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Abstract—The flow of a viscous compressible gas from the apex of a flat wedge is considered. It is shown
that an asymmetric self-similar f low is possible and is realized when special boundary conditions for
the temperature of the channel walls are specified. For the case of low subsonic gas-f low velocities
at constant but different temperatures of the wedge walls, an asymptotic solution is found. In the general
case, the resulting system of ordinary differential equations is solved numerically.
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1. INTRODUCTION

The well-known Jeffery–Hamel exact solution of the Navier–Stokes equations for the case of a viscous
incompressible f luid describes a self-similar f low in a f lat wedge-shaped diffuser from a source/sink
located at the apex of the wedge [1, 2]. In the case of a confusor f low (sink), the solution exists for any
Reynolds numbers  and an arbitrary wedge-opening angle  and is symmetric with respect to the
plane θ = 0 (Fig. 1). In the case of a diffuser f low, the velocity profile in the transverse direction upon
reaching a certain critical number  turns out to be nonmonotonic. With increasing number

, reverse f low regions appear and the velocity profile can become asymmetrical. With a further
increase in Re, a symmetric solution with one minimum and two velocity maxima arises. In all these solu-
tions, there are alternating outflow and inflow regions. As , an increase in the number of local
minima and maxima is observed; therefore, there is no definite limiting solution, which, apparently, is due
to the fact that, with an increase in , the steady diffuser f low of the described type, soon after reaching
a certain critical value, becomes unstable and, in fact, unsteady turbulent motion takes place [3].

For incompressible f lows, in [4], a wide class of known and new exact solutions of the Navier–Stokes
equations are described, in particular, the well-known Jeffery–Hamel solution for the f low of a viscous
incompressible f luid in a f lat diffuser.

The possibility of constructing Jeffery–Hamel-type self-similar f lows of a viscous compressible gas is
discussed in [5–13]. In [5], the problem of a viscous gas f low in a conical diffuser with slip boundary con-
ditions on the walls was considered. In [6, 7], the problem of gas f low in a conical diffuser in the presence
of an internal volume source/sink of energy inside the f low was also considered. Other axisymmetric self-
similar solutions of the Navier–Stokes equations for viscous gas f lows were obtained in [8, 9].

In [10, 11], a class of self-similar solutions for a gas f low in a f lat wedge is considered. In particular,
[10] considers the f low of a gas of hard spheres and Maxwellian molecules with dynamic viscosity coeffi-
cients  and , respectively. In [11], an analytical solution was found for an arbitrary power-
law temperature dependence of the transport coefficients,  (the Frost law). In [12], an analogous
self-similar f low of a viscous compressible gas from a jet (impulse source) f lowing into the region between
two divergent walls was considered. The exact solution of the Navier–Stokes equations for Couette and
Poiseuille f lows of hot gas with a viscosity coefficient depending on temperature according to Suther-
land’s law was obtained in [13, 14].
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Fig. 1. Scheme of a f low in a f lat wedge.
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In recent paper [15], it was established that a self-similar solution also exists for a viscous gas f low for
which the transport coefficients depend arbitrarily on temperature, . In all the above-cited works
devoted to self-similar f lows of a viscous gas, only symmetric-flow regimes are considered.

In this paper, we study analytically and numerically the possibility of constructing Jeffery–Hamel-
type asymmetric self-similar solutions for f lows of a viscous compressible heat-conducting gas in a f lat
diffuser.

2. JEFFERY–HAMEL-TYPE SELF-SIMILAR FLOWS

We consider the f low of a viscous gas from the apex of a f lat wedge at different wall temperatures 
and  (Fig. 1).

The Navier–Stokes equations in polar coordinates (r, θ) (Fig. 1), written in dimensionless variables,
have the form [16]:

(2.1)

(2.2)
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(2.4)

The flow is assumed to be radial, . The components of the viscous stress tensor σ and strain
rate tensor ε have the form

In Eqs. (2.1)–(2.4), the dimensionless variables are related to the dimensional gas-dynamic parame-
ters, marked with an asterisk, as follows:
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ASYMMETRIC SELF-SIMILAR VISCOUS GAS FLOWS 925
where , , , , and  are, respectively, the density, velocity, temperature, viscosity coefficient, and
thermal conductivity at some point  on the axis of the wedge. The gas is considered ideal, so that

. The Mach number M0, the Reynolds number Re0, and the Prandtl number Pr are calculated
according to the rules:

Energy equation (2.4) takes into account the terms responsible for the dissipation of energy due to vis-
cosity. As will be shown below, at moderate M0, the Reynolds number in the self-similar solution turns
out to be small, i.e., the viscosity and energy dissipation affect the entire f low field inside the wedge.

