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Abstract—The paper considers the stationary flows of an ideal (nonviscous and nonheat-conducting)
gas with streamlines, i.e., boundaries of flowing and stationary media. In the 19th century such
boundaries appeared in the problems of the outflow of jets into a flooded space. Until 1903 only jets
of incompressible fluid were considered; the main contribution was made by Zhukovsky. In 1903
Chaplygin began studying flat subsonic jets of an ideal gas. In 1949 Ovsyannikov, having solved the
problem of the outflow of a “critical” jet, discovered the fascinating properties of a flow with a sonic
boundary streamline. Soon, segments of such streamlines, which arose mostly in problems of jet-flow
theory, appeared in the construction of bodies subjected to subsonic flows with the largest “critical”
Mach numbers M*. For an incident flow with My < M* M < 1 in the entire flow, there are no shock
waves and wave drag. At M, > M* supersonic zones appear, shock waves arise as well as wave drag,
increasing with increasing My, It turned out that M* is achieved by bodies subject to a flow in which
with My, = M* some of the contours are segments of sonic streamlines. It is useful to know their cur-
vature at the separation and reattachment points. Zhukovsky states it to be infinite for a fluid at sepa-
ration points. The infinity of the curvature of such streamlines in an ideal gas has been established only
after 100 years. The following shows how the flow parameters and their derivatives, including the cur-
vature of the streamlines, behave when approaching separation and reattachment points. The curva-
ture of the boundary streamlines at these points is infinite, while the curvature of sonic streamlines
when they intersect with a straight sonic transition line is zero.

Keywords: stationary ideal-gas flows, hodograph variables, curvature of subsonic and sonic boundary
streamlines at separation and reattachment points
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1. INTRODUCTION

The hydro-aero-gas dynamic researchers listed in the annotation were not the only prominent scien-
tists interested in stationary flows of an ideal liquid or gas with isobaric streamlines, i.e., the boundaries
of flowing and stationary media. A few more were named by Zhukovsky [1]: “The foundation of solving
such problems was laid in 1868 by Helmholtz. ... In the same year, Kirchhoff proposed a general technique
for solving such problems. ... A more detailed development was made by Rayleigh in 1876, who pub-
lished two notes.” After noting the contributions of Gerlach (1885), Bobylev (1881), Meshchersky (1886),
Kotelnikov (1889), and Voigt (1886), Zhukovsky writes: “Brillouin’s work provides a critical assessment
of Kirchhoff’s method” and further: “In all the works mentioned, the authors adhered to the Kirchhoff
method, and an attempt to modify this method was made only by Planck (in 1884), who set out to
free the method from the imaginary-variable theory in order to expand it to three-dimensional space. ...
But, not to mention the problems of three dimensions, Planck did not solve a single new problem using
his method. ... The main drawback of Planck’s method is the fact that, as the original Kirchhoff method,
it cannot be used to solve a specific problem. The conformal map introduced by Kirchhoff eliminates this
difficulty, but introduces into the problem an extra, sometimes very difficult operation. Since the number
of known conformal maps of a closed domain into a domain bounded by two parallel lines is small, the
number of problems that can be solved by the Kirchhoff method is also small. ... In the proposed (by Zhu-
kovsky, the author) change to the Kirchhoff method, it is possible to proceed to the solution of a specific
problem without resorting in advance to conformal mapping ...” As a result, by the “modified Kirchhoff
method,” in fact, by the original “Zhukovsky method,” its creator solved many new problems that were
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912 KRAIKO, TILLYAYEVA

not amenable to the Kirchhoff method. The proposed method and these problems are the subject of two
articles by Zhukovsky ([1] published in 1890 and [2], in 1891). Their total volume is one hundred and fifty

pages.

The authors listed above limited themselves to an incompressible fluid, more precisely, to the outflow
of fluid from plane channels with walls composed of straight line segments. If the origin of the Cartesian
coordinates xy is aligned with one of the trailing edges, then when approaching it along such a segment,
the inclination angle 6 of the flow velocity vector V'to the x axis does not change, the velocity Vincreases,
and the pressure p drops so that the derivatives of V and p along the contours on the edge turn into Zeo.
Conversely, after exiting the channel while moving along the boundary streamline, V and p are constant,
and the angle 6 changes so that the curvature of the boundary becomes infinite as x — +0 (for symmetric
jets flowing from left to right, to +eo on the top boundary and —eo on the bottom boundary).

