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Abstract—In this work, the evolution of a f low of a viscous electrically conductive f luid on a rotating
plate in the presence of a magnetic field is studied. The analytical solution of three-dimensional
unsteady equations of magnetohydrodynamics is presented. The velocity field and the induced mag-
netic field in the f low of a viscous electrically conductive f luid filling a half-space bounded by a f lat
wall are determined. The fluid, together with the bounding plane, rotates as a whole with a constant
angular velocity around a direction not perpendicular to the plane. An unsteady flux is induced by sud-
denly beginning vibrations of the wall and an applied magnetic field directed perpendicular to the
plane. A number of special cases of the wall motion are considered. Based on the results obtained, the
individual structures of the boundary layers near the wall are investigated.
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1. INTRODUCTION
Magnetic hydrodynamics (MHD) began to develop intensely in the middle of the last century due to

the rapid development of research in astrophysics and thermonuclear energy and the creation of new
instruments and devices for power and propulsion systems.

A large series of papers exists dealing with the study of magnetohydrodynamic boundary layers. The
interest in this subject is associated with the possibility of using an electromagnetic field as a control factor
aiming at restructuring the entire f low, which is especially relevant in connection with the development
of hypersonic aerodynamics and rocket technologies. A deep analogy has been found between the f lowing
of bodies and the f lowing of local resistances.

This paper generalizes previous results [1–5]. We have investigated [1] the unsteady motion of a viscous
fluid bounded by a moving f lat wall. Unsteady boundary layers of a viscous incompressible f luid
(Rayleigh–Stokes layers) on a rotating plate in the absence of a magnetic field have been considered [2].
The evolution of a viscous f low on a rotating plate, which was induced by longitudinal vibrations of a wall
and injection (suction) of medium in the absence of a magnetic field, has been studied in [3]. The steady
flow of an ideal electrically conductive f luid rotating between parallel walls in a constant magnetic field
has been studied in [4]. The unsteady motion of a viscous electrically conductive f luid between rotating
parallel walls in the presence of a magnetic field has been investigated in [5]. In the present paper, the
unsteady f low of a viscous electrically conductive incompressible f luid on a rotating plate in the presence
of a magnetic field is studied. The f luid occupies a half-space bounded by a f lat wall and rotates together
with the wall with a constant angular velocity around an axis. At time moment t > 0, the wall begins to
vibrate longitudinally, and, at the same time, a homogeneous magnetic field with constant induction is
switched on and directed normally to the wall. Next, we study the propagation of perturbations in a homo-
geneous conductive medium under the action of a homogeneous magnetic field and longitudinal vibra-
tions of the wall. This paper is motivated by both fundamental and purely applied aspects of modern geo-
physical research. In particular, the problem of determining the parameters of artificial wave source using
the electromagnetic effect of the agitation caused by it is very urgent. The relevance of the topic is stipu-
lated by the need to study the World Ocean, which is playing an increasingly significant role in the life of
humanity. This consideration has contributed to starting research of macroscopic motions of seawater
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(conductive f luid) exposed to the Earth’s magnetic field, which are accompanied by the appearance of
electric currents and, consequently, an induced magnetic field. Therefore, the problem of determining the
induced electromagnetic field is divided into two parts: determining the field of wave velocities and find-
ing the electromagnetic disturbance velocity by the set velocity field. The velocity of the medium is found
either from the results of in situ observations or by solving the hydrodynamic problem. The contents of the
present paper can be considered as a mathematical model of seawater f lows in the Earth’s magnetic field,
as well as of other processes in astrophysical problems (planet magnetospheres, jets and accretion disks,
etc.). The case of resonance (when the frequency of the wall longitudinal oscillations coincides with the
doubled frequency of the projection of the angular velocity of the body–liquid system) is discussed in the
paper. The resonance leads to a nontrivial physical effect: the amplitude of the oscillating velocity field
does not vanish at infinity, but remains finite.

2. ANALYTICAL SOLUTION OF EQUATIONS OF MAGNETIC HYDRODYNAMICS
Let us consider the motion of a viscous electrically conductive incompressible f luid in a half-space

bounded by a f lat wall; the f luid rotates as a unit with the wall with angular velocity , and vector

ω0 forms angle  with this plane. Infinite plate H confines half-space Q filled with an incom-

pressible f luid with density ρ, kinematic viscosity ν, and magnetic permeability . The f luid is in a field
of mass forces with potential U. The geometry is shown schematically in Fig. 1.

We associate with the plate the Cartesian coordinate system  with unit vectors , , , so that
plane Oxz coincides with the plate and axis Qy is directed perpendicularly to the plate inward the f luid.

At time moment t > 0, the plate begins to move in a longitudinal direction with velocity ; at the
same moment, a homogeneous magnetic field with induction  normal to the plate—i.e.,  = —is
switched on.