The self-similar solution of Eqs. (2.1)–(2.4) is sought in the form:

(2.5)

The exponent m will be called the self-similarity parameter. As shown earlier in [9–11], the existence
of planar self-similar solutions necessitates the following condition:

The existence of self-similar solutions for k = 0 and different m, depending on the defining parameters
of the problem for the case of symmetric plane f lows, was studied in [9]. Gas f lows for m ≠ 0 are more
difficult to study. The solution in this case reduces to the analysis of a system of nonlinear differential
equations with a previously unknown self-similarity parameter m, which must be determined in the course
of numerical solution of the problem.

In this paper, we consider another case: namely, of  and m = 0. It was found in [15] that, in this
case, a self-similar solution can be constructed for an arbitrary temperature dependence of the transfer
coefficients. Below, when studying asymmetrical solutions, for definiteness, we assume a power depen-
dence .

3. SELF-SIMILAR GAS FLOW IN A WEDGE AT DIFFERENT WALL TEMPERATURES
To obtain asymmetric solutions, the temperatures of the wedge walls will be considered different,

but constant. Substituting (2.5) into (2.1)–(2.4), it is easy to check that continuity equation (2.1) is ful-
filled automatically and Eqs. (2.2)–(2.4) can be rewritten in the form of a system of ordinary differential
equations (ODEs):
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with no-slip boundary conditions for velocity and a given temperature on the wedge walls:

From the normalization condition for the f low parameters on the wedge axis, at θ = 0, we have:

(3.4)

We differentiate Eq. (3.1) with respect to θ and subtract it from (3.2). As a result, we get the following
equation:
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the solution of which has the form

(3.5)

where a and b are some constants. Replacing in (3.1) the expression  by the right side of Eq. (3.5),
we obtain

(3.6)

Using normalization conditions (3.4), we relate the constant a to the numbers M0 and Re0:

We substitute (3.5) and (3.6) into energy equation (3.3) and integrate once with respect to θ. As a result,
we get the following expression:

which, taking into account (3.5), can be rewritten as

(3.7)

where Q is some constant.
Using expression (3.7), it is possible to determine the specific heat f lux through the channel walls in

the azimuthal direction:

(3.8)

We introduce the dimensionless heat f lux  and rewrite (3.8) in the following form:

Then, using (3.7) and taking into account that, in the dimensionless variables , we obtain

(3.9)

where eθ is the unit azimuthal vector. It can be seen from relation (3.9) that the constant Q is proportional
to the heat f lux through the wedge walls. It also follows from (3.9) that the absolute value of the heat f lux
through the lower and upper wedge walls is the same. In this case, if , then heat is supplied to the
upper wall and removed from the lower wall.

The equality of the values of the heat f luxes through the wedge walls is explained by the fact that, in a
self-similar f low, the energy f lux in the radial direction is absent, since, for m = 0, as follows from (2.5),
the temperature does not depend on : . Thus, in the solution obtained, the transfer of thermal
energy is observed only in the azimuthal direction. We note that, since there is no transfer of another type
of energy in the azimuthal direction, the equality of heat f luxes is due to the energy-conservation law.

4. ANALYTICAL SOLUTION FOR THE CASE OF LOW SUBSONIC GAS-FLOW VEOCITIES 
IN A WEDGE

Let us introduce the dimensionless parameter  and consider the limiting case ,
corresponding to low subsonic gas-flow velocities in a wedge. Obviously, the solution of the problem
depends on the value of the heat f lux Q. To obtain a clear result on the effect of the temperature difference
of the wedge walls on the symmetry of the solution, we consider the case of a strong heat f lux,

.
The solution of Eqs. (3.5) and (3.7) will be sought in the form of power series in the small parameter χ:
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In what follows, we will assume that the derivatives  and  are bounded everywhere in the
flow region. Then, in the zero approximation, we obtain the following system of equations:

(4.1)

(4.2)

where . For a given dependence , the solution of Eq. (4.2) under normalization
conditions (3.4) takes the form:

(4.3)

Hence, the temperatures  and  on the wedge walls, the half-opening angle α, and the heat f lux 
in the zero approximation are related as

From Eqs. (4.1) and (4.2), taking into account relations (4.3), we obtain the following differential
equation:

the solution of which under normalization conditions (3.4) takes the form

The constants a and b are determined from the no-slip boundary conditions on the wedge walls. Using
the wall temperatures  and , these conditions can be written as:

Let us consider the case of the power dependence . Then, integral (4.3) takes the form:

(4.4)

Using this expression, we can find the solution of Eq. (4.1) in quadratures:

(4.5)
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Fig. 2. Comparison of self-similar solutions: (solid line) asymmetric velocity profile and (dashed line) symmetric velocity
profile.
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In a special case of the model of a gas of super-hard particles (k = 0), solutions (4.4) and (4.5) take
a simple form:

(4.6)

which implies that the velocity profile is symmetrical. The resulting expression coincides with the solution
found earlier in [11, 15], where, in particular, the case of a symmetrical gas f low with constant transfer
coefficients, k = 0, was considered. The model of a gas of super-hard particles was encountered in works
on kinetic theory (see [17]). This model is based on the assumption that the differential scattering cross
section increases in direct proportion to the relative velocity of the colliding particles. Despite the indi-
cated nonphysical behavior of the scattering cross section, this model proved to be extremely useful in
constructing exact solutions of the Boltzmann equation [18–20].