From the middle of the twentieth century flows with an isobaric boundary streamline became relevant
for the study of viscous boundary-layer separation from curved walls. If the origin of the Cartesian coor-
dinates xy is aligned with the separation point, and the x axis is directed tangentially to the wall as x — —0,
then in the incompressible-fluid approximation with vanishing viscosity [3—5], the boundary curvature is
the same as above.

Particular interest in the sonic boundary streamline was sparked by an unexpected solution found by
Ovsyannikov [6, 7]. According to this solution, the alignment of the “critical” jet of an ideal gas does not
occur asymptotically, as for an incompressible liquid, but in a “straight transition line” at a finite distance
from the outlet cross section of the channel. When an ideal-gas sonic jet impinges on wedge obstacles [8, 9],
there are three straight transition lines. One limits the incoming sonic jet, and the other two (one on each
side of the obstacle) limit the outflowing inclined sonic flows.

As we know, the curvature of a curvilinear sonic streamline in plane-parallel and axisymmetric flows
is zero at the point of intersection with a straight transition line [10—12]. In general, the analysis of flows
with subsonic and sonic boundary streamlines has significantly simplified the approach developed in [13]
(see also [14]). The same approach is applied below.

Sonic boundary streamlines became even more interesting after it was established [15] that the seg-
ments of such lines form symmetrical profiles, bodies of revolution, head and rear parts of a semi-infinite
plate and a circular cylinder, which, under a number of additional restrictions, are subject to an infinite
subsonic oncoming flow under zero angle of attack with the highest critical Mach numbers M*. The typ-
ical restrictions here are assignment of the profile chord, the length of the body or its head (rear) parts,
taken as the linear scale, the half-thickness of the plate, the radius of a circular cylinder, the minimum
admissible “longitudinal” profile area or volume of the body of revolution, etc. The simplest examples of
such configurations are a plate at zero angle of attack and a straight line segment (“axisymmetric needle”)
that do not disturb the surrounding uniform sonic flow with M = M, = M* = 1. The area of their “longi-
tudinal” sections related to a square of a given length is .S = 0. If the minimum admissible value .S > 0 is
set in addition to a fixed chord or length, then, according to [15], the contours of critical bodies make up
the front and rear ends and the top and symmetrical bottom sonic streamlines that connect them without
kinks. At § — 0 the height of the ends tends to zero, M, and M* tend to unity and the result is a plate and
aneedle. In order to get rid of the inevitable separations behind the bodies constructed under the assump-
tion of a nonseparated flow at .S > 0, a restriction is introduced on the inclination angles of the contours
of their rear parts. As a result, the rear end is replaced by a pair of straight segments, and the flat critical
configuration becomes a symmetrical airfoil.

In the examples of critical configurations given above and their generalizations [ 16], each sonic stream-
line, along with a point of smooth separation, has a point of smooth reattachment. Critical configurations
with separation or reattachment points on straight transition lines are possible. Although the structure of
planar and axisymmetric critical configurations is fundamentally simple, the techniques for constructing
them [17—24] turned out to be rather complex. Therefore, any additional information, for example, on the
curvature of boundary streamlines, is useful for constructing critical configurations. The authors of [21—
24], without dwelling on the details of a far from simple analysis, state that the curvature of the boundary
streamline found by them for an ideal gas at the point of separation from a rectilinear wall is infinite.
Below, the approach developed in [13] resulted in formulas that, confirming this conclusion, show how,
in different cases, the streamline curvature increases when approaching the separation and reattachment
points.
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ON THE CURVATURE OF BOUNDARY STREAMLINES 913

2. PLANE-PARALLEL POTENTIAL FLOWS OF AN IDEAL GAS IN HODOGRAPH
VARIABLES. BOUNDARY STREAMLINE NEAR A STRAIGHT TRANSITION LINE

