temperature

T = 450 K. At the same time the temperature of the surface of the element was considered constant and
= × 30.23 10P −ρ = × 50.178 10 = × 54.167 10V
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Fig. 10. Distribution of displacements  [mm] in direction of the Z-axis in a spherically blunted cylinder. The sphere
blunt radius R = 1.27 cm, velocity of oncoming f low V∞ = 4.17 km/s (Mach number М = 9.8, height h = 22 km).
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Fig. 9. Distribution of displacements  [mm] in direction of the X-axis in a spherically blunted cylinder. Sphere blunt
radius R = 1.27 cm, velocity of oncoming f low V∞ = 4.17 km/s (Mach number М = 9.8, height h = 22 km).
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equal to  K. Distribution of density of the convective heat f lux along the streamlined non-cata-
lytic surface is taken from [18] and shown in Fig. 6. Figure 7 presents distribution of the gas temperature
along the surface of the cylinder blunted by the sphere [21‒32]. Note that the pointed aerothermophysical
values correspond to hypersonic gas f low regime (М = 9.8).

When solving this problem, as before, it is assumed that the loss of internal energy by the AC element
is carried out only due to thermal radiation. The AC element itself (Figs. 8–10) is made of tungsten and is
rigidly embedded.

Figures 8‒10 present the results of calculations carried out using the above-described technique for the
AC element under consideration.

This follows from the graphical dependences presented in Figs. 8‒10:
• Distribution of the surface temperature Tw = 1500–2200 K, streamlined by an external f low of the

AC element (along the generatrix of the AC element), differs from the constant and significantly exceeds
the temperature (  K) of the element surface, taken as the boundary condition in calculation of
aircraft aerothermodynamics.

• Blunt radius R changes by 4.6% (with R = 12.7 mm to values R = 12.12 mm). At the same time con-
vective heat f lux  at the front critical point increases by 2.4% at the expense of the change in curvature
radius R. However, if we take the significant growth of surface temperature  K into account,
then the change will be at the level qw ≈ 10–20%.

• Displacements  of points of the considered solid AC element are small and mainly concentrated
near the embedment.

• Convective heat f lux (see Fig. 6), taken from [20] should be corrected by 70% along the generatrix
of the cylinder if we take solutions of the equations of quasi-static thermoelasticity into account (due to
significant increase in temperature of the body and on the surface of the AC element).

= 300wT

= 300wT

wq
= 2200wT

��

U
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6. CONCLUSIONS
A 2D theoretical calculation technique is formulated, which makes it possible to find a solution to the

system of thermoelasticity equations with boundary conditions of a general form. The initial validation
and verification of the developed numerical technique based on the test problem was carried out. Numer-
ical modeling of temperature fields and thermal stresses in the simplest structural elements of AC
(a wedge-shaped shell blunted in a cylinder or a cylinder blunted in a sphere) was performed. It follows
from the performed calculations that numerical modeling of physical processes occurring on the surface
(and in the immediate vicinity) of high-speed AC should be carried out on the basis of complex, mutually
consistent, conjugated mathematical models of aerothermodynamics, heat transfer, and thermal strength.
We also note that it is expedient (in this case, the deformations will be minimal) to make the edges of the
hull, wings and nose cone of the hull in the form of a single piece.

REFERENCES
1. Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods for Solid Heat

Conductivity Theory), Moscow: Vysshaya Shkola, 2001.
2. Dimitrienko, Yu.I., Zakharov, A.A., Koryakov, M.N., Syzdykov, E.K., and Minin, V.V., Computational solu-

tion of conjugated problem of hypersonic air-dynamics and thermomechanics of thermodecomposition struc-
tures, Inzh. Zh.: Nauka Innovatsii, 2013, no. 9. http://engjournal.ru/catalog/mathmodel/aero/1114.html.