A comparison of the symmetrical (4.6) and asymmetrical velocity profiles in the zero approximation
for the f low of a monatomic gas of Maxwellian molecules (k = 1) [21] in a wedge with a half-opening angle
α = 0.4 rad at X = 1 is shown in Fig. 2.

5. NUMERICAL STUDY OF ASYMMETRIC SOLUTIONS AT DIFFERENT MACH NUMBERS 
OF A GAS FLOW ON THE WEDGE AXIS

For an arbitrary Mach number, the system of equations (3.5) and (3.7) cannot be studied analytically;
therefore, to obtain solutions, a numerical study of the problem is required. For convenience and simplic-
ity of the numerical calculation, instead of solving the boundary-value problem with given parameters
(angle α, wall temperatures  and , and numbers M0 and Re0), the Cauchy problem is solved with ini-
tial conditions on the wedge axis for velocity, , and temperature, , in the regions  and

; the numbers M0, Re0, and Q are assumed to be given. In the course of numerical integration,
the opening angle  is found from the condition that the velocity on the channel walls is zero:

 = 0, , where  and  are the azimuthal coordinates on the upper and lower
walls, respectively. The wall temperature is determined as a result of numerical integration at a given value
of the heat f lux Q: .

Below are the results of numerical calculations for the f low of monatomic helium at γ = 5/3 and Pr =
2/3 with k = 1. A comparison of the velocity and temperature profiles at  and  for
Q = 8 in the asymmetric case and Q = 0 in the symmetric case is shown in Figs. 3 and 4. We note that a
noticeable difference from the symmetry of the f low manifests itself at a sufficiently large temperature dif-
ference on the channel walls.

Based on the systematic calculations carried out, it can be concluded that a self-similar asymmetric
flow exists only in a limited range of Q. It turns out that, at a certain limiting value Qmax, the temperature
on one of the wedge walls is zero. The dependence of the quantity , which is pro-
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Fig. 3. Velocity profiles: (solid line) symmetric profile and (dashed line) asymmetric profile.
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Fig. 4. Temperature profiles: (solid line) symmetric profile and (dashed line) asymmetric profile.
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portional to the dimensionless heat f lux through the wedge walls, on the Mach number M0 on the axis is
shown in Fig. 5 for different opening angles , , and 0.6 rad.

As can be seen from Fig. 5, with an increase in M0, the maximum possible heat f lux increases. This is
explained by the fact that, with increasing M0, the temperature increases on one of the channel walls and,

α =2 0.2 0.4
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therefore, the temperature difference increases. With an increase in the opening angle, the temperature
difference decreases.

CONCLUSIONS
Within the framework of the Navier–Stokes equations, the possibility of constructing asymmetric

Jeffery–Hamel-type exact solutions for a viscous compressible gas f low in a f lat wedge has been estab-
lished. For the power-law temperature dependence of the transfer coefficients, it has been shown that an
asymmetric self-similar f low is realized at different temperatures of the lower and upper walls of the
wedge. In the solution obtained, the transfer of thermal energy takes place only in the azimuthal direction
and the total heat f lux through the wedge walls turns out to be zero. An analytical solution has been found
for the case of low subsonic gas-flow velocities.

The resulting solution has a very special form: the f low velocity turns out to be radial and constant for
the stream lines θ = const, the temperature is also constant for the stream lines, and the density and pres-
sure decrease in inverse proportion to the distance from the apex of the wedge. A similar behavior of the
solution was observed earlier in [10, 11, 15] when constructing self-similar solutions of the stationary
Navier–Stokes equations for a viscous heat-conducting gas for a mass source and in [12] for an impulse
source.

It is known [22] that self-similar solutions describe not only the behavior of physical systems under cer-
tain special conditions, but also the intermediate asymptotic behavior of solutions to broader classes of
problems in the region where these solutions cease to depend on the details of the initial and/or boundary
conditions, but the system is still far from the limit state. This means that the solution obtained describes
not only the physically unrealizable f low field from a point source into infinite space. It also describes the
real f low field that arises in a finite region of size D if outflow with a given f low rate issues not from a point,
but from a finite region . In this case, the self-similar solution will be valid at distances much larger
than d and, at the same time, much smaller than D.
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