Since plane-parallel isentropic and isoenergetic stationary flows of an ideal gas are potential, they
allow the transition to independent variables V'— 6. Let us introduce the stream function y up to an arbi-
trary additive constant and a positive factor k by equality

dy = kpV(cos0dy — sin 0dx)
with the gas density p = p(V). The stream function satisfies Chaplygin’s equation [14]

VA + 1+ MOy, + (1= M)y, = 0, (2.1)
in which the Mach number M = M(V). So, for a perfect gas with constant heat capacities and their ratio
(adiabatic exponent) y
_Wll-e oz 1=V v (2.2)

Vi—ep? 1—ev? oyl
In the above equations and further, critical values of the velocity and density are taken as their scales.

When the stream function ¢ = y(V, 0) is obtained, the coordinates x and y are defined by differential
equations

M

_VyysinB+(1 - M)y, cos O N Vy, cosO —y,sin0

dx = > dv de,
kpV kpV 23)
2 . . .
dy = Vwy, cos®—( —2M W, sin edV 4 V', sin @ + y, cos ede‘
kpV kpV

These equalities can be integrated over any curve of the V—6 plane, in particular, over the verticals
V= const corresponding to isobaric streamlines or over the horizontals 6 = const corresponding to
straight segments of the wall contours subject to the flow. Integration over the verticals determines the
dependence of the x and y coordinates on the inclination angle of the boundary streamline, and after that
its curvature. Let us show how this is done, first for the sonic boundary streamline near the point of its
intersection with the straight transition line. It makes sense to begin the analysis with such a special situ-
ation because in this case the approach developed in [13] and described in [14] is applied without changes.

The upper half of the jet stream including the point e of intersection of the boundary sonic streamline
b—e with the straight transition line 0—e is shown in Cartesian coordinates in Fig. 1a, and in the hodo-
graph variables in Fig. 1b. On the curvilinear streamline b—e and on the straight segment 0—e of the tran-
sition line, the flow velocity V=V, = 1. Near the point e, where the velocity V" and the Mach number are
close to unity, Chaplygin’s equation (2.1) and equalities (2.3) take the form

Wiy +29y 0 MY =0, M=1-V, o =d(1-M")/dn . (2.4)
dx = _Yr sin 0 + 0'211\|Ie cos edV LYy cos0 —yy Sined@,

kz . . k (2.5)
dy = Y, cos0 -0 n\uesmedV LYy sm9+\|;ecos9de.

k

It is taken into account that p(1) = 1 due to the choice of the density scale. According to formulas (2.2)
for a perfect gas 6> =7y + 1.

All streamlines come to the point e of the '—80 plane, due to which y changes by a finite amount. By
assuming y = 0 on the plane of symmetry of the channel and the jet (on the x axis) and utilizing the arbi-
trary choice of the factor k, we make y = 1 on the channel wall and on the jet boundary. Therefore, near
the point e of the plane V—0, the stream function should be sought in the form

V=@ 4+ 0="2 0<y@<l, 0<o<e, x0)=0, x()=1 (2.6)
n
with the unknown exponent # > 0. Denoting the derivatives with respect to ® with a prime, we obtain
@ . noy" +(n+ 1y A X"
vy =20 vy, = o - L Yo =—, W = 2.7)
n n n n
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(@) y

Fig. 1. Jet flow with a sonic boundary streamline b—e and a straight transition line 0—e ((a) in Cartesian coordinates,
(b) in hodograph variables).

Substituting the obtained derivatives into equation (2.4) for n < 1 gives the equation

noy" +(n+yx" - o X"
nw 2 6

n n
whose solutions for # # 3/2 do not allow satisfying the conditions (2.6). At n = 3/2 we get the equation

=0,

90" + 407" + 15wy =0
and its solution

®

C do 17 do
o, @ =C[ =[O
O + 40°)"° X ! O’ +406°)" C ! 90" + 46°)"°

which satisfies all necessary conditions (2.6).

x(®) = (2.8)

To find the curvature of the boundary streamline near the point e, we assume sin® = 6 and cos6 = 1 in
the coefficients before d0 of equalities (2.5) and substitute y, and , by the expressions from (2.7) with '
from (2.8). This produces equations

