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Abstract⎯A two-dimensional f low of a viscous compressible gas from a source located at the apex of
a f lat wedge is considered. In the case of adiabatic walls and transfer coefficients arbitrarily depending
on temperature, the possibility of self-similar solutions is established. The new analytical solutions are
compared with the previous solutions for the gas with constant transfer coefficients. For gas f lows in
micronozzles, the self-similar solutions obtained in this work are compared with the results obtained
by other authors.
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1. INTRODUCTION
Since the second half of the 20th century, increased interest has been observed worldwide in investiga-

tions of f lows of f luids and gases in the “microdevices” used in various technical wares, for example, in
ink-jet printers [1–3], as well as in some medical and chemical technological processes, such as gas chro-
matography [4–6]. Flow sensors, pressure control valves, separators, chemical sensors, etc., are such
microdevices. Flows in micronozzles have been studied experimentally on the basis of the engineering
approach [7, 8].

The self-similar solutions of the Navier–Stokes equations for the f low of a viscous compressible gas
from a mass source in f lat and axisymmetric divergent conical diffusers were studied theoretically for the
first time in [9–12]. Axisymmetric f lows in a cone with impermeable walls with slipping conditions for the
velocity and temperature at the wall were studied in [9]. Flows in the axisymmetric and flat channels with
the gas mass outlet at the wall were studied in [10–12].

For incompressible f lows [13], a description has been presented for a wide class of known and new
exact solutions of the Navier–Stokes equations, in particular, for the known Jeffry–Gamel solution for
the f low of a viscous incompressible f luid in a f lat diffuser.

The f low in the wedge has been considered under the condition of an adiabatic wall [14, 15], and it was
shown that the self-similar solutions satisfying the condition of continuum are realized in the channels
with small opening angles. The Reynolds number at the wedge axis proves to be not large, which corre-
sponds to the f lows of a strongly rarefied gas or gas f lows in the microchannels under normal conditions.
Analytical solutions are found [15] for the flow in a flat channel with the coefficients of dynamic viscosity η
and heat conductivity  depending on temperature according to the Frost power law ( ).
An analogous self-similar f low of a viscous compressible gas from a stream (the momentum source) that
flows to the region between two splay walls was considered in [16].

In this work, an exact self-similar solution was obtained to the equations of motion of a viscous heat-
conducting gas in a f lat wedge-shaped channel at an arbitrary dependence of the transfer coefficients on
temperature. The analytical solutions obtained are compared with those obtained earlier for the power
dependence of the transfer coefficients on temperature. For the gas f lows in the micronozzles, the self-
similar solutions obtained in this work were compared with the results of experiments performed by other
authors.
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Fig. 1. Scheme of f low in the f lat wedge.
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2. SELF-SIMILAR FLOWS
Let us consider the f low of a viscous gas from the apex of a f lat wedge (Fig. 1).
The equations of motion in polar coordinates (r, θ) have the form [17]

(2.1)

(2.2)

(2.3)

(2.4)

The flow is assumed to be radial; i.e., . In Eqs. (2.1)–(2.4), the dimensionless variables are
linked with the dimension gas-dynamic parameters marked with an asterisk as follows:

where , , and  are the density, velocity, and temperature, respectively, at some point  located

at the wedge axis. The gas is assumed to be perfect, so that . The channel walls are assumed
to be heat-insulated.

The components of viscous-stress tensor  and strain-rate tensor  have the form

Equations (2.1)–(2.4) contain the following similarity parameters: Mach number M0, Reynolds num-
ber Re0, and Prandtl number Pr, which are calculated as follows:

We search for the self-similar solution to Eqs. (2.1)–(2.4) in the form
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Then, continuity equation (2.1) is satisfied automatically; determining equations (2.2)–(2.4) can be
rewritten as

(2.6)

(2.7)

(2.8)

with the following boundary conditions of adhesion at the heat-insulated wall:

(2.9)

We assume that the f low is symmetric with respect to the wedge axis:

(2.10)

From the normalization condition for the f low parameters at the wedge axis at , we obtain

(2.11)

Let us differentiate Eq. (2.6) with respect to  and subtract the expression obtained from Eq. (2.7). As
a result, we arrive at the following ordinary differential equation:

the solution of which, with symmetry conditions (2.10) taken into account, has the form

(2.12)

where  is some constant. From Eqs. (2.6) and (2.12), we find the expression for the pressure:

(2.13)

from which, using conditions (2.11), we find unknown constant :

(2.14)

Substituting (2.13) into energy equation (2.8), we obtain

Integrating the expression obtained with respect to , with the symmetry condition taken into account,
we obtain

Replacing the expression  with the corresponding expression from formula (2.12), we obtain the
following ordinary differential equation with respect to the velocity and temperature:

which can be easily integrated with boundary conditions (2.9) taken into account:
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Formula (2.15) gives the dependence of temperature on velocity, . Then, with (2.14) taken
into account, Eq. (2.14) can be solved in quadratures. Finally, we obtain

(2.16)

It should be noted that, by virtue of the normalization conditions (2.11), the following condition must
be satisfied:

(2.17)

From this condition, we can find the relationship for dimensionless parameters  and M0:

(2.18)

In the case in which , formula (2.18) takes the form of a finite relationship:

(2.19)

In the case of arbitrary power dependence , it takes the following form:

(2.20)

It should be noted that formulas (2.19) and (2.20) coincide with the corresponding formulas obtained
earlier in [15], where it was assumed that there is a power dependence of the transfer coefficients on tem-
perature [18, 19]. We note also that it follows from formula (2.18) that Knudsen number 

has the order , where  varies from some finite value  at  to
infinity at . So, we can come to the conclusion that, for f lows in nozzles at moderate numbers M0,
continuum condition  is satisfied.