Before writing the equations of motion of a viscous electrically conductive f luid, let us specify some

characteristics of the induction equation  =  + . An important property of this equa-

tion is invariance with respect to the transition to the rotating coordinate system. This can be explained by
the fact that field  has the above invariance in the magnetohydrodynamic approximation. Another
important property of this equation is that, in the case of an infinitely conductive f luid, the f lux of field 
through any material surface inside the f luid is conserved (the field lines are frozen into the moving sub-

stance). We assume large Reynolds magnetic number  = , which is the ratio by order of magnitude

of the second term on the right-hand side of this equation to the first term. Here, V is the characteristic
velocity in this problem,  is the characteristic size, and νm is the magnetic viscosity. The case  is
realized not only at a very high conductivity, but also in the case of large sizes and velocities of the system,
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NONSTATIONARY FLOW OF A VISCOUS INCOMPRESSIBLE 945
which is typical for astrophysical problems. Since the presented problem can be a mathematical model of
a seawater (conductive f luid) f low in the magnetic field of the rotating Earth, the case  takes
place. In this case, only the first term should be left in the induction equation.

The equation of f luid motion in coordinate system Qxyz that rotates with angular velocity  and the
boundary and initial conditions can be written as

(2.1)

(2.1)

and the boundary and initial conditions are

Here, t is time,  is radius vector with respect to pole O,  is f luid velocity, and P is pressure.
We look for the solution of system of equations (2.1) satisfying the initial and boundary conditions in

the following form:

(2.2)

System (2.1) can then be divided into subsystems:
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The system of equations can then be written as

(2.6)

with the boundary and initial conditions:

Excluding the magnetic induction from Eqs. (2.6), we obtain

(2.7)

We look for the solution of Eq. (2.7) using the Fourier sine transform that we introduce by the follow-
ing formula [8]:

Differential equation (2.7) takes the form

(2.8)

here, .

Characteristic equation (2.8) and its roots can be written as follows:

where

The solution of inhomogeneous equation (2.8) is
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From it follows

Finally,

(2.9)

If the initial conditions are satisfied, we obtain

(2.10)

To find , we apply the inverse Fourier sine transform

and then we have

or

(2.11)

The vector of tangential stresses acting on the wall from the fluid side is determined by the expression [1]

Substituting velocity  from (2.11), we obtain

(2.12)

The relations found solve the problem completely.

3. LONGITUDINAL QUASI-HARMONIC VIBRATIONS OF THE PLATE
We consider a quasi-harmonic mode; i.e., we assume that the time dependence of all temporal factors

of the problem is expressed through the multiplier : .
System of equations (2.6) and (2.8) can be written as
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We exclude the magnetic induction from Eqs. (3.1). Then the system of equations can be written as

We multiply the second equation by i and add it to the first equation:

(3.2)

We denote , , and then

Next, by multiplying the second equation by i and subtracting from the first, we obtain
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Consider the resonance case: . Then,

In both cases, for , the f luid velocity field

has an oscillatory character and, while remaining bounded, does not vanish. In this resonance case
, the solution satisfies the conditions on plate H, but does not satisfy the conditions at infinity.

This is the so-called “hydrodynamic paradox.”
From relations (3.7), we find the field ,

and the field of pressures

4. STRUCTURE OF THE BOUNDARY LAYERS

Let the plate move with velocity  = , . The velocity field of a viscous electrically
conductive f luid can be written in the form
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Adjusted for the introduced notations, the velocity field takes the form

where

The obtained solution is a superposition of two waves with wavenumbers k1, 2 and frequency ω, which
propagate along the Oy axis in the opposite direction and exponentially attenuate at distances about δ1, 2,
respectively. The size of the boundary layer is determined by the distance at which the wave amplitude
decreases by a factor of e; i.e., δ1, 2 are the thicknesses of the boundary layers adjacent to the wall.

The plane waves are induced by the decaying harmonic oscillations of the plate. The phase velocities
of these waves are different because wavenumbers k1 and k2 are different. In addition, the velocities depend
on frequency. This means that the f low of a viscous electrically conductive f luid is a disperse medium.

Group velocities of these waves  are also different. They depend on the attenuation and rota-

tion coefficients of the system, magnetic induction, and fluid parameters. The amplitudes of these waves
depend on the magnitude of the angular velocity projection on the y axis, wall-motion parameters, mag-
netic induction, and f luid parameters. Note that the wave emitted by the wall attenuates at depth δ1 and
the next wave coming from infinity to the wall attenuates at depth δ2.

Choose the field induction . Then, , where  = ,  = .

In this case, the wavenumbers can be written in the form

Wavenumbers k1 and k2 and boundary-layer values δ1 and δ2 do not depend on the magnetic permea-
bility or electrical conductivity of the f luid, but are determined only by attenuation coefficient α and f luid
viscosity ν.

In addition, the f luid rotation (the projection of the angular velocity of the system rotation onto the Oy
axis) has a great influence on the wave-propagation pattern.