__ —Cd(-6) (9"
e P Y
which are satisfied on the vertical /—e near the point e. By integrating them from the point e, in which 6, =
X. = 0, we arrive at formulas

3 1/3 4/3 3
=72k yoy =3 CEO T _suk s (2.9)
C 8k C
that are true for the streamline b—e near the point e. From them, among other things, follows the afore-
mentioned well-known result obtained by other methods [ 10—12] on the zero curvature of the streamline
at the point of intersection with the straight transition line. In the problem of jet impingement on a sym-
metric wedge-shaped obstacle with a vertex half-angle 0 < 6,, < & [8, 9], there are four such points: e and
fin the upper half of the current shown in Fig. 2 and two in its symmetrical lower half.

3. FLOW NEAR THE VANISHING POINT OF A SUBSONIC BOUNDARY STREAMLINE
FROM THE STREAMLINED CONTOUR

The simple version of a plane ideal-gas jet considered in this section differs from that shown in Fig. 1
by the fact that for the boundary streamline b—e the gas velocity V=V, and the Mach number M, is less
than unity. As a result of this, the flow aligns as x — o, and in the solution in the form (2.6) n = 1, that is,
o=—06/n,n=V,— Vand V, < 1. In asmall neighborhood of the point b considered below, we can rewrite
Chaplygin’s equation (2.1) in the form

Wiy 00V, B =0, o =(1+ M)V, B =(1-M;)/ V. (3.1)
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ON THE CURVATURE OF BOUNDARY STREAMLINES 915

Fig. 2. Impingement of an ideal-gas sonic jet onto a wedge: e—e' and f—f" are straight transition lines, e—f'is a curvilinear
section of the sonic boundary streamline.

Of'the two positive constants that appeared in this equation, only the second is involved in further anal-
ysis. In the limit of low subsonic velocities, it increases indefinitely, and at M, = 1 it becomes zero.

At point b, in contrast to point e studied above, the stream function does not break. Therefore, we will
seek a solution in its neighborhood in the form

e_eb

n

y=l+ey(+...; o=

, =V, =V; 0<®< oo, = %(0) = 0;
n b Xo =X (3.2)

L=x) =0, €=[0-6,)"+1"" = (@ +1)n™"; n>0, m>0.

These relations differ from (2.6), firstly, by the same (zero) conditions for x at ® = 0 and ® = oo, and,
secondly, by two exponents # and m that are to be determined. Now instead of (2.7) we get

vy = al( + Doy — 2my](o® +1)""'q*"",
Vo = (0 + ' + 2mayy] (e’ +1)" '™,
Wy = n{o(@ + 1) [ney" + (n+ 1)yl — 4mn(@” + Doy, (3.3)

m2 2mn-2

5

+2m[2n(0” + m) — 1 — @' HH(@ +1)
Voo = {(@° + YY" + 4m(@’ + Doy’ + 2ml 2m = o’ +1]x}(o) + 1)

Since Y, < ¥y at n < 1, then by substituting these derivatives into (3.1) and discarding the second
term, we arrive at the equation

o + 1)[noy" + (n+ 1)yl — 4mn(@” + Doy + 2m2n(w” +m) —1 - oI
+ B + 1)’y + dm(o” + Doy’ + 2m[2m — D’ + 1™ /n =0

Near the point b, the last term of this equation is much less, equal to, or much greater than the others
forn <1,n=1orn > 1respectively, and y(®) and “eigenvalues” of m are determined by the solution of
one of the three boundary value problems:

LA D@ ) —dmn . Qn— D’ 1+ 2nm

n<l: =0,
n(®’ + o (@ +1)°
nel ,,+2co +1+2m([3 —1) Com o +B +(2m—1)(1+B X—O,
(@ + 1) +B) (@ + 1) (o’ +B)

4m0)x+2 (2m—1)o) +1
o +1 (w ’ + 1)
with the same boundary conditions ), = 0 and %., = 0 for each of them.