3. RESULTS OF CALCULATION OF THE PARAMETERS OF GAS FLOW IN A FLAT 
CHANNEL FOR VARIOUS DEPENDENCES OF TRANSFER COEFFICIENTS 

ON TEMPERATURE
Let us consider the f low of air for which Prandtl number Pr under normal conditions is approxi-

mately 0.71. Let us compare the self-similar solutions we obtained for two different models of gas.
1. The model of gas with constant transfer coefficients: .
2. The model of gas with transfer coefficients the dependence on temperature of which is described by

the Sutherland law [20], which is closer to reality.
The exact solution of the Navier–Stokes equations for the Couette and Poiseuille f lows of a hot gas

with a viscosity coefficient the temperature dependence of which is described by the Sutherland law has
been obtained in recently published works [21, 22].

As was noted above, in the first case, the problem allows the analytical solution obtained earlier in [15].
Below, we investigate the self-similar solution for the Sutherland law used in practice, which can be writ-
ten in dimensionless form at η0 = 18.27 × 10–6 Pa s and T0 = 291.15 K as follows:

(3.1)

The calculations performed by using formulas (2.16) and (2.17) for f lows of air in micronozzles have
shown that, at small and moderate numbers M0, the self-similar solutions for different dependences

 nearly coincide with each other. Noticeable discrepancies are observed at . Comparisons
of profiles of velocity  and temperature  at  for different dependences 
are shown in Figs. 2a and 2b.
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Fig. 2. Profiles of (a) velocity and (b) temperature. The solid line refers to the Sutherland formula. The dotted line refers
to .
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Fig. 3. Dependence of number  on number  at the symmetry axis. The solid line refers to the Sutherland formula.
The dotted line refers to .
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The value of opening semiangle of the wedge  rad was chosen to be the same as that in [23],
where the air f low in the microchannel was studied experimentally.

Figure 3 shows the dependence of number  on number M0 at the wedge symmetry axis for different
laws .

It is seen from the dependences presented in Fig. 3 that, for the wedge with opening semiangle
 rad, self-similar f low regimes at  are realized at  for both the gas with con-

stant transfer coefficient and for the “Sutherland” gas. It follows from the definition of Reynolds number
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Fig. 4. Scheme of f low inside the microchannel.
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 that, under normal conditions (  K,  kPa), the self-similar f low is realized
in the wedge with the length , which is characteristic for microchannels [23].

Earlier [7, 8, 23], flows in the flat and axisymmetrical microchannels were considered. In particular [23],
the f lows in the f lat micronozzles were studied experimentally and numerically at various values of the
pressure in the output cross section of the channel. The scheme of the channel is shown in Fig. 4; the sizes
are presented in micrometers. The channel walls are made of a polymeric material with a low heat con-
ductivity; therefore, in the numerical calculation based on solving the Navier–Stokes equations, the con-
dition of adhesion and the condition of heat-insulated wall were used at the channel boundaries.

According to the calculation and experimental data [23], the pressure and temperature in the narrowest
part of the channel (see Fig. 4) had the following values:  kPa and .

Let us represent Reynolds number  in the following form:

(3.2)

Then, with formula (2.18) taken into account, this expression takes the form:

Solving the derived equation with dependence  calculated by using the Sutherland for-
mula (3.1), we find from relationship (3.2) the value of Reynolds number . Let us estimate
gas-flow rate Q with the formula

(3.3)

where D is the width of the channel cross section. At values  and  μm, we obtain 
2.5 × 10–4 g/s; the order of magnitude of this value agrees with the experimental value [23]  g/s.
Some discrepancy between the gas-flow rate calculated with the help of the self-similar solution obtained
in our work and the experimental value can be explained by the fact that in [23] the gas is coming to the
nozzle of finite length from the input cross section of finite size, while, in the case of a self-similar solu-
tion, the gas outflows from a point source to a channel of infinite length.

CONCLUSIONS
The possibility of constructing self-similar solutions for the f low of a viscous compressible gas in a f lat

channel at an arbitrary dependence of transfer coefficients on temperature is established. At 
and , the found analytical solutions agree with those obtained earlier [15].

For the gas f low in the microchannel, we compared the self-similar solutions for two different depen-
dences of the viscosity coefficient on temperature, namely,  and η calculated by using the
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Sutherland formula. It proves to be the case that significant discrepancies start to appear at the values of
Mach number at the wedge axis .

The performed numerical calculations of the self-similar solutions are compared with the experimental
data [23]. It is shown that gas-flow rate  in the microchannel calculated by using formula (3.3) agrees
satisfactorily with the experimental data.
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