3. Kovalenko, A.D., Termouprugost’. Uchebnoe Posobie (Thermoelasticity. Student’s Book), Kiev: Vishcha Shkola,
1975.

4. Dimitrienko, Yu.I., Zakharov, A.A., Koryakov, M.N., and Syzdykov, E.K., The way to simulate adjoint aero-
gasdynamic and heat exchange processes at the heat protection surface of promising hypersonic aircrafts, Izv.
Vyssh. Uchebn. Zaved., Mashinostr., 2014, no. 3 (648), pp. 23–34.

5. Kuzenov, V.V. and Ryzhkov, S.V., Radiation-hydrodynamic simulation for contact boundary of plasma target
being in external magnetic field, Prikl. Fiz., 2014, no. 3, pp. 26–30.

6. Kotov, M.A. and Kuzenov, V.V., Numerical simulation of surface f low-round for promising hypersonic air-
crafts, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. “Mashinostroenie,” 2012, no. 3, pp. 17–30.

7. Ryzhkov, S.V., Compact toroid and advanced fuel – together to the Moon?!, Fusion Sci. Technol., 2005, vol. 47,
no. 1T, pp. 342–344.

8. Ryzhkov, S.V., The way to simulate thermal physical processes in magnetic thermonuclear engine, Tepl. Prot-
sessy Tekh., 2009, no. 9, pp. 397–400.

9. Kuzenov, V.V., The way to generate regular adaptive grids in spatial areas with curved boundaries, Vestn. Mosk.
Gos. Tekh. Univ. im. N. E. Baumana, Ser. “Mashinostroenie,” 2008, no. 1, pp. 3–11.

10. Anderson, D.A., Tannehill, J.E., and Fletcher, R.H., Computational Fluid Mechanics and Heat Transfer, New
York: Hemisphere Publ. Co., 1984.

11. Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction into the Theory of Difference Schemes),
Moscow: Gl. Red. Fiz.-Mat. Lit., Nauka, 1971.

12. Samarskii, A.A. and Nikolaev, E.S., Metody resheniya setochnykh uravnenii (Methods for Solving Finite-Differ-
ence Equations), Moscow: Nauka, 1978.

13. Al’shina, E.A., Boltnev, A.A., and Kacher, O.A., Empirical improving for the simplest gradient methods, Mat.
Model., 2005, vol. 17, no. 6, pp. 43–57.

14. Golovachev, Yu.P., Chislennoe modelirovanie techenii vyazkogo gaza v udarnom sloe (Numerical Simulation of
Viscous Gas Flow in Shock Layer), Moscow: Nauka, 1996.

15. Grigor’ev, Yu.N., Vshivkov, V.A., and Fedoruk, M.P., Chislennoe modelirovanie metodami chastits v yacheikakh
(Numerical Simulation by Means of Particle-in-Cell Method), Novosibirsk: Siberian Branch RAS, 2004.

16. Lunev, V.V., Giperzvukovaya aerodinamika (Hypersonic Aerodynamics), Moscow: Mashinostroenie, 1975.
17. Lunev, V.V., Techenie real’nykh gazov s bol’shimi skorostyami (High Velocity Flowing for Real Gas), Moscow:

Fizmatlit, 2007.
18. Pandey, A.K., Dechaumphai, P., and Weiting, A.R., Thermal-structural finite element analysis using linear f lux

formulation, NASA Technical Memorandum, 1990, no. 102746.
19. Polesky, S.P., et al., Three-dimensional thermal structural analysis of a swept cowl leading edge subjected to

skewed shock-shock interference heating, J. Thermophys., 1992, vol. 6, no. 1, pp. 48–54.
20. Surzhikov, S.T., Convective heating of small-radius spherical blunting for relatively low hypersonic velocities,

High Temp., 2013, vol. 51, no. 2, pp. 231–246.
21. Kuzenov, V.V., The way to test separate elements of calculation method for physical processes in the target of

magnetic-inertial thermonuclear synthesis, Prikl. Fiz., 2016, no. 2, pp. 16–24.
22. Kuzenov, V.V. and Ryzhkov, S.V., Numerical simulation of laser pressure process for the target being in external

magnetic field, Mat. Model., 2017, vol. 29, no. 9, pp. 19–32.
FLUID DYNAMICS  Vol. 57  Suppl. 1  2022



S180 KUZENOV et al.
23. Kuzenov, V.V. and Ryzhkov, S.V., Approximate method for calculating convective heat f lux on the surface of
bodies of simple geometric shapes, J. Phys.: Conf. Ser., 2017, vol. 815, p. 012024.