n>1 x"

b

For %, = 0 and arbitrary # and m the solutions of the reduced linear homogeneous equations propor-
tional to 7y, naturally do not fulfill the condition ., = 0.
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916 KRAIKO, TILLYAYEVA

Let us first show how its fulfillment determines m for the case of n = 1, for which, taking into account
the condition , = 0, we find:

2
o<l y" +Ayx=0, yx=AsinAo)=yo, A= 2mw, Yo = AN

B2

RN ._ B _ B
o> x'+2==0, Y==-2>2%=Y—"-
® ® ®

Here the constant Yy, is arbitrary and B (proportional to y;) and ., are found by numerically solving
the complete equation (or the system of two equations for x and ') to such large ®, at which the values of
B= ¥ and ., =y + o) stop changing.

Having fixed n = 1, ), and B? and carrying out the calculations described above for different m > 0, we
construct the curve ., = %..(m) including a point, at which %.,(m) intersects the m axis. This point gives
us the solution. If there are more than one such positive values of m, then the minimum is taken, which,
according to representation (3.2), gives the largest value in the expansions in powers of a small “distance”
to the point b in the hodograph variables. Calculations carried out for » = 1 gave the minimum m = 1,

which does not depend only on Y, as it should be, but also on 32, which was unexpected. The analysis
carried out to clarify this not only confirmed this numerically detected singularity, but also led to a com-
plete analytical solution of the problem. To understand how a solution that does not depend on [? is
obtained, we rewrite the equation corresponding to m = n = 1, leaving B only in the denominator of a sin-
gle term
' 2

20))26 +X_ 22F =0, Fooy+@ !
o+ o+p o +1

"

x"+2

x. (3.4)

The function F= F(®, )(, %) is such that F (0, 0, x,) = 0. Obtaining the derivative
20y
F=o "+ > % + 24X 5 |
o +1 (o +1)

from here we express " and, substituting it into equation (3.4), we arrive at the equation for F and the
solution

F o aF
o o+p

=0 F =C +p).

Since F(0, 0, x,) = 0, the constant C =0, F = 0, and both the equation

F@,,) = (@ + Doy + (@ -y =0

and its solution (that does not contain B? either) are true

K@ e Kl =) "’22). (3.5)
o +1 (" +1
According to the performed calculations, ., = 0 for » = 1 for any positive integer m; however, for m = 2,
the solution, for example, the constant B that decreases with increasing m, depends on the value of 2.
Substituting x and %' from (3.5) into formulas (3.2) and (3.3) gives the expressions

Y=1+2%0-0)F, -+, Wy ==20-6,), Wo=xV,—V). (3.6)

In this and subsequent solutions, y is a linear function of V'and 6, and Chaplygin’s equation with-

out y, is satisfied due to the fact that both v, and ygq are equal to zero separately. If we substitute
solution (3.5) into formulas (3.3) Y, and Yy become zero as well.

To find the curvature of the boundary streamline near the point b, we set dV'= 0 in equalities (2.3) and,
substituting Y, and W, from (3.6), we obtain the equations

n=1 m=1 y=

dx = =, (0-0,)cos0, 49, dy ==, (0-0,)sin0, 46
kpy kpy
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ON THE CURVATURE OF BOUNDARY STREAMLINES 917

After integrating them, we arrive at a parametric representation of the coordinates of the boundary
streamline with the angle 6 as a parameter

0-6 0-6
X=Xy = Xo( b) cos0,, y-y,= _Xo( b)
2kp, Py

sin 0, (3.7)

As a consequence of these formulas, the dependences of 0 and the curvature of the subsonic boundary
streamline K are true near the point b from the distance T > 0 to this point

Qkp,0)”* 90 _ (kpy)”
)" I (o)

It was shown [21] that in an ideal gas, the curvature of the subsonic boundary streamline tends to infin-
ity when approaching the separation point. The same authors, when constructing sonic boundary stream-
lines [22] separating from circular disks (6, = 1t/2), write: “A more detailed analysis establishes that ... near

the point b: y — y, = O((t — 1t/2)?)”. This is all.