We introduce dimensionless variable  and dimensionless parameter . The expres-
sions for the wavenumbers can then be written in the following form:

In Fig. 2, wavenumbers k1 and k2 are presented as functions of Y (frequency ω at fixed s = 2).
In the case under consideration,  is generally a complex wavenumber. Its real part characterizes

the frequency dependence of the wave phase velocity, and its imaginary part shows the frequency depen-
dence of the attenuation coefficient of the wave amplitude. As a rule, dispersion is related to the internal
properties of the material medium. There is a frequency (temporal) dispersion, which implies that the dis-
persing medium polarization depends on the field values at the preceding time moments (memory), and
a spatial dispersion, meaning that the polarization at a given point depends on the field values in a certain
area of the space (nonlocality). The curves show that wavenumber k2 increases monotonously with the
increase in frequency of the wall oscillations, while wavenumber k1 displays a complex behavior and has a
salient point.
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The analysis of the dependence of wavenumbers δ1 and δ2 on Y (on frequency ω) for fixed s (s = 2) pre-
sented in Fig. 3 shows that there are singular points of the nonstationary problem, in the vicinity of which
the wavenumbers become infinite. Derivatives  and  show a discontinuity of the first kind;
therefore, the problem of the wave-packet propagation in the given medium should be investigated more
thoroughly. For a wave emitted by an oscillating wall, Y = 2.81 is a singular point, near which wave-
number δ1 has a discontinuity and vanishes with the increase in frequency. The wave packet velocity Vg1

shown in Fig. 4 also has a discontinuity at this point . The wave incoming on the wall has sin-
gular point Y = 1.31, at which wavenumber δ2 has an infinite discontinuity and vanishes with further
increase in frequency.

∂δ ∂1 Y ∂δ ∂2 Y

( = 2.81)Y
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Fig. 4.
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Let us consider the case of resonance  (in dimensionless variables ). The wavenumber
and the boundary layer thickness for the wave emitted by the wall are

The wavenumber of the incoming wave is  = , and the boundary layer thickness is  =

.

It is of interest to compare the obtained solution with the solution to the problem of a f lat wall vibra-
tions in a viscous incompressible f luid rotating in a half-space bounded by a wall considered in [6].

The structure of the solution can be written as follows:

where

(4.2)

but the wave amplitudes and wavenumbers are different since the roots of the characteristic equation are
quite different—namely,  + , and the branches of the root, for which ; , are
chosen. The obtained solution is a superposition of two waves with wavenumbers   and fre-
quency ω; the waves propagate along the Oy axis in the opposite direction and decay exponentially at dis-
tances about δj, respectively. Solution (4.2) is uniformly valid for the whole region, both in the nonreso-
nance and resonance cases . Indeed, when ,

(4.3)

which means that, in the resonance case, there is no wave incoming on the plate; however, the solution is
still decaying into the f luid. However, when α = 0, , and so the solution turns invalid for ,
since the thickness of one of the boundary layers increases infinitely. This effect of the absence of an oscil-
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latory solution for  was discussed in [2]. An important conclusion from the above analysis is the
fact that the attenuation removes the difficulties noted in [2]. In this sense, it plays a similar role to that of
f luid suction from the surface of a porous plate considered in [3]. Let us find the connection between the
wavenumbers of our problem and the wavenumbers of the problem of the wall oscillations in a viscous
incompressible f luid. We denote the wavenumbers of this problem as , . Performing simple but cum-
bersome calculations, we obtain

Let us compare the wavenumbers for the resonance case   , . We

obtain  =  = ,  = ; i.e., in an electrically conductive f luid in a mag-

netic field, there is an incoming wave on the wall. The boundary layer thickness increases by the factor of

. Wavenumbers k1 and  are also different. Comparing the results, we see how the magnetic field
changes the velocity profile, the boundary-layer thickness, and the tangential stresses on the wall. It is
interesting to compare the results obtained in [5] with the results of the present paper. Different boundary
conditions in the problems of both papers lead to different solutions for the velocity field. In [5], the solu-
tion was presented as a superposition of two waves, one of which reflected from the stationary wall. These
waves had equal wavenumbers and boundary-layer thicknesses, which differed from the corresponding
values of the present problem. The velocities of the wave packets in [5] coincided, in contrast to the present
paper, in which the velocities of the wave packets are different and differ from those in [5]. Only in the
resonance case  do the wavenumbers from [5], which can be written in the form k =

,  = , coincide with the values of k2 and δ2 obtained for the incoming wave in

the present paper.

CONCLUSIONS
The problem of the unsteady f low of a viscous electrically conductive incompressible f luid in the par-

allel-plane configuration has been analyzed. The exact solutions of three-dimensional nonstationary
equations of magnetic hydrodynamics have been found. No restrictions are imposed on the plate-motion
pattern. The velocity field of the f low and the tangential stress vectors acting on the wall from the f luid are
determined. For the case of “normal” oscillations of the plate, the resonance case is considered and the struc-
ture of boundary layers adjacent to the wall is studied. It is shown how the magnetic field changes the pattern
of flow of the electrically conductive fluid by changing the fluid velocity field, the values of wavenumbers and
of boundary layers. In addition, the tangential stresses acting on the wall from the fluid also change.

The mathematical procedure of integrating the system of differential equations of the considered prob-
lem can be used in the study of more complex problems. In addition, the obtained results can be used to
consider the force effects of f luid motion in cavities of different shapes, as well as in filtration problems
and in modeling various physical phenomena in a moving f luid.
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