24. Kuzenov, V.V., Lebo, A.I., Lebo, I.G., and Ryzhkov, S.V., Fiziko-matematicheskie modeli i metody rascheta
vozdeistviya moshchnykh lazernykh i plazmennykh impul’sov na kondensirovannye i gazovye sredy (Physical and
Mathematical Models and Methods for Calculating Impact Powerful Laser and Plasma Pulses to Condensed
and Gas Mediums), Moscow: Bauman Moscow State Technical Univ., 2017.

25. Kuzenov, V.V., Ryzhkov, S.V., and Shumaev, V.V., Application of Thomas-Fermi model to evaluation of ther-
modynamic properties of magnetized plasma, Probl. At. Sci. Technol., 2015, no. 1 (95), pp. 97–99.

26. Kuzenov, V.V., Ryzhkov, S.V., and Shumaev, V.V., Numerical thermodynamic analysis of alloys for plasma elec-
tronics and advanced technologies, Probl. At. Sci. Technol., 2015, no. 4 (98), pp. 53–56.

27. Ryzhkov, S.V. and Kuzenov, V.V., Analysis of the ideal gas f low over body of basic geometrical shape, Int. J. Heat
Mass Transf., 2019, vol. 132, pp. 587–592.

28. Kuzenov, V.V., Dobrynina, A.O., and Shumaev, V.V., Calculating processes of laminar and turbulent heat trans-
fer around the elements of the aircraft, J. Phys.: Conf. Ser., 2018, vol. 980, p. 012023.

29. Shumaev, V.V. and Kuzenov, V.V., Development of the numerical model for evaluating the temperature field
and thermal stresses in structural elements of aircrafts, J. Phys.: Conf. Ser., 2017, vol. 891, p. 012311.

30. Surzhikov, S.T., Raschetnoe issledovanie aerotermodinamiki giperzvukovogo obtekaniya zatuplennykh tel na prim-
ere analiza eksperimental’nykh dannykh (Calculation Research of Aerothermodynamic of Hypersonic Flow-
Round of Blunt Bodies by Analyzing the Experimental Data), Moscow: Institute for Problems in Mechanics
RAS, 2011.

31. Kotov, M.A., Ruleva, L.B., Solodovnikov, S., and Surzhikov, S.T., Carrying out experiments of models stream-
lines in hypersonic shock aerodynamic tube, Fiz.-Khim. Kinet. Gaz. Din., 2013, vol. 14, no. 4.
http://chemphys.edu.ru/issues/2013-14-4/articles/428/.

32. Glushko, G.S., Ivanov, I.E., and Kryukov, I.A., Turbulence modeling for supersonic jet f lows, Fiz.-Khim. Kinet.
Gaz. Din., 2010, vol. 9. http://chemphys.edu.ru/issues/2010-9/articles/142/.

Translated by K. Gumerov
FLUID DYNAMICS  Vol. 57  Suppl. 1  2022


	1. INTRODUCTION
	2. MATHEMATICAL FORMULATION OF THE PROBLEM OF ESTIMATING THERMAL STRESSES IN STRUCTURAL ELEMENTS OF AIRCRAFT
	3. SEPARATE MATHEMATICAL DETAILS OF THE NUMERCAL CALCULATION METHOD
	4. SOME CALCULATION RESULTS
	6. CONCLUSIONS
	REFERENCES

		2022-12-22T19:53:04+0300
	Preflight Ticket Signature