Similarly, by setting d6 = 0 in equalities (2.3), for " and dp/dtT when approaching the point b along the
wall subject to flow, we obtain the formulas

0=6,+ N [ (3.8)

Vy(2kpy»)"”? P _ oV _ PV kpy)"”
oMz —1y]/2 0t 9T oy (M2 — 1t

Let us find V and 6 as functions v = —)' in coordinates x', y' (Fig. 1a), that is, their change along the
normal to b—e at point b. For the tangential t (cos8, sin@) and normal n (sinf, —cos0) unit vectors directed
along x' and —)' at this point: v = (x — x;)sin6, — (¥ — y,)cos0, and dy = —cot0,dx on n. Substituting dx
and dy from (2.3) by y, and y, from (3.6) into the last equality gives a differential equation, by integrating
which we arrive at the solution and its consequences for small @ — 6, and V, — V:

V=V,-

3.9

_ 2\1/2 1/2
b (=x0) (1= My) (3.10)
IRV 1/2 .
0-96, = a M(b)x )(,I/(fbv) , V=(x—x,)sin0, —(y—y,)cos0, < 1.
X0

The second and third formulas are the result of integrating the equations (2.3) with Yy, and g
from (3.6) and with ¢ 6 — 0, from the first formula.

Let us preface the numerical solution of boundary-value problems corresponding to the values of the
exponent n < 1 by considering small and large ®, for which

n<l g (n+1)(0) +1)— 4mnx, m 2n— 1)0) —1+2nm 0,
(@ + Do n(w + 1’0’
0)<<1—>X:40)/, X':ACUHa [:M>Q’
/ n+1—4mn
03>>1—>x':1_T11’)/n—>B:—0)1+1/"x', X:xw+”ll/’; = Yoo =X + HOY'.
® ®

The numerical solution of this equation for different 0 <# < 1 invariablyledto .. =0 form = (n + 1)/2n.
Substituting m = (n + 1)/2n in the formula for / gives / = 1, A = y,, and the equation

a+m@ D Qn -’ +
Mm+MDX (+ )(m+NdX

By writing it in the form fj" + gx' + Ay = 0 with rational coefficients:

F=n @ +1D)’0’, g=nl+n@ -Do, h=1+n[2n-Do" +n],

FLUID DYNAMICS Vol.57 No.7 2022



918 KRAIKO, TILLYAYEVA

reducing it to the “normal form” and solving according to [25], we obtain

1 (1+n)/(2n)
xX= ”(m)eXp(Ejid(Dj = U(Q))( 203 ) , u'=-lu,

o +1

h 1(gj2_1(gj':c S Y R e S

“rTar) ) T T T2 T

U= Clml/2+s + C2m1/2—s — Clo)(l+n)/(2n) + Czw(n—l)/(2n).
Then, taking into account the conditions %, = %.. = 0, we obtain
1 ' 2
nel, m=lEn o 0O . (m©)
2n (0 +1) n(®” +1)
By substituting these m, 7, and %' into (3.2) and (3.3) for y, v, and y,, and Yy, and y,, into equa-
tions (2.3) we obtain the same equations (3.6)—(3.9), that were obtained for n = 1.

The equality / = 1 leads to a quadratic equation for m. Its second root m = 1/2 corresponds to the
boundary-value problem

(3.11)

2 2
n<l mzl: X,,+(n+1)(29 +1—n ,+(2n—12)0) J;nz—l _
2 n(®” + 1o n(o +1)"w
%X =0, %.=0.

Dealing with it in the same way as with the problem for the first root, we first find

3 u(w) w_c _1-n _V4e+1_ 1
X = (1-n)/(2n),. 2 2 W =W C= 70 ST 50
0 (" +1 (o) 4n 2 2n

1/2 1/2— 1 2 /2
u= C10)/ s Cz(,l)/ s _ Cl(,l)( +n)/(2n) + Czw(n )/( n)’

but then, under the same boundary conditions %, = %.. = 0 there is only the trivial solution % = 0.
The boundary-value problem
2
n>1 O ey ZmM
o +1 (o +1)

is solved by reducing the equation to the “normal” form [25] even more simply than in the cases already
considered. By obtaining

X=0 X% =0, %.=0

__ u(w)
(@ +1)"
due to boundary conditions ¥, = .. = 0, we get

I=0, u'=-Tu=0, u=C +Co,

, 2
n>1, msl o= K@ e ;)H(;——szﬂ,
2 (o +1)" (o +1)"
Formulas (3.6)—(3.10) turn out to be a consequence of this solution not for any m > 1/2, but only for
m = (n + 1)/2n. Therefore, the solution for n > 1 is

Al ' 2
p>l, m=lEn Loy @ . X1 = @)
2n 2

= , . 3.12
(@ +1)" (@ + 1™ (512

4. FLOWS NEAR THE POINTS OF SEPARATION AND REATTACHMENT OF SONIC
BOUNDARY STREAMLINES

Let us begin this topic with the flow near the separation point of the sonic streamline in Fig. 1. Other
examples of such flows and flows with a sonic streamline reattaching to the contour are shown in Fig. 3,
from which one can get an idea of the planar and axisymmetric configurations subject to a subsonic flow
at zero angle of attack with the largest M*. Here, these are symmetrical profiles and bodies of revolution
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ON THE CURVATURE OF BOUNDARY STREAMLINES 919

Fig. 3. Symmetrical profile or a body of revolution (a) and the forebody of a plate or a circular cylinder (b), subject to
a flow with the highest critical Mach numbers (b—c is a segment of a sonic streamline).

(Fig. 3a) and forebodies of a semi-infinite plate or a circular cylinder (Fig. 3b). As already noted, in their
construction, in addition to the usually given length (for the profile—chord length), the “longitudinal”
area is fixed for the bodies of Fig. 3a (in the xy plane of Cartesian or cylindrical coordinates), and the half-
height of the plate or the radius of the cylinder, for the forebodies. All contours in Fig. 3 have a seg-
ment b—c of a sonic streamline with smooth separation and reattachment at points b and c of the wall sub-
ject to the flow. Outside of segment b—c almost always M < 1. Exceptions are internal flows with
point b or ¢ lying on the normal x axis of the straight transition line [16]. When approaching such a point,
the curvature of the sonic streamline K — 0 due to the solution (2.9).

The solution of the transonic Chaplygin’s equation (2.4) near the point b in Fig. 1 is sought in the
form (3.2) with ¥, = 1, and for the flows in Fig. 3, the formulas for y and ® are changed to vy = gy(w) + ...,
o = (0, — 0)/n". It does not, however, affect the equation

(@ + 1)’[noy" + (n+ 1y’ — 4mn(®” + Doy’ + 2m2n(@” +m) —1— mz]x
+ (@ + 1)’ + 4m(e + Daxy' + 2m[2m — D" + 1pgm* ™" /n =
that defines  at € < 1. At | < 1 its last term is much less than, equal to, or much greater than the rest for
n<3/2,n=3/2orn>3/2,and x(®) and “eigenvalues” of m are determined by the solution of one of three
boundary-value problems:

2 2
n<§: X,.+(n+1)(0)2+1)—4mnx.+2m(2n—1)(;) _12+22nmx=0,
2 o + 1w no +1)w
2 2
n:§: ..+15(m2+l)+412n(4c5 2— 9) oy’ +4m [6+ (4m — 2)(5 ]w +9m -3 +20° 7=0,
2 (0 + D0 + 46°) (@ +1)°Q” + 46°)
n>§: X+ 4m0)x_|_2 2m — 1)0) +1 -0,
2 o +1 (0 +1)

with the same boundary conditions ¥, = 0 and y.. = 0.

Numerical solution of the problem corresponding to #» = 3/2 led to a result similar to that obtained for
n = 11in Section 3. The minimum exponent m = 5/6 was now obtained for any 2. Experience with
equation (3.4) helped to understand how this is possible.

Let us rewrite the equation corresponding to n = 3/2 and m = 5/6, leaving 62 only in the denominator
of one of the terms

. 10wy 5Qw’ +3 F - 0)
L X Wo_F o F=isayp+ 32023
3(w +1) 9(0) +1) 0" + 40 o +1

As in (3.4), function F(®, ), %) is such that F(0,0,%,) = 0. By finding the derivative

F':lSo{x"+ ox 10y 2},
3 +1) 3+ )
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we express ' from this equality and by substituting it into the original equation, we arrive at the equation
for Fand the solution

F 2 2)\%/6
—+ f - ZF 2:0—>F:C(—9m2+40j .
150 9w +1) 90 +4c o +1

Since F(0,0,%,) = 0, the constant C =0, F= 0, and the following equation is true:

. _(B=20")y
3 + Do
Solving it, we get
3 5. Xo® L X3 —20")
n==>, m=2% y=—~"__ A0S0 4.1
2 6 X)) 3w+ 1) @

According to the performed calculations, the eigenvalues of the boundary-value problem correspond-
ing to n = 3/2, along with m = 5/6, are m = 2/ + 5/6, [ = 1, 2,.... For the neighborhood of point 5 of the
flow shown in Fig. 1, substituting % and ' from (4.1) into formulas for y, Y, and Y, results in expressions

V=1+%0-0)0-)+... ¥y =10-86,), We=30-V), % <0. (4.2)
Let us substitute these ¥, and g into equations (2.5), written for b—e with V=1 and dV'= 0. Proceed-

ing further, as in Section 3, we arrive at formulas (3.7) and (3.8) with p, = px = 1. For V, dV//dt, and dp/dt
when approaching point b along the wall, we get the formulas

yo1y G0 0p_ ov (/)" 3)
(szb)l/z’ ot ot Bor)”?’

whose essential difference from (3.9) is different powers of T.
For the flows shown in Fig. 3,

V=200, -0 A=) +.., Wy =0, -6), wo=—x(-V); x>0, (4.4)
v =}', and instead of (3.7), (3.8), and (4.3) we get similar versions:
. (6, - 0)’ (0, -0)"
> 0: — X, = Yo—>—>—cosB,, — Y, =Y ———5in0O,,
X X=X, = %o oy by Y=V =Xo oy b

B (2kr)1/2 o 30 _ A
1" I "
_ Gk ap_ v _ (k/xw)”

0=9, (4.5)

x'<0: V=1

) ot dat Bon?
The difference from (3.10) formulas for the change in ¥ and 0 along the normal to the streamline:
1/5..2/5 2 \1/5,,3/5
©-8,)' =20’1-y), 1-y =GV g-p, GO Y
(oxo/k)” /K" (4.6)

V=(y—y.)c080,, —(x—x,.)sin0, <.

is expected. The difference because of the different direction of the normal corresponding to Fig. 3 for-
mulas for v compared to the formula from (3.10) in the case of Fig. 1 is not significant. The equations cor-
responding to n < 3/2 and n > 3/2 coincide with the equations of Section 3, which in that case corre-
sponded to n < 1 and n > 1. Solving them provides the results:

] Al 2
3 +1 O , n—o
2 2n (" +1) n(® +1)
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A 1 2
ps3 meftlol S X%® L K- o)

2 2 (@ +1D)" (@ +1)""
that differ from (3.11) and (3.12) only by the values of » = 3/2. Their consequences for the separation and
reattachment points of flow streamlines coincide or almost coincide with those given in (4.2)—(4.6).
For axisymmetric flows, the right-hand side appears in Chaplygin’s equation. Its terms, proportional
to the first—third powers of y,, and g, in all studied solutions have a higher order of smallness
over M, than Yy, and ygq. The additional terms in the equations determining the x and y coordinates are

also small. As a consequence, all the results obtained can be transferred to axisymmetric flows with a sin-
gle substitution: k to ky,.

CONCLUSIONS

The performed study, which initially had some relation to the construction of bodies subject to flow
with the highest critical Mach numbers, unexpectedly led the authors to the practically forgotten works of
Zhukovsky on jets of an ideal fluid. It turned out that in the 19 century the problems that attracted his
attention were of interest to many famous physicists, including Helmholtz, Kirchhoff, Rayleigh, Brill-
ouin, Meshchersky, and Planck. However, none of them managed to advance as far as Zhukovsky in only
two papers of 1890—1891. The desire to remind our contemporaries of this and the understanding of
whose work is being continued here helped to complete this work.
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